Skip to main content

Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Plant diseases cause huge crop loss on a global scale and are the chief yield-limiting factor in agriculture. Due to greater utilization of land for agriculture and excessive use of fungicides and pesticides, resistant plant pathogens are spreading unprecedentedly and require an immediate check to corroborate food security. Based on need the newer crop protection technologies are emerging to ensure higher crop yield and are contributing in feeding the rapidly growing human population. Nanotechnology is one such novel technology with great potentials. From the last decade, nanotechnology as a technological science has grown to the extent that its presence can now be felt in the fields of automobiles, construction, cosmetics, electronics, and medicine. But, unlike medical nanotechnology, agriculture nanotechnology is one such technology whose potential in agriculture is yet to be fully explored. Nanotechnology deals with materials in the size range of 0.1–100 nm. Due to their minuscule size, such particles interact at an atomic or molecular level to form structures in the nanometer range. These very small particles, called nanoparticles (NPs), show properties very different from larger particles of the same element. NPs show phenomenon like Coulomb blockade, quantum nature, superparamagnetism, and surface plasmon resonance. They show surface effects due to higher surface atoms (Sharma et al Adv Colloid Interface Sci 145(1–2): 83–96, 2009) because the small size increases the surface area to volume ratio of particles (Prasad J Nanopart 2014:963961, 2014; Prasad et al. WIREs Nanomed Nanobiotechnol 8:316–330, 2016; Prasad et al Front Microbiol 8:1014, 2017a). Due to variable surface compositions, NPs have different reactivities to processor like adsorption and redox reactions (Waychunas et al. J Nanopart Res 7(4): 409-433, 2005). NPs are made from materials like carbon nanotubes, magnetic particles, metals, metal oxides, polymers (synthetic and natural), and quantum dots. They can be a designed application specific to catalyze chemical reactions.

Based on NP type, the nanotechnological devices can detect pathogen quickly and cost-effectively with high accuracy. Besides, NPs can act against pathogens like chemical fungicides or pesticides or are used as carriers to deliver such agents. Because of their very small size, the targeted delivery of agents can be ensured inside the pathogen or pest at the cellular level. The targeted delivery can ensure lesser soil contamination due to xenobiotic agricultural chemicals. Besides this nanotechnological intervention can be used in fertilizer nanoformulations, understanding the mechanism of host-parasite interaction, food preservation, salt-affected land reclamation, reducing soil erosion, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elsalam KA (2015) Nanodiagnostic tools in plant breeding. Ommega Publishers 2(2):1–8

    Google Scholar 

  • Abdelmalek GAM, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J Nanomed Res 3(5):1–8

    Google Scholar 

  • Abraçado L, Esquivel D, Alves O, Wajnberg E (2005) Magnetic material in head, thorax, and abdomen of Solenopsis substituta ants: a ferromagnetic resonance study. J Magn Reson 175(2):309–316

    Article  PubMed  CAS  Google Scholar 

  • Abreu FO, Oliveira EF, Paula HC, de Paula RC (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89(4):1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Agrios G (2012) Plant Pathology. Academic Press, London

    Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT- Food Sci Technol 41(6):1100–1107

    Article  CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Anwunobi A, Emeje M (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol 4:2–7

    Google Scholar 

  • Ao M, Zhu Y, He S, Li D, Li P, Li J, Cao Y (2012) Preparation and characterization of 1-naphthylacetic acid–silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24(3):035601

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna P, Zaidi M (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey K, Boyetchko S, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52(3):221–229

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468

    Article  PubMed  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253–258

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar B, Ahammed SK, Chaitanya BH, Rasheed VA, Prasad TNVKV (2016) Silver nanoparticles: mycogenesis, characterization and its anti plant pathogenic applications. Int J Res Appl Nat Soc Sci 4(10):105–114

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Bhatia S (2016) Marine polysaccharides based nano-materials and its applications. In: Natural polymer drug delivery systems. Springer International Publishing, Switzerland, pp 185–225

    Google Scholar 

  • Bhau B, Phukon P, Ahmed R, Gogoi B, Borah B, Baruah J, Sharma D, Wann S (2016) A novel tool of nanotechnology: nanoparticle mediated control of nematode infection in plants. In: Singh D., Singh H., Prabha R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 253–269

    Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931

    Article  PubMed  Google Scholar 

  • Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7(18):9546–9553

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthi S, Robinson D, De S (2007) Nanoparticles prepared using natural and synthetic polymers. In: Thassu D., Deleers M., Pathak Y.V. (eds) Nanoparticulate drug delivery systems. CRC Press, Boca Raton, pp 51–60

    Google Scholar 

  • Chauhan N, Narang J, Pundir C (2012) An amperometric glutathione biosensor based on chitosan–iron coated gold nanoparticles modified Pt electrode. Int J Biol Macromol 51(5):879–886

    Article  PubMed  CAS  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chitwood DJ (2003) Research on plant‐parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Manag Sci 59(6‐7):748–753

    Article  PubMed  CAS  Google Scholar 

  • Chuan Li S, Hua Chen J, Cao H, Sheng Yao D, Ling Liu D (2011) Amperometric biosensor for aflatoxin B 1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 22(1):43–49

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419

    Article  CAS  Google Scholar 

  • Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261

    PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, Prado RA, Viviani V, Oliveira ON, Leite FL (2014) Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotechnol 14(9):6678–6684

    Article  PubMed  CAS  Google Scholar 

  • Danks C, Barker I (2000) On‐site detection of plant pathogens using lateral‐flow devices. EPPO Bull 30(3‐4):421–426

    Article  Google Scholar 

  • Dar J, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agri Sc Technol 10:823–831

    Google Scholar 

  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155(2):283–286

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54(9):889–904

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8(6):344–357

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27

    Article  CAS  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23(2):285–289

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Singh D., Singh H., Prabha R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 271–288

    Google Scholar 

  • Eastman PS, Ruan W, Doctolero M, Nuttall R, de Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiol Plant 134(1):151–160

    Article  PubMed  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  PubMed  CAS  Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya J (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505701

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810

    Article  PubMed  CAS  Google Scholar 

  • Farkas GL, Kiraaly Z (1962) Role of phenolic compounds in the physiology of plant diseases and disease resistance. J Phytopathol 44(2):105–150

    Article  CAS  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32

    Article  PubMed  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  PubMed  CAS  Google Scholar 

  • Gitipour A, El Badawy A, Arambewela M, Miller B, Scheckel K, Elk M, Ryu H, Gomez-Alvarez V, Santo Domingo J, Thiel S (2013) The impact of silver nanoparticles on the composting of municipal solid waste. Environ Sci Technol 47(24):14385–14393

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  PubMed  CAS  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano P, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    Article  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Article  CAS  Google Scholar 

  • Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45(1):148–157

    Article  PubMed  CAS  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between silver nanoparticles and plant growth, International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant 1037, pp 795–800

    Google Scholar 

  • Hatschek E (1931) Electro Chem Processes Ltd assignee Brouisol., Britian

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  PubMed  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1-3):269–279

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Yeh L, Chen Y (2008) Nanoparticle-enhanced magnetic field induces apoptosis in nematode. NSTI Nanotech 2008, Vol 2, technical proceedings. pp 497–500

    Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35(2):369–400

    Article  Google Scholar 

  • Huang X-J, Ge D, Xu Z-K (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43(9):3710–3718

    Article  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R., Kumar M., Kumar V. (eds) Nanotechnology. Springer, Singapore, pp 305–317

    Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7(1):154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84

    Article  CAS  Google Scholar 

  • Jerobin J, Sureshkumar R, Anjali C, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306

    Article  CAS  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joyner JJ, Kumar DV (2015) Nanosensors and their applications in food analysis: a review. Int J Sci Technol 3(4):80

    Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105(3):328–336

    Article  PubMed  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  PubMed  CAS  Google Scholar 

  • Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541

    Article  CAS  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S., Dasgupta N., Lichtfouse E. (eds) Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews, vol 21. Springer, Cham, pp 253–276

    Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253

    Article  PubMed  CAS  Google Scholar 

  • Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11(6):6396–6410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khalil M (2013) Alternative approaches to manage plant parasitic nematodes. J Plant Pathol Microbiol 4:e105

    Article  CAS  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101

    Article  CAS  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92(10):1095–1103

    Article  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for nonexpressor of pathogenesis-related genes 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol 208(3):860–872

    Article  PubMed  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan P (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1):613–621

    Article  PubMed  CAS  Google Scholar 

  • Kuźniar T, Ropek D, Lemek T (2011) Impact of multi--walled carbon nanotubes on viability and pathogenicity of enthomopathogenic nematodes. Ecol Chem Eng 18(5-6):757–762

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D (2012) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219–220:221–230

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170(2):578–583

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    Article  CAS  Google Scholar 

  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330

    Article  PubMed  CAS  Google Scholar 

  • Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25(7):1635–1639

    Article  PubMed  CAS  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35(1):1–25

    Article  Google Scholar 

  • Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6:1043

    Article  PubMed  PubMed Central  Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59(2):129–142

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch H (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187(16):5560–5567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  PubMed  CAS  Google Scholar 

  • Mody HR (2011) Cancer nanotechnology: recent trends and developments. Int J Med Updt 6(1):3

    Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101(22):8772–8776

    Article  PubMed  CAS  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–435

    Article  PubMed  CAS  Google Scholar 

  • Neethirajan S, Freund M, Jayas D, Shafai C, Thomson D, White N (2010) Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst Eng 106(4):395–404

    Article  Google Scholar 

  • Neethirajan S, Jayas DS, Sadistap S (2009) Carbon dioxide (CO2) sensors for the agri-food industry—A review. Food Bioproc Tech 2(2):115–121

    Article  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  PubMed  CAS  Google Scholar 

  • Omanović-Mikličanina E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 47:59–70

    Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mat 9(3):035004

    Article  CAS  Google Scholar 

  • Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468

    Article  Google Scholar 

  • Park H-J, Kim S-H, Kim H-J, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049

    Article  CAS  Google Scholar 

  • Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymer 2(3):229–251

    Article  CAS  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Peshin R., Dhawan A.K. (eds) Integrated Pest Management: Innovation-Development Process. Springer, Dordrecht, pp 83–87

    Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017c) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, CABI, pp 53–70

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. https://doi.org/10.1155/2013/431218

  • Rabab EMA, EL-Shafey RAS (2013) Inhibition effects of silver nanoparticles against rice blast disease caused by Magnaporthe grisea. Egypt J Agric Res 91(4):1271–1283

    Google Scholar 

  • Racuciu M, Creanga D-E (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52(3/4):395

    CAS  Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad M, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94(3):525–534

    Google Scholar 

  • Radoi A, Targa M, Prieto-Simon B, Marty J-L (2008) Enzyme-Linked Immunosorbent Assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M 1 detection. Talanta 77(1):138–143

    Article  PubMed  CAS  Google Scholar 

  • Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Rai M, Deshmukh S, Gade A (2012) Strategic Nanoparticle-mediated gene transfer in plants and animals-a novel approach. Curr Nanosci 8(1):170–179

    Article  CAS  Google Scholar 

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A 112:384–387

    Article  CAS  Google Scholar 

  • Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueño MC, Pérez-de-Luque A, Maycock C, Fevereiro P (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6(12):9100–9110

    Article  PubMed  CAS  Google Scholar 

  • Riveros A, Srygley R (2010) Migration, orientation and navigation: magnetic compasses in insects. In: Encyclopedia of animal behavior, vol 2. Elsevier/Academic Press, Oxford, pp 305–313

    Chapter  Google Scholar 

  • Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29(2):167–172

    Article  PubMed  CAS  Google Scholar 

  • Rosen J, Yoffe S, Meerasa A, Verma M, Gu F (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2:115

    Article  CAS  Google Scholar 

  • Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7(3):e34197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:8

    Article  CAS  Google Scholar 

  • Sadanandom A, Napier RM (2010) Biosensors in plants. Curr Opin Plant Biol 13(6):736–743

    Article  PubMed  CAS  Google Scholar 

  • Sadowski Z (2010) Biosynthesis and application of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticles

    Google Scholar 

  • Sah S, Sorooshzadeh A, Rezazadeh H, Naghdibadi H (2011) Effect of nano silver and silver nitrate on seed yield of borage. J Med Plant Res 5(5):706–710

    Google Scholar 

  • Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. In: Grumezescu A.M. (ed) New pesticides and soil sensors. Academic Press, United Kingdom, pp 519–559

    Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72(1):1–13

    Article  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 73–97

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017b) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology, Springer, Singapore, pp 33–58

    Google Scholar 

  • Sarkar DJ, Kumar J, Shakil N, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A 47(11):1701–1712

    Article  CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2

    Google Scholar 

  • Schofield CL, Haines AH, Field RA, Russell DA (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22(15):6707–6711

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95(7):1069–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3(15):4856–4862

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83

    Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    Article  PubMed  CAS  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248

    Article  PubMed  CAS  Google Scholar 

  • Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Kumar A, Singh AK, Tripathi H (2013) Induction of resistance in field pea against rust disease through various chemicals/micronutrients and their impact on growth and yield. Plant Pathol J 12(2):36

    Article  CAS  Google Scholar 

  • Singh P, Kumari K, Vishvakrma VK, Mehrotra GK, Chandra R, Kumar D, Patel R, Shahare VV (2017) Metal NPs (Au, Ag, and Cu): Synthesis, stabilization, and their role in green chemistry and drug delivery. In: Singh R., Kumar S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham, pp 309–337

    Google Scholar 

  • Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20(4):365–389

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture–carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99(3):274–275

    CAS  Google Scholar 

  • Sun Y-F, Liu S-B, Meng F-L, Liu J-Y, Jin Z, Kong L-T, Liu J-H (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  PubMed  CAS  Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

    Google Scholar 

  • Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    Article  CAS  Google Scholar 

  • Tiwari D, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, Garcia SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    Article  CAS  Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

    Article  PubMed  PubMed Central  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853

    Article  PubMed  CAS  Google Scholar 

  • Verma ML (2017) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S., Dasgupta N., Lichtfouse E. (eds) Nanoscience in Food and Agriculture 4. Sustainable Agriculture Reviews, vol 24. Springer, Cham, pp 229–245

    Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334

    Article  PubMed  CAS  Google Scholar 

  • Wainwright M, Grayston SJ, De Jong P (1986) Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzyme Microb Technol 8(10):597–600

    Article  CAS  Google Scholar 

  • Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DM (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7(Suppl 2):S207–S225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakeil NE, Alkahtani S, Gaafar N (2017) 7 - Is nanotechnology a promising field for insect pest control in IPM programs? A2 - Grumezescu. In: Mihai A (ed) New pesticides and soil sensors. Academic Press, United Kingdom, pp 273–309

    Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011a) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Deo RP, Musameh M (2003a) Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes. Electroanalysis 15(23‐24):1830–1834

    Article  CAS  Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu G, Jan MR, Zhu Q (2003b) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5(12):1000–1004

    Article  CAS  Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011b) Ultra‐small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wei F, Liu S-Y, Xu Q, Huang J-Y, Dong X-Y, Yu J-H, Yang Q, Zhao Y-D, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Weigl B, Domingo G, LaBarre P, Gerlach J (2008) Towards non-and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8(12):1999–2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • West JS, Bravo C, Oberti R, Moshou D, Ramon H, McCartney HA (2010) Detection of fungal diseases optically and pathogen inoculum by air sampling. In: Oerke EC., Gerhards R., Menz G., Sikora R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht, pp 135–149

    Google Scholar 

  • Wu K, Sun Y, Hu S (2003) Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sens Actuators B 96(3):658–662

    Article  CAS  Google Scholar 

  • Wu S, Huang L, Head J, Chen D, Kong I, Tang Y (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3(4):126

    CAS  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86

    Article  CAS  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111(34):12839–12847

    Article  CAS  Google Scholar 

  • Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5(5):408–411

    Article  CAS  Google Scholar 

  • Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides. Biosens Bioelectron 67:287–295

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Pro Natl Acad Sci USA 101(42):15027–15032

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A., Yadav, K. (2018). Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_2

Download citation

Publish with us

Policies and ethics