Skip to main content

Pediatric Differentiated Thyroid Carcinoma

  • Chapter
  • First Online:
Practical Management of Thyroid Cancer

Abstract

Differentiated thyroid carcinoma (DTC) is uncommon in the pediatric population but its incidence has been increasing, especially in 15–19 year olds, the most commonly affected age group. Papillary thyroid carcinoma represents 90% or more of cases in children, who typically present with larger tumors, a higher prevalence of regional lymph node disease, and an increased rate of pulmonary metastases compared with adults. Despite more advanced disease, patients with pediatric DTC paradoxically have very low disease-specific mortality, even in the presence of distant metastases at diagnosis. Whenever feasible, children with DTC should be cared for at centers with comprehensive and multidisciplinary thyroid cancer programs. Initial surgery performed by a high-volume thyroid surgeon is the most critical step to improve long-term disease free survival and to limit surgical morbidity. Concerns about late effects, such as secondary malignancies, has prompted reconsideration of universal radioactive iodine (RAI) ablation. Rather, a more conservative approach has evolved, recognizing that patients can take years to respond to previous RAI therapy and also acknowledging that pediatric DTC becomes, not uncommonly, an incurable yet indolent disease. Postoperative staging is used to individualize treatment and recent American Thyroid Association guidelines were created specifically for the management of pediatric DTC. More research needs to be done to better understand the genomics of pediatric DTC and to improve risk-stratification systems to determine who may or may not benefit from more aggressive treatment and postoperative surveillance during childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167–72.

    Article  PubMed  Google Scholar 

  2. Demidchik YE, Saenko VA, Yamashita S. Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq Bras Endocrinol Metabol. 2007;51(5):748–62.

    Article  PubMed  Google Scholar 

  3. Borson-Chazot F, Causeret S, Lifante JC, Augros M, Berger N, Peix JL. Predictive factors for recurrence from a series of 74 children and adolescents with differentiated thyroid cancer. World J Surg. 2004;28(11):1088–92.

    Article  PubMed  Google Scholar 

  4. Sung TY, Jeon MJ, Lee YH, Lee YM, Kwon H, Yoon JH, et al. Initial and dynamic risk stratification of pediatric patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2017;102(3):793–800.

    PubMed  Google Scholar 

  5. Silva-Vieira M, Santos R, Leite V, Limbert E. Review of clinical and pathological features of 93 cases of well-differentiated thyroid carcinoma in pediatric age at the Lisbon Centre of the Portuguese Institute of Oncology between 1964 and 2006. Int J Pediatr Otorhinolaryngol. 2015;79(8):1324–9.

    Article  PubMed  Google Scholar 

  6. Vergamini LB, Frazier AL, Abrantes FL, Ribeiro KB, Rodriguez-Galindo C. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164(6):1481–5.

    Article  PubMed  Google Scholar 

  7. Spinelli C, Strambi S, Rossi L, Bakkar S, Massimino M, Ferrari A, et al. Surgical management of papillary thyroid carcinoma in childhood and adolescence: an Italian multicenter study on 250 patients. J Endocrinol Investig. 2016;39(9):1055–9.

    Article  CAS  Google Scholar 

  8. Zimmerman D, Hay ID, Gough IR, Goellner JR, Ryan JJ, Grant CS, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatively treated at one institution during three decades. Surgery. 1988;104(6):1157–66.

    CAS  PubMed  Google Scholar 

  9. Frankenthaler RA, Sellin RV, Cangir A, Goepfert H. Lymph node metastasis from papillary-follicular thyroid carcinoma in young patients. Am J Surg. 1990;160(4):341–3.

    Article  CAS  PubMed  Google Scholar 

  10. Wada N, Sugino K, Mimura T, Nagahama M, Kitagawa W, Shibuya H, et al. Treatment strategy of papillary thyroid carcinoma in children and adolescents: clinical significance of the initial nodal manifestation. Ann Surg Oncol. 2009;16(12):3442–9.

    Article  PubMed  Google Scholar 

  11. Machens A, Lorenz K, Nguyen Thanh P, Brauckhoff M, Dralle H. Papillary thyroid cancer in children and adolescents does not differ in growth pattern and metastatic behavior. J Pediatr. 2010;157(4):648–52.

    Article  PubMed  Google Scholar 

  12. Newman KD, Black T, Heller G, Azizkhan RG, Holcomb GW 3rd, Sklar C, et al. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg. 1998;227(4):533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popovtzer A, Shpitzer T, Bahar G, Feinmesser R, Segal K. Thyroid cancer in children: management and outcome experience of a referral center. Otolaryngol Head Neck Surg. 2006;135(4):581–4.

    Article  PubMed  Google Scholar 

  14. Savio R, Gosnell J, Palazzo FF, Sywak M, Agarwal G, Cowell C, et al. The role of a more extensive surgical approach in the initial multimodality management of papillary thyroid cancer in children. J Pediatr Surg. 2005;40(11):1696–700.

    Article  PubMed  Google Scholar 

  15. Mao XC, Yu WQ, Shang JB, Wang KJ. Clinical characteristics and treatment of thyroid cancer in children and adolescents: a retrospective analysis of 83 patients. J Zhejiang Univ Sci B. 2017;18(5):430–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bal CS, Kumar A, Chandra P, Dwivedi SN, Mukhopadhyaya S. Is chest x-ray or high-resolution computed tomography scan of the chest sufficient investigation to detect pulmonary metastasis in pediatric differentiated thyroid cancer? Thyroid. 2004;14(3):217–25.

    Article  CAS  PubMed  Google Scholar 

  17. Demidchik YE, Demidchik EP, Reiners C, Biko J, Mine M, Saenko VA, et al. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann Surg. 2006;243(4):525–32.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Handkiewicz-Junak D, Wloch J, Roskosz J, Krajewska J, Kropinska A, Pomorski L, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.

    Article  CAS  PubMed  Google Scholar 

  19. Klein Hesselink MS, Nies M, Bocca G, Brouwers AH, Burgerhof JG, van Dam EW, et al. Pediatric differentiated thyroid carcinoma in the Netherlands: a nationwide follow-up study. J Clin Endocrinol Metab. 2016;101(5):2031–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.

    Article  PubMed  Google Scholar 

  21. Mihailovic J, Nikoletic K, Srbovan D. Recurrent disease in juvenile differentiated thyroid carcinoma: prognostic factors, treatments, and outcomes. J Nucl Med. 2014;55(5):710–7.

    Article  PubMed  Google Scholar 

  22. Golpanian S, Perez EA, Tashiro J, Lew JI, Sola JE, Hogan AR. Pediatric papillary thyroid carcinoma: outcomes and survival predictors in 2504 surgical patients. Pediatr Surg Int. 2016;32(3):201–8.

    Article  PubMed  Google Scholar 

  23. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  25. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, et al. SEER cancer statistics review, 1975-2014, based on November 2016 SEER data submission, posted to the SEER web site, April 2017. Bethesda: National Cancer Institute; 2017 [cited 2017 July 18]. Available from: https://seer.cancer.gov/csr/1975_2014/.

  26. Pole JD, Zuk AM, Wasserman JD. Diagnostic and treatment patterns among children, adolescents, and young adults with Thyroid Cancer in Ontario: 1992–2010. Thyroid. 2017;27(8):1025–33.

    Article  PubMed  Google Scholar 

  27. Spoudeas HA, editor. Paediatric endocrine tumours. West Sussex: Novo Nordisk Ltd; 2005.

    Google Scholar 

  28. Vassilopoulou-Sellin R, Goepfert H, Raney B, Schultz PN. Differentiated thyroid cancer in children and adolescents: clinical outcome and mortality after long-term follow-up. Head Neck. 1998;20(6):549–55.

    Article  CAS  PubMed  Google Scholar 

  29. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ito Y, Miyauchi A, Tomoda C, Hirokawa M, Kobayashi K, Miya A. Prognostic significance of patient age in minimally and widely invasive follicular thyroid carcinoma: investigation of three age groups. Endocr J. 2014;61(3):265–71.

    Article  PubMed  Google Scholar 

  31. Golpanian S, Tashiro J, Sola JE, Allen C, Lew JI, Hogan AR, et al. Surgically treated pediatric nonpapillary thyroid carcinoma. Eur J Pediatr Surg. 2016;26(6):524–32.

    Article  PubMed  Google Scholar 

  32. Sugino K, Nagahama M, Kitagawa W, Shibuya H, Ohkuwa K, Uruno T, et al. Papillary thyroid carcinoma in children and adolescents: long-term follow-up and clinical characteristics. World J Surg. 2015;39(9):2259–65.

    Article  PubMed  Google Scholar 

  33. Landau D, Vini L, A'Hern R, Harmer C. Thyroid cancer in children: the Royal Marsden Hospital experience. Eur J Cancer. 2000;36(2):214–20.

    Article  CAS  PubMed  Google Scholar 

  34. Harach HR, Williams ED. Childhood thyroid cancer in England and Wales. Br J Cancer. 1995;72(3):777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alzahrani AS, Xing M. Impact of lymph node metastases identified on central neck dissection (CND) on the recurrence of papillary thyroid cancer: potential role of BRAFV600E mutation in defining CND. Endocr Relat Cancer. 2013;20(1):13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazar L, Lebenthal Y, Segal K, Steinmetz A, Strenov Y, Cohen M, et al. Pediatric thyroid cancer: postoperative classifications and response to initial therapy as prognostic factors. J Clin Endocrinol Metab. 2016;101(5):1970–9.

    Article  CAS  PubMed  Google Scholar 

  37. O'Gorman CS, Hamilton J, Rachmiel M, Gupta A, Ngan BY, Daneman D. Thyroid cancer in childhood: a retrospective review of childhood course. Thyroid. 2010;20(4):375–80.

    Article  PubMed  Google Scholar 

  38. Lazar L, Lebenthal Y, Steinmetz A, Yackobovitch-Gavan M, Phillip M. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.

    Article  PubMed  Google Scholar 

  39. Pires BP, Alves PA Jr, Bordallo MA, Bulzico DA, Lopes FP, Farias T, et al. Prognostic factors for early and long-term remission in pediatric differentiated thyroid carcinoma: the role of sex, age, clinical presentation, and the newly proposed American Thyroid Association Risk Stratification System. Thyroid. 2016;26(10):1480–7.

    Article  CAS  PubMed  Google Scholar 

  40. Schlumberger M, De Vathaire F, Travagli JP, Vassal G, Lemerle J, Parmentier C, et al. Differentiated thyroid carcinoma in childhood: long term follow-up of 72 patients. J Clin Endocrinol Metab. 1987;65(6):1088–94.

    Article  CAS  PubMed  Google Scholar 

  41. Hebestreit H, Biko J, Drozd V, Demidchik Y, Burkhardt A, Trusen A, et al. Pulmonary fibrosis in youth treated with radioiodine for juvenile thyroid cancer and lung metastases after Chernobyl. Eur J Nucl Med Mol Imaging. 2011;38(9):1683–90.

    Article  CAS  PubMed  Google Scholar 

  42. Pawelczak M, David R, Franklin B, Kessler M, Lam L, Shah B. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following (1)(3)(1)I treatment: a systematic review. Thyroid. 2010;20(10):1095–101.

    Article  CAS  PubMed  Google Scholar 

  43. Tucker MA, Jones PH, Boice JD Jr, Robison LL, Stone BJ, Stovall M, et al. Therapeutic radiation at a young age is linked to secondary thyroid cancer. The Late Effects Study Group. Cancer Res. 1991;51(11):2885–8.

    CAS  PubMed  Google Scholar 

  44. Bhatti P, Veiga LH, Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174(6):741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Turcotte LM, Liu Q, Yasui Y, Arnold MA, Hammond S, Howell RM, et al. Temporal trends in treatment and subsequent Neoplasm risk among 5-year survivors of childhood cancer, 1970–2015. JAMA. 2017;317(8):814–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Casagranda L, Oriol M, Freycon F, Frappaz D, Bertrand Y, Bergeron C, et al. Second malignant neoplasm following childhood cancer: a nested case-control study of a recent cohort (1987–2004) from the childhood cancer registry of the Rhone-Alpes region in France. Pediatr Hematol Oncol. 2016;33(6):371–82.

    Article  CAS  PubMed  Google Scholar 

  47. Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, Mertens AC, Liu Y, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166(4):618–28.

    Article  CAS  PubMed  Google Scholar 

  48. Naing S, Collins BJ, Schneider AB. Clinical behavior of radiation-induced thyroid cancer: factors related to recurrence. Thyroid. 2009;19(5):479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rose J, Wertheim BC, Guerrero MA. Radiation treatment of patients with primary pediatric malignancies: risk of developing thyroid cancer as a secondary malignancy. Am J Surg. 2012;204(6):881–6. discussion 6–7.

    Article  PubMed  Google Scholar 

  50. Inskip PD, Curtis RE. New malignancies following childhood cancer in the United States, 1973–2002. Int J Cancer. 2007;121(10):2233–40.

    Article  CAS  PubMed  Google Scholar 

  51. Veiga LH, Bhatti P, Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, et al. Chemotherapy and thyroid cancer risk: a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2012;21(1):92–101.

    Article  CAS  Google Scholar 

  52. Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology. 2016;27(3):316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Russo M, Malandrino P, Moleti M, D'Angelo A, Tavarelli M, Sapuppo G, et al. Thyroid cancer in the pediatric age in sicily: influence of the volcanic environment. Anticancer Res. 2017;37(3):1515–22.

    Article  PubMed  Google Scholar 

  54. Angusti T, Codegone A, Pellerito R, Favero A. Thyroid cancer prevalence after radioiodine treatment of hyperthyroidism. J Nucl Med. 2000;41(6):1006–9.

    CAS  PubMed  Google Scholar 

  55. Clement SC, van Eck-Smit BL, van Trotsenburg AS, Kremer LC, Tytgat GA, van Santen HM. Long-term follow-up of the thyroid gland after treatment with 131I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance. Pediatr Blood Cancer. 2013;60(11):1833–8.

    Article  CAS  PubMed  Google Scholar 

  56. de Vathaire F, Francois P, Schlumberger M, Schweisguth O, Hardiman C, Grimaud E, et al. Epidemiological evidence for a common mechanism for neuroblastoma and differentiated thyroid tumour. Br J Cancer. 1992;65(3):425–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buryk MA, Picarsic JL, Creary SE, Shaw PH, Simons JP, Deutsch M, et al. Identification of unique, heterozygous germline mutation, STK11 (p.F354L), in a child with an encapsulated follicular variant of papillary thyroid carcinoma within six months of completing treatment for neuroblastoma. Pediatr Dev Pathol. 2015;18(4):318–23.

    Article  PubMed  Google Scholar 

  58. Corrias A, Cassio A, Weber G, Mussa A, Wasniewska M, Rapa A, et al. Thyroid nodules and cancer in children and adolescents affected by autoimmune thyroiditis. Arch Pediatr Adolesc Med. 2008;162(6):526–31.

    Article  PubMed  Google Scholar 

  59. Kambalapalli M, Gupta A, Prasad UR, Francis GL. Ultrasound characteristics of the thyroid in children and adolescents with goiter: a single center experience. Thyroid. 2015;25(2):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kovatch KJ, Bauer AJ, Isaacoff EJ, Prickett KK, Adzick NS, Kazahaya K, et al. Pediatric thyroid carcinoma in patients with Graves’ disease: the role of ultrasound in selecting patients for definitive therapy. Horm Res Paediatr. 2015;83(6):408–13.

    Google Scholar 

  61. Aydin Y, Besir FH, Erkan ME, Yazgan O, Gungor A, Onder E, et al. Spectrum and prevalence of nodular thyroid diseases detected by ultrasonography in the Western Black Sea region of Turkey. Med Ultrason. 2014;16(2):100–6.

    Article  PubMed  Google Scholar 

  62. Niedziela M, Korman E, Breborowicz D, Trejster E, Harasymczuk J, Warzywoda M, et al. A prospective study of thyroid nodular disease in children and adolescents in western Poland from 1996 to 2000 and the incidence of thyroid carcinoma relative to iodine deficiency and the Chernobyl disaster. Pediatr Blood Cancer. 2004;42(1):84–92.

    Article  PubMed  Google Scholar 

  63. Xu L, Port M, Landi S, Gemignani F, Cipollini M, Elisei R, et al. Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case-control studies. Thyroid. 2014;24(6):966–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lloyd RV, Buehler D, Khanafshar E. Papillary thyroid carcinoma variants. Head Neck Pathol. 2011;5(1):51–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lloyd RV, Osamura RY, Klöppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. Lyon: IARC Press; 2017.

    Google Scholar 

  66. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Balachandar S, La Quaglia M, Tuttle RM, Heller G, Ghossein RA, Sklar CA. Pediatric differentiated thyroid carcinoma of follicular cell origin: prognostic significance of histologic subtypes. Thyroid. 2016;26(2):219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thompson LD, Wieneke JA, Heffess CS. Diffuse sclerosing variant of papillary thyroid carcinoma: a clinicopathologic and immunophenotypic analysis of 22 cases. Endocr Pathol. 2005;16(4):331–48.

    Article  PubMed  Google Scholar 

  69. Akaishi J, Sugino K, Kameyama K, Masaki C, Matsuzu K, Suzuki A, et al. Clinicopathologic features and outcomes in patients with diffuse sclerosing variant of papillary thyroid carcinoma. World J Surg. 2015;39(7):1728–35.

    Article  PubMed  Google Scholar 

  70. Sobrinho-Simoes M, Eloy C, Magalhaes J, Lobo C, Amaro T. Follicular thyroid carcinoma. Mod Pathol. 2011;24(Suppl 2):S10–8.

    Article  CAS  PubMed  Google Scholar 

  71. Vuong HG, Kondo T, Oishi N, Nakazawa T, Mochizuki K, Miyauchi A, et al. Pediatric follicular thyroid carcinoma – indolent cancer with low prevalence of RAS mutations and absence of PAX8-PPARG fusion in a Japanese population. Histopathology. 2017;71(5):760–8.

    Article  PubMed  Google Scholar 

  72. Enomoto K, Enomoto Y, Uchino S, Yamashita H, Noguchi S. Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J. 2013;60(5):629–35.

    Article  PubMed  Google Scholar 

  73. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  74. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Leeman-Neill RJ, Kelly LM, Liu P, Brenner AV, Little MP, Bogdanova TI, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer. 2014;120(6):799–807.

    Article  CAS  PubMed  Google Scholar 

  76. Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY, et al. RET/PTC and PAX8/PPARgamma chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 2013;119(10):1792–9.

    Article  CAS  PubMed  Google Scholar 

  77. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123(11):4935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bauer AJ. Molecular genetics of thyroid cancer in children and adolescents. Endocrinol Metab Clin N Am. 2017;46(2):389–403.

    Article  Google Scholar 

  79. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in Northeast United States. Cancer. 2016;122(7):1097–107.

    Article  CAS  PubMed  Google Scholar 

  80. Cordioli MI, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer. 2015;22(6):R311–24.

    Article  CAS  PubMed  Google Scholar 

  81. Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22.

    Article  PubMed  Google Scholar 

  82. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12(4):192–202.

    Article  CAS  PubMed  Google Scholar 

  83. Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85(3):1170–5.

    CAS  PubMed  Google Scholar 

  84. Cordioli MI, Moraes L, Bastos AU, Besson P, Alves MT, Delcelo R, et al. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children. Thyroid. 2016;27:182–8.

    Article  PubMed  CAS  Google Scholar 

  85. Cordioli MI, Moraes L, Carvalheira G, Sisdelli L, Alves MT, Delcelo R, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma. Cancer Med. 2016;5(7):1535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, et al. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid. 2016;26(2):227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vanden Borre P, Schrock AB, Anderson PM, Morris JC, Heilmann AM, Holmes O, et al. Pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations, including kinase fusions. Oncologist. 2017;22(3):255–63.

    Article  CAS  Google Scholar 

  88. Raman P, Koenig RJ. Pax-8-PPAR-gamma fusion protein in thyroid carcinoma. Nat Rev Endocrinol. 2014;10(10):616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.

    Article  PubMed  Google Scholar 

  90. Alzahrani AS, Murugan AK, Qasem E, Alswailem M, Al-Hindi H, Shi Y. Single point mutations in pediatric differentiated thyroid cancer. Thyroid. 2017;27(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  91. Onder S, Ozturk Sari S, Yegen G, Sormaz IC, Yilmaz I, Poyrazoglu S, et al. Classic architecture with multicentricity and local recurrence, and absence of TERT promoter mutations are correlates of BRAF (V600E) harboring pediatric papillary thyroid carcinomas. Endocr Pathol. 2016;27(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  92. Ni Y, Seballos S, Fletcher B, Romigh T, Yehia L, Mester J, et al. Germline compound heterozygous poly-glutamine deletion in USF3 may be involved in predisposition to heritable and sporadic epithelial thyroid carcinoma. Hum Mol Genet. 2017;26(2):243–57.

    CAS  PubMed  Google Scholar 

  93. Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al.. GeneReviews® [Internet]. Seattle: University of Washington; 1993–2017 [cited 2017]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.

  94. Bauer AJ. Clinical behavior and genetics of nonsyndromic, familial nonmedullary thyroid cancer. Front Horm Res. 2013;41:141–8.

    Article  CAS  PubMed  Google Scholar 

  95. Schultz KAP, Rednam SP, Kamihara J, Doros L, Achatz MI, Wasserman JD, et al. PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e76–82.

    Article  CAS  PubMed  Google Scholar 

  96. Nagy R, Ringel MD. Genetic predisposition for nonmedullary thyroid cancer. Horm Cancer. 2015;6(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  97. Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with cowden and cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith JR, Marqusee E, Webb S, Nose V, Fishman SJ, Shamberger RC, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab. 2011;96(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  99. Hansen-Kiss E, Beinkampen S, Adler B, Frazier T, Prior T, Erdman S, et al. A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. J Med Genet. 2017;54(7):471–8.

    Article  PubMed  Google Scholar 

  100. Khan NE, Bauer AJ, Doros L, Schultz KA, Decastro RM, Harney LA, et al. Macrocephaly associated with the DICER1 syndrome. Genet Med. 2016;19:244–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Rutter MM, Jha P, Schultz KA, Sheil A, Harris AK, Bauer AJ, et al. DICER1 mutations and differentiated thyroid carcinoma: evidence of a direct association. J Clin Endocrinol Metab. 2016;101(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  102. Khan NE, Bauer AJ, Schultz KAP, Doros L, Decastro RM, Ling A, et al. Quantification of thyroid cancer and multinodular goiter risk in the DICER1 syndrome: a family-based cohort study. J Clin Endocrinol Metab. 2017;102(5):1614–22.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Doros L, Schultz KA, Stewart DR, Bauer AJ, Williams G, Rossi CT, et al. DICER1-related disorders Seattle: University of Washington; 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK196157/.

  104. Eng C. PTEN hamartoma tumor syndrome. Seattle: University of Washington; 2001 [Updated 2016 Jun 2]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1488/.

  105. Jasperson KW, Patel SG, Ahnen DJ. APC-associated polyposis conditions. Seattle: University of Washington; 1998 [Updated 2017 Feb 2]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1345/.

  106. Stratakis CA, Salpea P, Raygada M. Carney complex. Seattle: University of Washington; 2003 [Updated 2015 Jan 29]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1286/.

  107. Lam AK, Saremi N. Cribriform-morular variant of papillary thyroid carcinoma: a distinctive type of thyroid cancer. Endocr Relat Cancer. 2017;24(4):R109–R21.

    Article  CAS  PubMed  Google Scholar 

  108. Schreiner BF, Murphy WT. Malignant neoplasms of the thyroid gland. Ann Surg. 1934;99(1):116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Waguespack SG, Francis G. Initial management and follow-up of differentiated thyroid cancer in children. J Natl Compr Cancer Netw. 2010;8(11):1289–300.

    Article  Google Scholar 

  110. Kim J, Sun Z, Adam MA, Adibe OO, Rice HE, Roman SA, et al. Predictors of nodal metastasis in pediatric differentiated thyroid cancer. J Pediatr Surg. 2017;52(1):120–3.

    Article  PubMed  Google Scholar 

  111. Landry CS, Grubbs EG, Busaidy NL, Monroe BJ, Staerkel GA, Perrier ND, et al. Cystic lymph nodes in the lateral neck as indicators of metastatic papillary thyroid cancer. Endocr Pract. 2011;17(2):240–4.

    Article  PubMed  Google Scholar 

  112. Wang Y, Zhao H, Wang YX, Wang MJ, Zhang ZH, Zhang L, et al. Improvement in the detection of cystic metastatic papillary thyroid carcinoma by measurement of thyroglobulin in aspirated fluid. Biomed Res Int. 2016;2016:8905916.

    PubMed  PubMed Central  Google Scholar 

  113. Kluijfhout WP, Pasternak JD, van der Kaay D, Vriens MR, Propst EJ, Wasserman JD. Is it time to reconsider lobectomy in low-risk paediatric thyroid cancer? Clin Endocrinol. 2017;86(4):591–6.

    Article  Google Scholar 

  114. Jin X, Masterson L, Patel A, Hook L, Nicholson J, Jefferies S, et al. Conservative or radical surgery for pediatric papillary thyroid carcinoma: a systematic review of the literature. Int J Pediatr Otorhinolaryngol. 2015;79(10):1620–4.

    Article  PubMed  Google Scholar 

  115. Jarzab B, Handkiewicz Junak D, Wloch J, Kalemba B, Roskosz J, Kukulska A, et al. Multivariate analysis of prognostic factors for differentiated thyroid carcinoma in children. Eur J Nucl Med. 2000;27(7):833–41.

    Article  CAS  PubMed  Google Scholar 

  116. Sywak M, Cornford L, Roach P, Stalberg P, Sidhu S, Delbridge L. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery. 2006;140(6):1000–5. discussion 5–7.

    Article  PubMed  Google Scholar 

  117. Welch Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Francis GL. Extensive surgery improves recurrence-free survival for children and young patients with class I papillary thyroid carcinoma. J Pediatr Surg. 1999;34(12):1799–804.

    Article  CAS  PubMed  Google Scholar 

  118. Machens A, Elwerr M, Thanh PN, Lorenz K, Schneider R, Dralle H. Impact of central node dissection on postoperative morbidity in pediatric patients with suspected or proven thyroid cancer. Surgery. 2016;160(2):484–92.

    Article  PubMed  Google Scholar 

  119. Lee KE, Chung IY, Kang E, Koo do H, Kim KH, Kim SW, et al. Ipsilateral and contralateral central lymph node metastasis in papillary thyroid cancer: patterns and predictive factors of nodal metastasis. Head Neck. 2013;35(5):672–6.

    Article  PubMed  Google Scholar 

  120. van Santen HM, Aronson DC, Vulsma T, Tummers RF, Geenen MM, de Vijlder JJ, et al. Frequent adverse events after treatment for childhood-onset differentiated thyroid carcinoma: a single institute experience. Eur J Cancer. 2004;40(11):1743–51.

    Article  PubMed  Google Scholar 

  121. Sosa JA, Tuggle CT, Wang TS, Thomas DC, Boudourakis L, Rivkees S, et al. Clinical and economic outcomes of thyroid and parathyroid surgery in children. J Clin Endocrinol Metab. 2008;93(8):3058–65.

    Article  CAS  PubMed  Google Scholar 

  122. Tuggle CT, Roman SA, Wang TS, Boudourakis L, Thomas DC, Udelsman R, et al. Pediatric endocrine surgery: who is operating on our children? Surgery. 2008;144(6):869–77. discussion 77.

    Article  PubMed  Google Scholar 

  123. Al-Qurayshi Z, Hauch A, Srivastav S, Aslam R, Friedlander P, Kandil E. A national perspective of the risk, presentation, and outcomes of pediatric thyroid cancer. JAMA Otolaryngol Head Neck Surg. 2016;142(5):472–8.

    Article  PubMed  Google Scholar 

  124. Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg. 2004;28(12):1187–98.

    Article  PubMed  Google Scholar 

  125. Burke JF, Sippel RS, Chen H. Evolution of pediatric thyroid surgery at a tertiary medical center. J Surg Res. 2012;177(2):268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  126. AJCC. Chapter 8. Thyroid. In: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC cancer staging manual, 7th ed. New York: Springer; 2010. p. 87–96.

    Google Scholar 

  127. Powers PA, Dinauer CA, Tuttle RM, Francis GL. The MACIS score predicts the clinical course of papillary thyroid carcinoma in children and adolescents. J Pediatr Endocrinol Metab. 2004;17(3):339–43.

    Article  PubMed  Google Scholar 

  128. Jang HW, Lee JI, Kim HK, Oh YL, Choi YL, Jin DK, et al. Identification of a cut-off for the MACIS score to predict the prognosis of differentiated thyroid carcinoma in children and young adults. Head Neck. 2012;34(5):696–701.

    Article  PubMed  Google Scholar 

  129. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Albano D, Bertagna F, Panarotto MB, Giubbini R. Early and late adverse effects of radioiodine for pediatric differentiated thyroid cancer. Pediatr Blood Cancer. 2017;64(11):26595.

    Article  CAS  Google Scholar 

  131. Reiners C, Biko J, Haenscheid H, Hebestreit H, Kirinjuk S, Baranowski O, et al. Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2013;98(7):3039–48.

    Article  CAS  PubMed  Google Scholar 

  132. Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. Thyroid. 2015;25(6):681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chen L, Shen Y, Luo Q, Yu Y, Lu H, Zhu R. Pulmonary fibrosis following radioiodine therapy of pulmonary metastases from differentiated thyroid carcinoma. Thyroid. 2010;20(3):337–40.

    Article  CAS  PubMed  Google Scholar 

  134. Iyer NG, Morris LG, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117(19):4439–46.

    Article  PubMed  Google Scholar 

  135. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.

    Article  CAS  PubMed  Google Scholar 

  136. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Durante C, Montesano T, Attard M, Torlontano M, Monzani F, Costante G, et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 2012;97(8):2748–53.

    Article  CAS  PubMed  Google Scholar 

  138. Clayman GL, Agarwal G, Edeiken BS, Waguespack SG, Roberts DB, Sherman SI. Long-term outcome of comprehensive central compartment dissection in patients with recurrent/persistent papillary thyroid carcinoma. Thyroid. 2011;21(12):1309–16.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dottorini ME, Vignati A, Mazzucchelli L, Lomuscio G, Colombo L. Differentiated thyroid carcinoma in children and adolescents: a 37-year experience in 85 patients. J Nucl Med. 1997;38(5):669–75.

    CAS  PubMed  Google Scholar 

  140. Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med. 1998;39(9):1531–6.

    CAS  PubMed  Google Scholar 

  141. Xu L, Liu Q, Liu Y, Pang H. Parameters influencing curative effect of 131I therapy on pediatric differentiated thyroid carcinoma: a retrospective study. Med Sci Monit. 2016;22:3079–85.

    Article  PubMed  Google Scholar 

  142. Bal CS, Garg A, Chopra S, Ballal S, Soundararajan R. Prognostic factors in pediatric differentiated thyroid cancer patients with pulmonary metastases. J Pediatr Endocrinol Metab. 2014;28(7–8):745–51.

    Google Scholar 

  143. Biko J, Reiners C, Kreissl MC, Verburg FA, Demidchik Y, Drozd V. Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur J Nucl Med Mol Imaging. 2011;38(4):651–5.

    Article  PubMed  Google Scholar 

  144. Padovani RP, Robenshtok E, Brokhin M, Tuttle RM. Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 2012;22(8):778–83.

    Article  CAS  PubMed  Google Scholar 

  145. Luster M, Lassmann M, Freudenberg LS, Reiners C. Thyroid cancer in childhood: management strategy, including dosimetry and long-term results. Hormones (Athens). 2007;6(4):269–78.

    Article  Google Scholar 

  146. Schoelwer MJ, Zimmerman D, Shore RM, Josefson JL. The use of 123I in diagnostic radioactive iodine scans in children with differentiated thyroid carcinoma. Thyroid. 2015;25(8):935–41.

    Article  CAS  PubMed  Google Scholar 

  147. Livhits MJ, Pasternak JD, Xiong M, Li N, Gosnell JE, Yeh MW, et al. Pre-ablation thyroglobulin and thyroglobulin to thyroid-stimulating hormone ratio may be associated with pulmonary metastases in children with differentiated thyroid cancer. Endocr Pract. 2016;22(11):1259–66.

    Article  PubMed  Google Scholar 

  148. Vali R, Rachmiel M, Hamilton J, El Zein M, Wasserman J, Costantini DL, et al. The role of ultrasound in the follow-up of children with differentiated thyroid cancer. Pediatr Radiol. 2015;45(7):1039–45.

    Article  PubMed  Google Scholar 

  149. Kuijt WJ, Huang SA. Children with differentiated thyroid cancer achieve adequate hyperthyrotropinemia within 14 days of levothyroxine withdrawal. J Clin Endocrinol Metab. 2005;90(11):6123–5.

    Article  CAS  PubMed  Google Scholar 

  150. Turpin S, Lambert R, Deal C. Timing of hormone withdrawal in children undergoing 131I whole-body scans for thyroid cancer. Horm Res Paediatr. 2016;86(6):410–5.

    Article  CAS  PubMed  Google Scholar 

  151. Hanscheid H, Lassmann M, Luster M, Thomas SR, Pacini F, Ceccarelli C, et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med. 2006;47(4):648–54.

    PubMed  Google Scholar 

  152. Handkiewicz-Junak D, Gawlik T, Rozkosz J, Puch Z, Michalik B, Gubala E, et al. Recombinant human thyrotropin preparation for adjuvant radioiodine treatment in children and adolescents with differentiated thyroid cancer. Eur J Endocrinol. 2015;173(6):873–81.

    Article  CAS  PubMed  Google Scholar 

  153. Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12(4):773–803.

    Article  CAS  PubMed  Google Scholar 

  154. Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12(8):683–702.

    Article  PubMed  Google Scholar 

  155. Dinauer C, Francis GL. Thyroid cancer in children. Endocrinol Metab Clin N Am. 2007;36(3):779–806, vii.

    Article  CAS  Google Scholar 

  156. Lassmann M, Hanscheid H, Verburg FA, Luster M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55(2):107–15.

    CAS  PubMed  Google Scholar 

  157. Verburg FA, Reiners C, Hanscheid H. Approach to the patient: role of dosimetric RAI Rx in children with DTC. J Clin Endocrinol Metab. 2013;98(10):3912–9.

    Article  CAS  PubMed  Google Scholar 

  158. Barwick TD, Dhawan RT, Lewington V. Role of SPECT/CT in differentiated thyroid cancer. Nucl Med Commun. 2012;33(8):787–98.

    Article  CAS  PubMed  Google Scholar 

  159. Lee M, Lee YK, Jeon TJ, Chang HS, Kim BW, Lee YS, et al. Frequent visualization of thyroglossal duct remnant on post-ablation 131I-SPECT/CT and its clinical implications. Clin Radiol. 2015;70(6):638–43.

    Article  CAS  PubMed  Google Scholar 

  160. Mostafa M, Vali R, Chan J, Omarkhail Y, Shammas A. Variants and pitfalls on radioiodine scans in pediatric patients with differentiated thyroid carcinoma. Pediatr Radiol. 2016;46(11):1579–89.

    Article  PubMed  Google Scholar 

  161. Sabra MM, Grewal RK, Tala H, Larson SM, Tuttle RM. Clinical outcomes following empiric radioiodine therapy in patients with structurally identifiable metastatic follicular cell-derived thyroid carcinoma with negative diagnostic but positive post-therapy 131I whole-body scans. Thyroid. 2012;22(9):877–83.

    Article  CAS  PubMed  Google Scholar 

  162. Rosario PW, Mourao GF, Dos Santos JB, Calsolari MR. Is empirical radioactive iodine therapy still a valid approach to patients with thyroid cancer and elevated thyroglobulin? Thyroid. 2014;24(3):533–6.

    Article  CAS  PubMed  Google Scholar 

  163. Hurley JR. Historical note: TSH suppression for thyroid cancer. Thyroid. 2011;21(11):1175–6.

    Article  PubMed  Google Scholar 

  164. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bauer AJ. Approach to the pediatric patient with Graves’ disease: when is definitive therapy warranted? J Clin Endocrinol Metab. 2011;96(3):580–8.

    Article  CAS  PubMed  Google Scholar 

  166. Rivkees SA. Pediatric Graves’ disease: controversies in management. Horm Res Paediatr. 2010;74(5):305–11.

    Article  CAS  PubMed  Google Scholar 

  167. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.

    Article  CAS  PubMed  Google Scholar 

  168. Ciarallo A, Marcus C, Taghipour M, Subramaniam RM. Value of fluorodeoxyglucose PET/computed tomography patient management and outcomes in thyroid cancer. PET Clin. 2015;10(2):265–78.

    Article  PubMed  Google Scholar 

  169. Leboulleux S, El Bez I, Borget I, Elleuch M, Deandreis D, Al Ghuzlan A, et al. Post-radioiodine treatment whole body scan in the era of fluorodesoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid. 2012;22(8):832–8.

    Article  CAS  PubMed  Google Scholar 

  170. Isoda T, BaBa S, Maruoka Y, Kitamura Y, Tahara K, Sasaki M, et al. Impact of patient age on the iodine/FDG “flip-flop” phenomenon in lung metastasis from thyroid cancer. Ann Nucl Med. 2016;30(8):518–24.

    Article  CAS  PubMed  Google Scholar 

  171. Evans C, Tennant S, Perros P. Thyroglobulin in differentiated thyroid cancer. Clin Chim Acta. 2015;444:310–7.

    Article  CAS  PubMed  Google Scholar 

  172. Nascimento C, Borget I, Troalen F, Al Ghuzlan A, Deandreis D, Hartl D, et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur J Endocrinol. 2013;169(5):689–93.

    Article  CAS  PubMed  Google Scholar 

  173. Momesso DP, Vaisman F, Yang SP, Bulzico DA, Corbo R, Vaisman M, et al. Dynamic risk stratification in patients with differentiated thyroid Cancer treated without radioactive iodine. J Clin Endocrinol Metab. 2016;101(7):2692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dominguez JM, Nilo F, Contreras T, Carmona R, Droppelmann N, Gonzalez H, et al. Neck sonography and suppressed thyroglobulin have high sensitivity for identifying recurrent/persistent disease in patients with low-risk thyroid cancer treated with total thyroidectomy and radioactive iodine ablation, making stimulated thyroglobulin unnecessary. J Ultrasound Med. 2017;36(11):2299–307.

    Article  PubMed  Google Scholar 

  175. Castagna MG, Brilli L, Pilli T, Montanaro A, Cipri C, Fioravanti C, et al. Limited value of repeat recombinant human thyrotropin (rhTSH)-stimulated thyroglobulin testing in differentiated thyroid carcinoma patients with previous negative rhTSH-stimulated thyroglobulin and undetectable basal serum thyroglobulin levels. J Clin Endocrinol Metab. 2008;93(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  176. Han JM, Kim WB, Yim JH, Kim WG, Kim TY, Ryu JS, et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid. 2012;22(8):784–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Wartofsky L. Does an undetectable rhTSH-stimulated Tg level 12 months after initial treatment of thyroid cancer indicate remission? Clin Endocrinol. 2011;74(1):111–7.

    Article  CAS  Google Scholar 

  178. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods – strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27(5):701–12.

    Article  CAS  PubMed  Google Scholar 

  179. Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1211–25.

    Article  PubMed  Google Scholar 

  180. Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139(5 Pt 1):346–51.

    Article  CAS  PubMed  Google Scholar 

  181. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–95.

    Article  CAS  PubMed  Google Scholar 

  182. Kim A, Widemann BC, Krailo M, Jayaprakash N, Fox E, Weigel B, et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(9):1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Widemann BC, Kim A, Fox E, Baruchel S, Adamson PC, Ingle AM, et al. A phase I trial and pharmacokinetic study of sorafenib in children with refractory solid tumors or leukemias: a Children’s Oncology Group Phase I Consortium report. Clin Cancer Res. 2012;18(21):6011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro-Oncology. 2014;16(10):1408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim A, Dombi E, Tepas K, Fox E, Martin S, Wolters P, et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr Blood Cancer. 2013;60(3):396–401.

    Article  CAS  PubMed  Google Scholar 

  186. Iyer P, Mayer JL, Ewig JM. Response to sorafenib in a pediatric patient with papillary thyroid carcinoma with diffuse nodular pulmonary disease requiring mechanical ventilation. Thyroid. 2014;24(1):169–74.

    Article  CAS  PubMed  Google Scholar 

  187. Waguespack SG, Sherman SI, Williams MD, Clayman GL, Herzog CE. The successful use of sorafenib to treat pediatric papillary thyroid carcinoma. Thyroid. 2009;19(4):407–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Waguespack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waguespack, S.G., Wasserman, J.D. (2018). Pediatric Differentiated Thyroid Carcinoma. In: Mallick, U.K., Harmer, C. (eds) Practical Management of Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-91725-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91725-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91724-5

  • Online ISBN: 978-3-319-91725-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics