Skip to main content

Nano-carbon: Plant Growth Promotion and Protection

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Abstract

Carbon nanomaterials (CNMs) such as fullerenes, carbon nanoparticles, fullerol, single-walled carbon nanotubes/multi-walled carbon nanotubes, and carbon nanohorns, among others, have been in used in agriculture showing positive and adverse effects. Researchers reported both positive and negative effects of carbon nanomaterials on plant system. Some nanoparticles improved the seed germination and stimulated growth parameters in some plants; however, some produced contradictory effects on others. In the current chapter, both positive and negative effects of different CNMs on different plant species were reported. However, this chapter covers the plausible role of carbon-based nanomaterials that can be useful for the delivery of nucleic acid, pesticides, and fertilizers to plants, wastewater treatment, suppression of plant diseases caused by pathogens, and sensing of critical plant molecules with a high level of sensitivity. Carbon nanotubes for the construction of electrochemical sensors dedicated to the environmental monitoring of pesticides are also discussed. The future prospect of carbon nanomaterials is fairly bright as it is a low-cost solution to increase crop promotion and plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hakami SM, Khalil AB, Laoui T, Atieh MA (2013) Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg Chem Appl 45:8943

    Google Scholar 

  • Andreas H (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859

    Article  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15(9):1896

    Article  Google Scholar 

  • Asgari P, Moradi O, Tajeddin B (2014) The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of mazafati brand dates. Int Nano Lett 4:1–5

    Article  CAS  Google Scholar 

  • Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48(5):2792–2797

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Bossa N, Qu F, Winglee J, Li G, Sun K, Liang H, Wiesner MR (2017) Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes. Environ Sci Technol 51:253–262

    Article  PubMed  CAS  Google Scholar 

  • Bakajin O, Noy A, Fornasiero F, Grigoropoulos CP, Holt JK, In JB, Kim S, Park HG (2009) Nanofluidics carbon nanotube membranes: applications for water purification and desalination. In: Savage NF (ed) Nanotechnology applications for clean water. William Andrew Inc., Norwich, NY, pp 77–93

    Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  PubMed  CAS  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4(2):203–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biris AS, Khodakovskaya M (2011) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507

    Google Scholar 

  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinforma 1:282–285

    Google Scholar 

  • Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49:349–357

    Article  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee H, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  PubMed  Google Scholar 

  • Chai M, Shi F, Li R, Liu L, Liu Y, Liu F (2013) Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regul 71:171–179

    Article  CAS  Google Scholar 

  • Chen C, Wang X (2006) Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  • Churilov GN (2008) Synthesis of fullerenes and other nanomaterials in arc discharge. Fullerenes, Nanotubes, Carbon Nanostruct 16:395–403

    Article  CAS  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das R, Abd Hamid SB, Ali ME, Ismail AF, Annuar MSM, Ramakrishna S (2014a) Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354:160–179

    Article  CAS  Google Scholar 

  • Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014b) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-enhanced accumulation of p,p’-DDE in agricultural crop species. Environ Sci Technol 46(17):9315–9323

    Article  CAS  Google Scholar 

  • De Oliveira R, Hudari F, Franco J, Zanoni MVB (2015) Carbon nanotube-based electrochemical sensor for the determination of anthraquinone hair dyes in wastewaters. Chemosensors 3:22–35

    Article  CAS  Google Scholar 

  • Dichiara AB, Webber MR, Gorman WR, Rogers RE (2015) Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl Mater Interface 7:15674–15680

    Article  CAS  Google Scholar 

  • El-Sheikh AH, Sweileh JA, Al-Degs YS, Insisi AA, Al-Rabady N (2008) Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters. Talanta 74:1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Eun AJC, Wong SM (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90(3):269–275

    Article  PubMed  CAS  Google Scholar 

  • European Commission (2011) European commission recommendations (2011) on the definition of nanomaterial. Off J Eur Union 54:38–40

    Google Scholar 

  • Fan LL, Wang YH, Shao XW, Geng YQ, Wang ZC, Ma Y, Liu J (2012) Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline alkali soil. J Food Agric Environ 10:558–562

    CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fathi Z, Nejad R-AK, Mahmoodzadeh H, Satari TS (2017) Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J Plant Prot Res 57:228–236

    Article  Google Scholar 

  • Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79(3):681–686

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2010) Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits. J Agric Food Chem 58(21):1201–11206

    Article  CAS  Google Scholar 

  • Flores D, Chacón R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am J Plant Sci 5:3510–3518

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, De Klerk CM, Botha TA, Waanders F, Phoku J, Pandey S (2016) The antifungal activities of multi-walled carbon nanotubes decorated with silver, copper and zinc oxide particles. In: International conference on advances in science, engineering, technology and natural resources (ICASETNR-16), Parys, South Africa, 24–25 November 2016, pp 55–59

    Google Scholar 

  • Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160

    Article  CAS  Google Scholar 

  • Gholipour Y, Erra-Balsells R, Nonami H (2012) Integrative analysis of physiological phenotype of plant cells by turgor measurement and metabolomics. Eng Lett 20(4):EL01

    Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper methylation. Mutat Res 774:49–58

    Article  PubMed  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Kwak S, Jain RM, Wong MH, Iverson NM, Ben-Naim M, Strano MS (2015) A ratiometric sensor using single chirality near infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 32:3973–3984

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan Nair PM (2018) Toxicological impact of carbon nanomaterials on plants. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment. Environmental chemistry for a sustainable world. Springer, Cham

    Google Scholar 

  • Gorczyca A, Kasprowicz MJ, Lemek T (2009) Physiological effect of multi–walled carbon nanotubes MWCNTs on conidia of the entomopathogenic fungus, Paecilomyces fumosoroseus Deuteromycotina, Hyphomycetes. J Environ Sci Health A 44(14):1592–1597

    Article  CAS  Google Scholar 

  • Gore JP, Sane A (2011) Flame synthesis of carbon nanotubes. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  • Govindhan M, Lafleur T, Adhikari BR, Chen A (2015) Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis 27(4):902–909

    Article  CAS  Google Scholar 

  • Gu J, Xiao P, Zhang L, Lu W, Zhang G, Huang Y, Zhang J, Chen T (2016) Construction of superhydrophilic and under-water superoleophobic carbon-based membranes for water purification. RSC Adv 6:73399–73403

    Article  CAS  Google Scholar 

  • Gurunathan S (2015) Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J Ind Eng Chem 32:282–291

    Article  CAS  Google Scholar 

  • Haghighi M, da Silva TJA (2014) Effect of N-TiO2 on tomato, onion and radish seed germination. J Crop Sci Biotechnol 17:221–227

    Article  Google Scholar 

  • Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P (2016) A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Mater Sci Eng C 61:506–515

    Article  CAS  Google Scholar 

  • Hasaneen MNA, Abdel-Aziz HMM, Omer AM (2017) Characterization of carbon nanotubes loaded with nitrogen, phosphorus and potassium fertilizers. Am J Nano Res Appl 5(2):12–18

    Google Scholar 

  • Hernandez-Fernandez P, Montiel M, Ocón P, de la Fuente JLG, Garcia-Rodriguez S, Rojas S, Fierro JL (2010) Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton exchange membrane fuel cell. Appl Catal B 99:343–352

    Article  CAS  Google Scholar 

  • Herrero M, Simó C, García-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69

    Article  PubMed  CAS  Google Scholar 

  • Hilding J, Grulke EA, Sinnot SB, Qian D, Andrews R, Jagtoyen M (2001) Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir 17:7540–7544

    Article  CAS  Google Scholar 

  • Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter RJ (2001) Foundation of colloid science, 2nd edn. Oxford University Press, Oxford; New York

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plants system. J Nanobiotechnology 12:1–10

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  • Ikhtiar R, Begum P, Watari F, Fugetsu B (2013) Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca sativa). Nano Biomed 5:18–24

    Google Scholar 

  • Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M (2016) Nanostructured SERS electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 80:257–264

    Article  PubMed  CAS  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12(5):317–325

    Article  CAS  Google Scholar 

  • Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Son Y, DeForest JL, Kang YJ, Kim W, Chung H (2014) Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ 446:533–538

    Article  CAS  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U et al (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn. https://doi.org/10.1007/s10971-018-4666-2

  • Jung JH, Hwang GB, Lee JE, Bae GN (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27:10256–10264

    Article  PubMed  CAS  Google Scholar 

  • Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK (2017) Nanomaterial impact, toxicity and regulation in agriculture, food and environment. In: Ranjan S et al (eds) Nanoscience in food and agriculture 5. Sustainable agriculture reviews, vol 26. Springer International Publishing AG, Cham, pp 205–242. https://doi.org/10.1007/978-3-319-58496-6_8

    Chapter  Google Scholar 

  • Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J, Adams JM (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS One 10(3):e0123042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. Am Chem Soc 3(10):3221–3227

    CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. Am Chem Soc Nano 6(3):2128–2135

    CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  PubMed  CAS  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(13):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kratschmer W (2011) The story of making fullerenes. Nanoscale 3:2485–2489

    Article  PubMed  CAS  Google Scholar 

  • Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

    Article  PubMed  CAS  Google Scholar 

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619

    Article  CAS  Google Scholar 

  • Li H, Guan Y (2011) Foliar fertilizer containing carbon nanoparticles for plants under stress conditions. CN 102030595

    Google Scholar 

  • Li Y, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003b) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wangquan T (2012) Special fertilizer for rapeseed base fertilizer. CN 102816021

    Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006a) Porous hollow silica nanoparticles as controlled delivery system for water soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006b) Preparation and testing of cementing nano-subnano composites of slow- or controlled release of fertilizers. Sci Agric Sin 39:1598–1604

    CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013a) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang M, Zhang S, Pan B (2013b) Application potential of carbon nanotubes in water treatment: a review. J Environ Sci (China) 25:1263–1280

    Article  CAS  Google Scholar 

  • Liu J, Li X, Jia W, Ding M, Zhang Y, Ren S (2016) Separation of emulsified oil from oily wastewater by functionalized multiwalled carbon nanotubes. J Dispers Sci Technol 37:1294–1302

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  PubMed  CAS  Google Scholar 

  • Mani S, Cheemalapati S, Chen SM, Devadas B (2015) Anti-tuberculosis drug pyrazinamide determination at multiwalled carbon nanotubes/graphene oxide hybrid composite fabricated electrode. Int J Electrochem Sci 10:7049–7062

    CAS  Google Scholar 

  • Matsuzawa Y, Takada Y, Kodaira T, Kihara H, Kataura H, Yoshida M (2014) Effective nondestructive purification of single-walled carbon nanotubes based on high-speed centrifugation with a photochemically removable dispersant. J Phys Chem C 118:5013–5019

    Article  CAS  Google Scholar 

  • Mauter M, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  PubMed  CAS  Google Scholar 

  • Mercan H, Inam R, Aboul-Enein HY (2011) Square wave adsorptive stripping voltammetric determination of˙cyromazine insecticide with multi-walled carbon nanotube paste electrode. Anal Lett 44:1392–1404

    Article  CAS  Google Scholar 

  • Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Ganglof L, Schnell JP, Semet V, Binh VT, Groening O (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933–943

    Article  CAS  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra A, Clark JH (2013) Green materials for sustainable water remediation and treatment. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519

    Article  CAS  Google Scholar 

  • Morla S, Ramachandra Rao CSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci B 1:328

    CAS  Google Scholar 

  • Morsy M, Helal M, El-Okr M, Ibrahim M (2014) Preparation, purification and characterization of high purity multi-wall carbon nanotube. Spectrochim Acta A Mol Biomol Spectrosc 132:594–598

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154

    Article  CAS  Google Scholar 

  • Nair R, Mohamed SM, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220

    Article  PubMed  CAS  Google Scholar 

  • Nalwade AR, Neharkar SB (2013) Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. Int J Adv Sci Technol Res 3:840

    Google Scholar 

  • Namasivayam M, Shapter J (2017) Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: a review. J Compos Mater 51:3657–3668

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  PubMed  CAS  Google Scholar 

  • Novoselov KS, Fal’Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  PubMed  CAS  Google Scholar 

  • Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442

    Article  PubMed  CAS  Google Scholar 

  • Oyelami AO, Semple KT (2015) Impact of carbon nanomaterials on microbial activity in soil. Soil Biol Biochem 86:172–180

    Article  CAS  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol Appl Sci 3(10):71–84

    Google Scholar 

  • Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158

    Article  CAS  Google Scholar 

  • Pereira A, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  PubMed  CAS  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. J Seed Technol 33(2):155–169

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf A 362:102–109

    Article  CAS  Google Scholar 

  • Rasool K, Lee DS (2015) Influence of multi-walled carbon nanotubes on anaerobic biological sulfate reduction processes. J Nanoelectron Optoelectron 10:485–489

    Article  CAS  Google Scholar 

  • Ribeiro WF, Selva TMG, Lopes IC, Coelho ECS, Lemos SG, de Abreu FC, do Nascimento VB, de Araújo MCU (2011) Electroanalytical determination of carbendazim by square wave adsorptive stripping voltammetry with a multiwalled carbon nanotubes modified electrode. Anal Methods 3:1202–1206

    Article  CAS  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017a) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58

    Chapter  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97

    Chapter  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  PubMed  CAS  Google Scholar 

  • Sarno M, Tamburrano A, Arurault L, Fontorbes S, Pantani R, Datas L, Ciambelli P, Sarto MS (2013) Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane. Carbon 55:10–22

    Article  CAS  Google Scholar 

  • Saurabh S, Bijendra KS, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. J Nanosci Nanotechnol 5:1–5

    Google Scholar 

  • Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55:573–580

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  PubMed  CAS  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2015) Carbon nanotubes and modern nanoagriculture. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 183–201

    Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Bhati A, Gunture, Tripathi KM, Sonkar SM (2017) Nanocarbons in agricultural plants: can be a potential nanofertilizer? In: Hussain CM, Mishra AK (eds) Nanotechnology in environmental science, vol 2 Volumes. Wiley, Newark, NJ; Weinheim

    Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled сarbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):99–106

    CAS  Google Scholar 

  • Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6(2):132–138

    Article  CAS  Google Scholar 

  • Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143

    Article  CAS  Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275

    Google Scholar 

  • Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of whest, maize, peanut and garlic using multiwalled carbon nanotubes, enhancement of plant growth using multi-walled carbon nanotubes. Eur Chem Bull 3(5):502–504

    CAS  Google Scholar 

  • Srivastava M, Abhilash PC, Singh N (2011) Remediation of lindane using engineered nanoparticles. J Biomed Nanotechnol 7:172–174

    Article  PubMed  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  PubMed  CAS  Google Scholar 

  • Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17(10):2161

    Article  CAS  PubMed Central  Google Scholar 

  • Taha RA (2016) Nano carbon applications for plant. Adv Plants Agric Res 5(2):00172

    Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    Article  CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  PubMed  CAS  Google Scholar 

  • Torney F, Trewyn B, Lin VSY, Wang K (2007) Mesoporous silica nanoparticle deliver DNA and chemicals into plant. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  CAS  Google Scholar 

  • Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–619

    Article  CAS  Google Scholar 

  • Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979

    Google Scholar 

  • Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13

    Article  PubMed  CAS  Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17(8):458–467

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Fortner JD, Hou L, Zhang C, Kan AT, Tomson MB, Chen W (2013) Contaminant-mobilizing capability of fullerene nanoparticles (nC60): effect of solvent-exchange process in nC60 formation. Environ Toxicol Chem 32:329–336

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ma H, Zheng W, An D, Na C (2014a) Multifunctional and recollectable carbon nanotube ponytails for water purification. ACS Appl Mater Interfaces 6:9426–9434

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zhao D, Guo X, Correa J, Riehl BL, Heineman WR (2014b) Carbon nanotube-loaded nafion film electrochemical sensor for metal ions: europium. Anal Chem 86:4354–4361

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Liu X, Chen J, Han H, Yuan Z (2014c) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806

    Article  CAS  Google Scholar 

  • Wang C, Zhang H, Ruan L, Chen L, Li H, Chang XL, Zhang X, Yang ST (2016) Bioaccumulation of 13C-fullerenol nanomaterials in wheat. Environ Sci Nano 3:799–805

    Article  CAS  Google Scholar 

  • Wang X, Zhou Z, Chen F (2017) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10:1375. https://doi.org/10.3390/ma10121375

    Article  PubMed Central  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  PubMed  CAS  Google Scholar 

  • Wong A, Silva TA, Caetano FR, Bergamini MF, Marcolino-Junior LH, Fatibello-Filho O, Janegitz BC (2017) An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. J Carbon Res 3:8. https://doi.org/10.3390/c3010008

    Article  CAS  Google Scholar 

  • Wu M (2013) Effects of incorporation of nano-carbon into slow-released fertilizer on rice yield and nitrogen loss in surface water of paddy soil. Adv J Food Sci Technol 5:398–403 https://doi.org/10.1109/isdea.2012.161

    Article  CAS  Google Scholar 

  • Xie J, Liu J (2012) Nano-carbon synergism compound fertilizer for tobacco and preparation method thereof. CN 102718584

    Google Scholar 

  • Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotechnol Appl 2:15–24

    Google Scholar 

  • Yan H, Gong A, He H, Zhou J, Wei Y, Lv L (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62:142–148

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Article  PubMed  CAS  Google Scholar 

  • Yaqub S, Latif U, Dickert FL (2011) Plastic antibodies as chemical sensor material for atrazine detection. Sensors Actuators B 160:227–233

    Article  CAS  Google Scholar 

  • Yatim NM, Azizah S, Fairuz DM, Faridah Y (2015) Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using Plackett Burman experimental design. Procedia Soc Behav Sci 195:315–323

    Article  Google Scholar 

  • Yoo J, Ozawa H, Fujigaya T, Nakashima N (2011) Evaluation of affinity of molecules for carbon nanotubes. Nanoscale 3:2517–2522

    Article  PubMed  CAS  Google Scholar 

  • Zarei F, Negahdari B, Eatemadi A (2018) Diabetic ulcer regeneration: stem cells, biomaterials, growth factors. Artif Cells Nanomed Biotechnol 46(1):26–32

    Article  PubMed  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17. https://doi.org/10.1186/s40538-016-0070-8

    Article  CAS  Google Scholar 

  • Zhang Z, Chen J (2012) Method for preparation of compound organic fertilizer containing nanocarbon and sulfate radical organic fertilizer. CN 102816003

    Google Scholar 

  • Zhang Z, Liu J (2010) Synergistic fertilizer containing nanometer carbon and rare earth and its preparation. CN 101633590

    Google Scholar 

  • Zhang Y, Kang TF, Wan YW, Chen SY (2009) Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchim Acta 165:307–311

    Article  CAS  Google Scholar 

  • Zhang Q, Huang J, Zhao M, Qian W, Wei F (2011) Carbon nanotube mass production: principles and processes. ChemSusChem 4:864–889

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 7:6156–6161

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

  • Zhang L, Gu J, Song L, Chen L, Huang Y, Zhang J, Chen T (2016) Underwater superoleophobic carbon nanotubes/core–shell polystyrene@Au nanoparticles composite membrane for flow-through catalytic decomposition and oil/water separation. J Mater Chem A 4:10810–10815

    Article  CAS  Google Scholar 

  • Zhao S, Wang Q, Zhao Y, Rui Q, Wang D (2015) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Su Y, Chen Y, Wei Y, Li M, Huang H (2014) The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Adv 4:45953–45959

    Article  CAS  Google Scholar 

  • Zulkifli H, Salam F, Saad SM, Rahman RA, Rani RM, Karim MSA, Ishak Z (2016) Preliminary study of electrochemical DNA sensor for cucumber mosaic virus. Procedia Chem 20:98–101

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID. 27837, to Kamel Abd-Elsalam. Also, this research was partly supported by the International Foundation for Science, Stockholm, Sweden, through a grant to Dr. Hashim Ayat (F5853).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, M.A., Hashim, A.F., Alghuthaymi, M.A., Abd-Elsalam, K.A. (2018). Nano-carbon: Plant Growth Promotion and Protection. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_7

Download citation

Publish with us

Policies and ethics