Skip to main content

Gastrointestinal Motor Function

  • Chapter
  • First Online:
Gastrointestinal Physiology

Abstract

One of the major functions of the gastrointestinal (GI) tract is to carry out some types of movement that allows the aborally directed flow of luminal contents. This function is referred to as GI motor function or motility. GI motor function is the result of the activities of muscles located in different layers of the tract. The muscles of the digestive apparatus function to ensure proper chewing in the mouth, swallowing, and movement of luminal contents through the digestive tract and removal of undigested residues from the body. The functions of muscles of the gut are to a large extent determined by the influences from the surrounding environment. However, the gut at certain locations maintains a basal level of motility, which, in part, is due to the functional pacemaker activity of the intestine. The discovery of GI motility (mechanical activity or mechanistic functions of the gut) and the basis of its functionality provided important information on future research directions, which now form the basis of our understanding of GI motility. This chapter aims to identify the course and key milestones in GI motility research. The basis and regulation of gut motility are also discussed. The chapter lays down basic concepts and principles of motility of different regions of the gut and their relationship to the maintenance of the functioning of digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADF:

Actin-depolymerizing factor

Ang II:

Angiotensin II

Arp2/3:

Actin-related protein-2 and -3

BK:

Large conductance calcium-activated potassium channel

CaMKII:

Ca2+/calmodulin(CaM)-dependent kinase type II

CD34:

Cluster of differentiation-34

CGRP:

Calcitonin gene-related peptide

CPI-17:

Protein kinase C-potentiated inhibitor protein or C-kinase potentiated protein phosphatase-1 inhibitor, molecular weight 17 kDa

cpm:

Cycle per minute

CREB:

cAMP-responsive element-binding protein

DAG:

Diacylglycerol

EDHF:

Endothelial-derived hyperpolarizing factor

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase type

ERK:

Extracellular signal responsive kinase

FC:

Fast closing

FO:

Fast opening

GI:

Gastrointestinal

GIP:

Gastric inhibitory peptide

GPCR:

G protein-coupled receptor

GRP:

Gastrin-releasing peptide

ICCs:

Interstitial Cajal cells

ILK:

Integrin-linked kinase

iNOS:

Inducible nitric oxide synthase

IP2:

Phosphatidylinositol 4,5-bisphosphate

IP3:

Inositol 1,4,5-trisphosphate

IP3R:

IP3 receptor

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase kinase (also known as MAPK kinase or MAPKK or MKK)

MHC:

Myosin heavy chain

MLC:

Myosin light chain

MLCK:

Myosin light-chain kinase

MLCP:

MLC phosphatase

MMC:

Migrating motor complex or migrating myoelectrical activity

MyBP-C:

Myosin-binding protein C

MYPT1:

Myosin-binding regulatory subunit-1 of MLC phosphatase

NO:

Nitric oxide

OTT:

Oral transit time

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PDE:

Phosphodiesterase

PDGFRα:

Platelet-derived growth factor receptor alpha

PGI2:

Prostacyclin, prostaglandin

PI3K:

Phosphoinositide 3-kinase

PKC:

Protein kinase C

PLCβ:

Phospholipase C isozyme β

PTT:

Pharyngeal transit time

RMP:

Resting membrane potential

ROCK:

Rho-associated coiled-coil kinase

RyR:

Ryanodine receptor

SC:

Slow closing

SER:

Sarcoendoplasmic reticulum

SIP:

Smooth muscle cell, ICC cell, PDGFRα+ cell

SK:

Small-conductance calcium-activated potassium channel

SO:

Slow opening

SR:

Sarcoplasmic reticulum

VASP:

Vasodilator-stimulated phosphoprotein

VEGF:

Vascular endothelial growth factor

VIP:

Vasoactive intestinal peptide

WASP:

Wiskott–Aldrich syndrome protein

ZIPK:

Zipper interacting protein kinase

Bibliography

  1. Gartner LP, Hiatt JL, Strum JM (2003) Board review series. Cell biology and histology, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Sanders KM, Don Koh S, Ward SM (2012) Organization and electrophysiology of interstitial cells of Cajal and smooth muscle cells in the gastrointestinal tract. In: Johnson L, Ghishan F, Kaunitz J, Merchant J, Said H, Wood J (eds) Physiology of the gastrointestinal tract. Elsevier, San Diego

    Google Scholar 

  3. Mittal RK (ed) (2011) Motor function of the pharynx, esophagus, and its sphincters. Integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  4. Sundler F (2004) GI tract, general anatomy (cells). In: Martini Luciano (ed) Encyclopedia of endocrine diseases. Elsevier, San Diego

    Google Scholar 

  5. Piccolino M, Bresadola M (2002) Drawing a spark from darkness: John Walsh and electric fish. Endeavour 26(1):19–26

    Article  PubMed  Google Scholar 

  6. Delbourgo J (2006) A most amazing scene of wonders: electricity and enlightenment in early America. Harvard University Press, Cambridge

    Google Scholar 

  7. Plumb C (2010) The ‘electric stroke’ and the ‘electric spark’: anatomists and eroticism at George Baker’s electric eel exhibition in 1776 and 1777. Endeavour 34(3):87–94

    Article  PubMed  Google Scholar 

  8. Carlyle EI (2004) Walsh, John (1726–1795). In: Harrison BH, Matthew HCG (eds) Oxford dictionary of national biography. Oxford University Press, New York

    Google Scholar 

  9. Piccolino M, Biologies CR (2006) Luigi Galvani’s path to animal electricity. CR Biol 329(5–6):303–318

    Article  CAS  Google Scholar 

  10. Kettenmann H (1997) Alexander von Humboldt and the concept of animal electricity. Trends Neurosci 20(6):239–242

    Article  PubMed  CAS  Google Scholar 

  11. Hopkinson J (1875) The residual charge of the leyden jar. Proc R Soc Lond 24:407–408

    Article  Google Scholar 

  12. Elliott P (2008) “More subtle than the electric aura”: georgian medical electricity, the spirit of animation and the development of Erasmus Darwin’s psychophysiology. Med Hist 52(2):195–220

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verkhratsky A, Krishtal OA, Petersen OH (2006) From Galvani to patch clamp: the development of electrophysiology. Pflugers Arch 453(3):233–247

    Article  PubMed  CAS  Google Scholar 

  14. Al-Khalili J (2015) The birth of the electric machines: a commentary on Faraday (1832) ‘Experimental researches in electricity’. Philos Trans A Math Phys Eng Sci 373(2039):20140208

    Article  Google Scholar 

  15. McWhirter L, Carson A, Stone J (2015) The body electric: a long view of electrical therapy for functional neurological disorders. Brain 138(Pt 4):1113–1120

    Article  PubMed  Google Scholar 

  16. Steinberg H (2011) Electrotherapeutic disputes: the ‘Frankfurt Council’ of 1891. Brain 134(4):1229–1243

    Article  PubMed  Google Scholar 

  17. Goldensohn ES (1998) Animal electricity from Bologna to Boston. Electroencephalogr Clin Neurophysiol 106(2):94–100

    Article  PubMed  CAS  Google Scholar 

  18. Alvarez WC (1922) New methods of studying gastric peristalsis. J Am Med Assoc 22:1281–1284

    Article  Google Scholar 

  19. Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven’s string galvanometer—the first electrocardiograph. Tex Heart Inst J 35(2):174–178

    PubMed  PubMed Central  Google Scholar 

  20. Verkhratsky A, Parpura V (2014) History of electrophysiology and the patch clamp. Methods Mol Biol 1183:1–19

    Article  CAS  PubMed  Google Scholar 

  21. Moruzzi G (1996) The electrophysiological work of Carlo Matteucci. 1964. Brain Res Bull 40(2):69–91

    Article  PubMed  CAS  Google Scholar 

  22. Gryglewski RW (2015) The origins of electrocardiography in Poland. Kardiochir Torakochirurgia Pol 12(2):184–189

    PubMed  PubMed Central  Google Scholar 

  23. Ahmed OJ, Cash SS (2013) Finding synchrony in the desynchronized EEG: the history and interpretation of gamma rhythms. Front Integr Neurosci 7:58

    Article  PubMed  PubMed Central  Google Scholar 

  24. Longair M (2015) ‘…a paper …I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’. Philos Trans A Math Phys Eng Sci 373(2039):20140473

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586(Pt 21):5047–5061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. O’Grady G (2012) Gastrointestinal extracellular electrical recordings: fact or artifact? Neurogastroenterol Motil 24(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hara Y, Kubota M, Szurszewski JH (1986) Electrophysiology of smooth muscle of the small intestine of some mammals. J Physiol 372:501–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huizinga JD (1991) Action potentials in gastrointestinal smooth muscle. Can J Physiol Pharmacol 69(8):1133–1142

    Article  PubMed  CAS  Google Scholar 

  29. Du P, O’Grady G, Davidson JB, Cheng LK, Pullan AJ (2010) Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Crit Rev Biomed Eng 38(3):225–254

    Article  PubMed  PubMed Central  Google Scholar 

  30. Piccolino M (2011) Electric fishes research in the nineteenth century, following the steps of Carlo Matteucci and Giuseppe Moruzzi. Arch Ital Biol 149(Suppl.):77–85

    Google Scholar 

  31. Finkelstein G (2011) Matteucci and du Bois-Reymond: a bitter rivalry. Arch Ital Biol 149(4):29–37

    Google Scholar 

  32. Waclawik AJ (2014) du Bois-Reymond, Emil. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the neurological sciences. Elsevier, San Diego

    Google Scholar 

  33. Pearce JMS (2001) Emil Heinrich Du Bois-Reymond (1818–96). J Neurol Neurosurg Psychiatry 71:620. https://doi.org/10.1136/jnnp.71.5.620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Finger S, Piccolino M, Stahnisch FW (2013) Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: the electric eel, animal electricity, and later years. J Hist Neurosci 22(4):327–352

    Article  PubMed  Google Scholar 

  35. Ian G (2010) Elegance in science. Oxford University Press, Oxford

    Google Scholar 

  36. Marasco DD (2011) The great era of english electrophysiology: from Francis Gotch to Hodgkin and Huxley. Arch Ital Biol 149(Suppl.):77–85

    Google Scholar 

  37. Seyfarth E-A (2006) Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biol Cybernet 94(1):2–8

    Article  Google Scholar 

  38. Finkelstein G (2015) Mechanical neuroscience: Emil du Bois-Reymond’s innovations in theory and practice. Front Syst Neurosci 9:133

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frank RG Jr, Goetzl JH (1978) The J. H. B. Archive report the Alexander Forbes papers. J Hist Biol 11(2):387–393

    Article  PubMed  CAS  Google Scholar 

  40. Davis H (1970) Joseph Erlanger (1874–1965). National Academy of Sciences, Washington DC

    Google Scholar 

  41. Kosenko PM, Vavrinchuk SA (2013) Electrogastroenterography in clinical practice. Rus Open Med J 2:0203

    Article  Google Scholar 

  42. Szurszewski JH (1998) A 100-year perspective on gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 274(37):G447–G453

    Article  CAS  Google Scholar 

  43. Beaumont W (1833) Experiments and observations on the gastric juice and the physiology of digestion. FP Allen, Plattsburgh

    Google Scholar 

  44. Mai FM (1988) Beaumont’s contribution to gastric psychophysiology: a reappraisal. Can J Psychiatr 33(7):650–653

    Article  CAS  Google Scholar 

  45. Dubois A, Johnson LF (1985) William Beaumont: frontier physician and founding father of gastric physiology. J Clin Gastroenterol 7(6):472–474

    Article  PubMed  CAS  Google Scholar 

  46. Cannon WB (1898) The movements of the stomach studied by means of the Roentgen rays. Am J Physiol 1:359–382

    Google Scholar 

  47. Cannon WB (1902) The movements of the intestines studied by means of the Roentgen rays. Am J Physiol 6:251–277

    Google Scholar 

  48. Cannon WB (1904) The passage of different food-stuffs from the stomach and through the small intestine. Am J Physiol 12:387–418

    CAS  Google Scholar 

  49. Cannon WB, Mosher A (1898) The movements of the food in the esophagus. Am J Physiol 1:435–444

    Google Scholar 

  50. Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis. Naunyn Schmiedebergs Arch Pharmacol 373(2):101–133. Translation of the article “Trendelenburg P (1917) Physiologische und pharmakologische Versuche über die Dünndarmperistaltik. Arch Exp Pathol Pharmakol 81:55–129”

    Google Scholar 

  51. Feldberg W, Lin RCY (1949) The action of local anaesthetics and d-tubocurarine on the isolated intestine of the rabbit and guinea-pig. Br J Pharmacol 4:33–44

    CAS  Google Scholar 

  52. Bennett MR, Burnstock G, Holman ME (1966) Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol (Lond) 182:541–558

    Article  CAS  Google Scholar 

  53. Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol 13:444–457

    Google Scholar 

  54. Alvarez WC (1914) Functional variations in contractions of different parts of the small intestine. Am J Physiol 35:177–193

    Google Scholar 

  55. Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58:476–493

    CAS  Google Scholar 

  56. Alvarez WC, Mahoney LJ (1924) Peristaltic rush as depicted in the electroenterogram. Am J Physiol 69:226–228

    CAS  Google Scholar 

  57. Bozler E (1938) Electric stimulation and conduction of excitation in smooth muscle. Am J Physiol 122:614–623

    Google Scholar 

  58. Bozler E (1942) The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol 136:543–552

    Google Scholar 

  59. Bozler E (1945) The action potentials of the stomach. Am J Physiol 144:693–700

    Google Scholar 

  60. Tumpeer IH, Blitzsten PW (1926) Registration of peristalsis by the Einthoven galvonometer. Am J Dis Child 21:454–455

    Google Scholar 

  61. Chang FY (2005) Electrogastrography: basic knowledge, recording, processing and its clinical applications. J Gastroenterol Hepatol 20(4):502–516

    Article  PubMed  Google Scholar 

  62. Matsuura Y, Yamamoto T, Takada M, Shiozawa T, Takada H (2011) Application of electrogastrography to public health. Nihon Eiseigaku Zasshi 66(1):54–63

    Article  PubMed  Google Scholar 

  63. Yin J, Chen JD (2013) Electrogastrography: methodology, validation and applications. J Neurogastroenterol Motil 19(1):5–17

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rebrov VG (1981) Registration of stomach and intestine potentials in clinical conditions. Ter archive 9:24–30

    Google Scholar 

  65. Koenig JB, Martin CE, Dobson H, Mintchev MP (2009) Use of multichannel electrogastrography for noninvasive assessment of gastric myoelectrical activity in dogs. Am J Vet Res 70(1):11–55

    Article  PubMed  Google Scholar 

  66. Lebedev NN, Trusov AN, Popova YuP (1991) Broadband multichannel electrogastrography and periodical motorics of gastrointestinal tract. Fiziol Chelov 17(4):54–66

    CAS  Google Scholar 

  67. Burduli NM, Gutnova SK (2010) Peripheral computer electrogastroentherography in the diagnostics of motor disorders in chronic pancreatitis. Rus J Gastroenterol Hepatol Coloproctol 20(5):59

    Google Scholar 

  68. Hamilton JW, Bellahsene BE, Reichelderfer M, Webster JG, Bass P (1986) Human electrogastrograms. Comparison of surface and mucosal recordings. Dig Dis Sci 31(1):33–39

    Article  PubMed  CAS  Google Scholar 

  69. Sanders KM, Don Koh S, Ward SM (2006) Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343

    Article  PubMed  CAS  Google Scholar 

  70. Sanders KM, Ward SM (2006) Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol 576(Pt 3):721–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sanders KM, Ward SM, Don Koh S (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94(3):859–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sanders KM, Don Koh S, Ro S, Ward SM (2012) Regulation of gastrointestinal motility—Insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9(11):633–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Deloose E, Janssen P, Depoortere I, Tack J (2012) The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol 9:271–285

    Article  PubMed  CAS  Google Scholar 

  74. Nucera G, Gabrielli M, Lupascu A, Lauritano EC, Santoliquido A, Cremonini F et al (2005) Abnormal breath tests to lactose, fructose and sorbitol in irritable bowel syndrome may be explained by small intestinal bacterial overgrowth. Aliment Pharmacol Ther 21(11):1391–1395

    Article  PubMed  CAS  Google Scholar 

  75. Shea-Donohue T, Notari L, Sun R, Zhao A (2012) Mechansims of smooth muscle responses to inflammation. Neurogastroenterol Motil 24(9):802–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Fiorenza V, Yee YS, Zfass AM (1987) Small intestinal motility: normal and abnormal function. Am J Gastroenterol 82(11):1111–1114

    PubMed  CAS  Google Scholar 

  77. Luiking YC, van der Reijden AC, van Berge Henegouwen GP, Akkermans LMA (1998) Migrating motor complex cycle duration is determined by gastric or duodenal origin of phase III. Am J Physiol Gastrointest Liver Physiol 275(6):G1246–G1251

    Article  CAS  Google Scholar 

  78. Kim TW, Koh SD, Ordög T, Ward SM, Sanders KM (2003) Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J Physiol 546(Pt 2):415–425

    Article  PubMed  CAS  Google Scholar 

  79. Forrest AS, Hennig GW, Jokela-Willis S, Park CD, Sanders KM (2009) Prostaglandin regulation of gastric slow waves and peristalsis. Am J Physiol Gastrointest Liver Physiol 296(6):G1180–G1190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bortoff A (1965) Electrical transmission of slow waves from longitudinal to circular intestinal muscle. Am J Physiol 209:1254–1260

    PubMed  CAS  Google Scholar 

  81. Prosser CL, Burnstock G, Kahn J (1960) Conduction in smooth muscle: comparative structural properties. Am J Physiol 199:545–552

    PubMed  CAS  Google Scholar 

  82. Prosser CL, Sperelakis N (1956) Transmission in ganglion free circular muscle from the cat intestine. Am J Physiol 187:536–545

    PubMed  CAS  Google Scholar 

  83. Nagai T, Prosser CL (1963) Electrical parameters of smooth muscle cells. Am J Physiol 204:915–924

    PubMed  CAS  Google Scholar 

  84. Nagai T, Prosser CL (1963) Patterns of conduction in smooth muscle. Am J Physiol 204:910–914

    PubMed  CAS  Google Scholar 

  85. Papasova MP, Nagai T, Prosser CL (1968) Two-component slow waves in smooth muscle of cat stomach. Am J Physiol 214:695–702

    PubMed  CAS  Google Scholar 

  86. Diamant NE, Bortoff A (1969) Nature of the intestinal slow wave frequency gradient. Am J Physiol 216:301–307

    PubMed  CAS  Google Scholar 

  87. Diamant NE, Bortoff A (1969) Effects of transection on the intestinal slow-wave frequency gradient. Am J Physiol 216:734–743

    PubMed  CAS  Google Scholar 

  88. Connor C, Mangel AW, Prosser CL (1979) Propagation and entrainment of slow waves in cat small intestine. Am J Physiol Cell Physiol 237(6):C237–C246

    Article  CAS  Google Scholar 

  89. Connor C, Prosser CL (1974) Comparison of ionic effects on longitudinal and circular muscle of cat jejunum. Am J Physiol 226:1212–1218

    PubMed  CAS  Google Scholar 

  90. Suzuki N, Prosser CL, Dahms V (1986) Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. Am J Physiol Gastrointest Liver Physiol 250(13):G287–G294

    Article  CAS  Google Scholar 

  91. Christensen J, Caprilli R, Lund GF (1969) Electric slow waves in circular muscle of cat colon. Am J Physiol 217:771–776

    PubMed  CAS  Google Scholar 

  92. Christensen J, Hauser RL (1971) Circumferential coupling of electric slow waves in circular muscle of cat colon. Am J Physiol 221:1033–1037

    PubMed  CAS  Google Scholar 

  93. Christensen J, Hauser RL (1971) Longitudinal axial coupling of slow waves in proximal cat colon. Am J Physiol 221:246–250

    PubMed  CAS  Google Scholar 

  94. Christensen J, Rasmus SC (1972) Colon slow waves: size of oscillators and rates of spread. Am J Physiol 223:1330–1333

    PubMed  CAS  Google Scholar 

  95. Szurszewski JH (1969) A migrating electric complex of canine small intestine. Am J Physiol 217:1757–1763

    PubMed  CAS  Google Scholar 

  96. Vantrappen G, Janssens J, Hellemans J, Ghoos Y (1977) The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59:1158–1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Konturek PC, Konturek SJ (2003) The history of gastrointestinal hormones and the polish contribution to elucidation of their biology and relation to nervous system. J Physiol Pharmacol 54(S3):83–98

    PubMed  Google Scholar 

  98. Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130

    Article  PubMed  CAS  Google Scholar 

  99. Thomson L, Robinson TL, Lee JCF, Farraway LA, Hughes MJG, Andrews DW, Huizinga JD (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4:848–851

    Article  Google Scholar 

  100. Sanders KM, Hwang SJ, Ward SM (2010) Neuroeffector apparatus in gastrointestinal smooth muscle organs. J Physiol 588(23):4621–4639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Huizinga JD (1999) Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc Res Tech 47(4):239–247

    Article  PubMed  CAS  Google Scholar 

  102. Bauer AJ, Publicover NG, Sanders KM (1985) Origin and spread of slow waves in canine gastric antral circular muscle. Am J Physiol Gastrointest Liver Physiol 249(12):G800–G806

    Article  CAS  Google Scholar 

  103. Smith TK, Reed JB, Sanders KM (1987) Interaction of two electrical pacemakers in the muscularis of the canine proximal colon. Am J Physiol Cell Physiol 252(21):C290–C299

    Article  CAS  Google Scholar 

  104. Smith TK, Reed JB, Sanders KM (1987) Origin and propagation of electrical slow waves in circular muscle of the canine proximal colon. Am J Physiol Cell Physiol 252(21):C215–C224

    Article  CAS  Google Scholar 

  105. Hirst GD, Edwards FR (2006) Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol 576(Pt 3):659–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bitar KN (2003) Function of gastrointestinal smooth muscle: from signaling to contractile proteins. Am J Med 115(Suppl 3A):15S–23S

    Article  PubMed  Google Scholar 

  108. Suzuki H, Hirst GDS (1999) Regenerative potentials evoked in circular smooth muscle of the antral region of guinea-pig stomach. J Physiol 517(Pt 2):563–573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mustafa SM, Thulesius O (2001) Cooling-induced gastrointestinal smooth muscle contractions in the rat. Fundam Clin Pharmacol 15(5):349–354

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki H (2000) Cellular mechanisms of myogenic activity in gastric smooth muscle. Jpn J Physiol 50(3):289–301

    Article  PubMed  CAS  Google Scholar 

  111. Edwards FR, Hirst GD (2005) An electrical description of the generation of slow waves in the antrum of the guinea-pig. J Physiol 564(Pt 1):213–232

    Article  PubMed  CAS  Google Scholar 

  112. Rhee PL, Lee JY, Son HJ, Kim JJ, Rhee JC, Kim S et al (2011) Analysis of pacemaker activity in the human stomach. J Physiol 589(Pt 24):6105–6118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wang ZS, Elsenbruch S, Orr WC, Chen JDZ (2003) Detection of gastric slow wave uncoupling from multi-channel electrogastrogram: validations and applications. Neurogastroenterol Motil 15(5):457–465

    Article  PubMed  CAS  Google Scholar 

  114. Yokoyama S, Ozaki T (1990) Contractions of the longitudinal and circular muscle of the small intestine. Prog Clin Biol Res 327:483–492

    PubMed  CAS  Google Scholar 

  115. Kachlik D, Baca V, Stingl J (2010) The spatial arrangement of the human large intestinal wall blood circulation. J Anat 216:335–343

    Article  PubMed  PubMed Central  Google Scholar 

  116. Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 136(1–2):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bitar KN, Raghavan S, Zakhem E (2014) Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 146(7):1614–1624

    Article  PubMed  Google Scholar 

  118. Rao JN, Wang JY (2010) Regulation of gastrointestinal mucosal growth. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  119. Webb CR (2003) Smooth muscle contraction and relaxation. Adv Physiol Educ 27(4):201–206

    Article  PubMed  Google Scholar 

  120. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68(2):476–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Herrera AM, McParland BE, Bienkowska A, Tait R, Paré PD, Seow CY (2005) ‘Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J Cell Sci 118:2381–2392

    Article  PubMed  CAS  Google Scholar 

  122. Koeppen B, Stanton B (2010) Berne & Levy physiology, 6th edn. Mosby, St. Louis

    Google Scholar 

  123. Andersson K-E, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986

    Article  PubMed  CAS  Google Scholar 

  124. Fisher SA (2010) Vascular smooth muscle phenotypic diversity and function. Physiol Genomics 42A(3):169–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Eddinger TJ, Meer DP (2007) Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 293(2):C493–C508

    Article  PubMed  CAS  Google Scholar 

  126. Dodge JT, Bevan RD, Bevan JA (1994) Comparison of density of sympathetic varicosities and their closeness to smooth muscle cells in rabbit middle cerebral and ear arteries and their branches. Circ Res 75:916–925

    Article  PubMed  CAS  Google Scholar 

  127. Bennett MR (1998) Transmission at sympathetic varicosities. Physiology 13(2):79–84

    Article  Google Scholar 

  128. Huizinga JD, Liu LWC, Fitzpatrick A, White E, Gill S, Wang X-Y et al (2008) Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. Am J Physiol Gastrointest Liver Physiol 294(2):G589–G594

    Article  PubMed  CAS  Google Scholar 

  129. Krizsan-Agbas D, Zhang R, Marzban F, Smith PG (1998) Presynaptic adrenergic facilitation of parasympathetic neurotransmission in sympathectomized rat smooth muscle. J Physiol 512(3):841–849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kuo K-H, Seow CY (2004) Contractile filament architecture and force transmission in swine airway smooth muscle. J Cell Sci 117:1503–1511

    Article  PubMed  CAS  Google Scholar 

  131. Diep HK, Vigmond EJ, Segal SS, Welsh DG (2005) Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 568(Pt 1):267–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271(25):15160–15165

    Article  PubMed  CAS  Google Scholar 

  133. North AJ, Galazkiewicz B, Byers TJ, Glenney JR, Small JV (1993) Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J Cell Biol 120(5):1159–1167

    Article  PubMed  CAS  Google Scholar 

  134. Aickin CC (1990) Chloride transport across the sarcolemma of vertebrate smooth and skeletal muscle. In: Alvarez-Leefmans FJ, Russell JM (eds) Chloride channels and carriers in nerve, muscle, and glial cells. Springer, New York

    Google Scholar 

  135. Kidwai AM (1985) Biochemistry of the sarcolemma. Subcell Biochem 11:181–193

    Article  PubMed  CAS  Google Scholar 

  136. de Groat WC, Wickens C (2013) Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol (Oxf) 207(1):66–84

    Article  CAS  Google Scholar 

  137. Zhu JX, Wu XY, Owyang C, Li Y (2001) Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol 530(3):431–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Liu LW, Thuneberg L, Huizinga JD (1995) Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colonic pacemaker frequency. J Pharmacol Exp Ther 275(2):1058–1068

    PubMed  CAS  Google Scholar 

  139. Wuytack F, Raeymaekers L, Verbist J, Jones LR, Casteels R (1987) Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin. Biochim Biophys Acta 899(2):151–158

    Article  PubMed  CAS  Google Scholar 

  140. Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE et al (1991) Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266(11):7155–7165

    PubMed  CAS  Google Scholar 

  141. Volpe P, Martini A, Furlan S, Meldolesi J (1994) Calsequestrin is a component of smooth muscles: the skeletal- and cardiac-muscle isoforms are both present, although in highly variable amounts and ratios. Biochem J 301(Pt 2):465–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Tang DD (2008) Intermediate filaments in smooth muscle. Am J Physiol Cell Physiol 294(4):C869–C878

    Article  PubMed  CAS  Google Scholar 

  143. Matsuoka R, Yoshida MC, Furutani Y, Imamura S, Kanda N, Yanagisawa M et al (1993) Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am J Med Genet 46(1):61–67

    Article  PubMed  CAS  Google Scholar 

  144. Alkahtani R, Mahavadi S, Al-Shboul O, Alsharari S, Grider JR, Murthy KS (2013) Changes in the expression of smooth muscle contractile proteins in TNBS- and DSS-induced colitis in mice. Inflammation 36(6):1304–1315

    Article  PubMed  CAS  Google Scholar 

  145. Perrin BJ, Ervasti JM (2010) The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 67(10):630–634

    Article  CAS  Google Scholar 

  146. Löfgren M, Ekblad E, Morano I, Arner A (2003) Nonmuscle myosin motor of smooth muscle. J Gen Physiol 121(4):301–310

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xu JQ, Harder BA, Uman P, Craig R (1996) Myosin filament structure in vertebrate smooth muscle. J Cell Biol 134(1):53–66

    Article  PubMed  CAS  Google Scholar 

  148. Craig R, Woodhead JL (2006) Structure and function of myosin filaments. Curr Opin Struct Biol 16(2):204–212

    Article  PubMed  CAS  Google Scholar 

  149. Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12(6a):2165–2180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Drew JS, Murphy RA (1997) Actin isoform expression, cellular heterogeneity, and contractile function in smooth muscle. Can J Physiol Pharmacol 75(7):869–877

    Article  PubMed  CAS  Google Scholar 

  151. Lehman W, Morgan KG (2012) Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil 33(6):461–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G et al (1991) Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 11(6):3296–3306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95(2 Pt 1):403–413

    Article  PubMed  CAS  Google Scholar 

  154. Peter AK, Cheng H, Ross RS, Knowlton KU, Chen J (2011) The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol 31(2):83–88

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bloch RJ, Reed P, O’Neill A, Strong J, Williams M, Porter N, González-Serratos H (2004) Costameres mediate force transduction in healthy skeletal muscle and are altered in muscular dystrophies. J Muscle Res Cell Motil 25(8):590–592

    PubMed  Google Scholar 

  156. Jaka O, Casas-Fraile L, López de Munain A, Sáenz A (2015) Costamere proteins and their involvement in myopathic processes. Expert Rev Mol Med 17:e12

    Article  CAS  PubMed  Google Scholar 

  157. Knöll R, Buyandelger B, Lab M (2011) The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011:569628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Bloch RJ, Capetanaki Y, O’Neill A, Reed P, Williams MW, Resneck WG et al (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop Relat Res 403:S203–S210

    Article  Google Scholar 

  159. Walsh MP (1994) Calmodulin and the regulation of smooth muscle contraction. Mol Cell Biochem 135(1):21–41

    Article  PubMed  CAS  Google Scholar 

  160. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Li X(E), Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100(4):1005–1013

    Article  PubMed  CAS  Google Scholar 

  162. Bing W, Razzaq A, Sparrow J, Marston S (1998) Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from drosophila flight muscle: charge reversal on actin changes actin-tropomyosin from on to off state. J Biol Chem 273(24):15016–15021

    Article  PubMed  CAS  Google Scholar 

  163. Barua B (2013) Periodicities designed in the tropomyosin sequence and structure define its functions. Bioarchitecture 3(3):51–56

    Article  PubMed  PubMed Central  Google Scholar 

  164. Landis CA, Bobkova A, Homsher E, Tobacman LS (1997) The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 272:14051–14056

    Article  PubMed  CAS  Google Scholar 

  165. Rao JN, Rivera-Santiago R, Li XE, Lehman W, Dominguez R (2012) Structural analysis of smooth muscle tropomyosin α and β isoforms. J Biol Chem 287(5):3165–3174

    Article  PubMed  CAS  Google Scholar 

  166. Schmidt WM, Lehman W, Moore JR (2015) Direct observation of tropomyosin binding to actin filaments. Cytoskeleton (Hoboken) 72(6):292–303

    Article  CAS  Google Scholar 

  167. Fischer S, Rynkiewicz MJ, Moore JR, Lehman W (2016) Tropomyosin diffusion over actin subunits facilitates thin filament assembly. Struct Dyn 3(1):012002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Moran CM, Garriock RJ, Miller MK, Heimark RL, Mudry RE, Gregorio CC, Krieg PA (2008) Expression of the fast twitch troponin complex, fTnT, fTnI and fTnC, in vascular smooth muscle. Cell Motil Cytoskelet 65(8):652–661

    Article  CAS  Google Scholar 

  169. Gomes AV, Potter JD, Szczesna-Cordary D (2002) The role of troponins in muscle contraction. IUBMB Life 54:323–333

    Article  PubMed  CAS  Google Scholar 

  170. Galińska-Rakoczy A, Engel P, Xu C, Jung HS, Craig R, Tobacman LS, Lehman W (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379(5):929–935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Matthew JD, Khromov AS, McDuffie MJ, Somlyo AV, Somlyo AP, Taniguchi S, Takahashi K (2000) Contractile properties and proteins of smooth muscles of a calponin knockout mouse. J Physiol 529(Pt 3):811–824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chen M, Li AY (1994) Caldesmon, calponin and contractile regulation of the vertebrate smooth muscle. Sheng Li Ke Xue Jin Zhan 25(4):314–318

    PubMed  CAS  Google Scholar 

  173. Gerthoffer WT, Pohl J (1994) Caldesmon and calponin phosphorylation in regulation of smooth muscle contraction. Can J Physiol Pharmacol 72(11):1410–1414

    Article  PubMed  CAS  Google Scholar 

  174. Ulrich C, Quillici DR, Schegg K, Woolsey R, Nordmeier A, Buxton ILO (2012) Uterine smooth muscle S-nitrosylproteome in pregnancy. Mol Pharmacol 81(2):143–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Chokhavatia S, Anuras S (1991) Neuromuscular disease of the gastrointestinal tract. Am J Med Sci 301(3):201–214

    Article  PubMed  CAS  Google Scholar 

  176. Duan D (2006) Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Genet 15(2):R253–R261

    Article  PubMed  CAS  Google Scholar 

  177. Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194(3):355–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Ali F, Paré PD, Seow CY (2005) Models of contractile units and their assembly in smooth muscle. Can J Physiol Pharmacol 83(10):825–831

    Article  PubMed  CAS  Google Scholar 

  179. Auerbach D, Bantle S, Keller S, Hinderling V, Leu M, Ehler E, Perriard J-C (1999) Different domains of the M-band protein myomesin are involved in myosin binding and M-band targeting. Mol Biol Cell 10(5):1297–1308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Kargacin GJ, Cooke PH, Abramson SB, Fay FS (1989) Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Biol 108:1465–1475

    Article  PubMed  CAS  Google Scholar 

  181. Agarkova I, Perriard JC (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15(9):477–485

    Article  PubMed  CAS  Google Scholar 

  182. Maruyama K (1994) Connectin, an elastic protein of striated muscle. Biophys Chem 50(1–2):73–85

    Article  PubMed  CAS  Google Scholar 

  183. Tskhovrebova L, Trinick J (2017) Titin and nebulin in thick and thin filament length regulation. Subcell Biochem 82:285–318

    Article  PubMed  Google Scholar 

  184. Granzier H, Labeit S (2007) Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 36(6):740–755

    Article  PubMed  CAS  Google Scholar 

  185. Trinick J (1992) Understanding the functions of titin and nebulin. FEBS Lett 307(1):44–48

    Article  PubMed  CAS  Google Scholar 

  186. Kuo K-H, Wang L, Paré PD, Ford LE, Seow CY (2001) Myosin thick filament lability induced by mechanical strain in airway smooth muscle. J Appl Physiol 90(5):1811–1816

    Article  PubMed  CAS  Google Scholar 

  187. Heasley LE (2001) Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene 20(13):1563–1569

    Article  PubMed  CAS  Google Scholar 

  188. Plaisancié P, Barcelo A, Moro F, Claustre J, Chayvialle J-A, Cuber J-C (1998) Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am J Physiol Gastrointest Liver Physiol 275(5):G1073–G1084

    Article  Google Scholar 

  189. Tognini P (2017) Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci 11:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Kotlikoff ML, Wang YX, Xin HB, Ji G (2002) Calcium release by ryanodine receptors in smooth muscle. Novartis Found Symp 246(108–24):221–227

    Google Scholar 

  191. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372:231–236

    Article  PubMed  CAS  Google Scholar 

  192. Borysova L, Shabir S, Walsh MP, Burdyga T (2011) The importance of Rho-associated kinase-induced Ca2+ sensitization as a component of electromechanical and pharmacomechanical coupling in rat ureteric smooth muscle. Cell Calcium 50(4):393–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Bonnevier J, Malmqvist U, Sonntag D, Schroeter M, Nilsson H, Pfitzer G, Arner A (2002) Sustained norepinephrine contraction in the rat portal vein is lost when Ca2+ is replaced with Sr2+. Am J Physiol Cell Physiol 282(4):C845–C852

    Article  PubMed  CAS  Google Scholar 

  194. McCorry LK (2007) Physiology of the autonomic nervous system. Am J Pharm Educ 71(4):78

    Article  PubMed  PubMed Central  Google Scholar 

  195. Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gershon MD (1967) Inhibition of gastrointestinal movement by sympathetic nerve stimulation: the site of action. J Physiol 189(2):317–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Modlin IM, Champaneria MC, Bornschein J, Kidd M (2006) Evolution of the diffuse neuroendocrine system—clear cells and cloudy origins. Neuroendocrinology 84(2):69–82

    Article  PubMed  CAS  Google Scholar 

  198. Keith A (1915) A new theory of the causation of enterostasis. Lancet 2(4799):371–375

    Article  Google Scholar 

  199. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S (1992) Requirement of c-Kit for development of intestinal pacemaker system. Development 116:369–375

    PubMed  CAS  Google Scholar 

  200. Rolle U, Piotrowska AP, Nemeth L, Puri P (2002) Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch Pathol Lab Med 126:928–933

    PubMed  Google Scholar 

  201. Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    Article  PubMed  CAS  Google Scholar 

  202. Chen Y, Shamu T, Chen H, Besmer P, Sawyers CL, Chi P (2011) Visualization of the interstitial cells of Cajal (ICC) network in mice. J Vis Exp 53:e2802

    Google Scholar 

  203. Al-Sajee D, Huizinga JD (2012) Interstitial cells of Cajal: pathology, injury and repair. Sultan Qaboos Univ Med J 12(4):411–421

    Article  PubMed  PubMed Central  Google Scholar 

  204. Rühl A (2009) Enteric nervous system: glial cells and interstitial cells of Cajal. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford

    Google Scholar 

  205. Vannucchi M-G, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini M-S (2013) Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med 17(9):1099–1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Aoyama M, Yamada A, Wang J, Ohya S, Furuzono S, Goto T et al (2004) Requirement of ryanodine receptors for pacemaker Ca2+ activity in ICC and HEK293 cells. J Cell Sci 117:2813–2825

    Article  PubMed  CAS  Google Scholar 

  207. Gregersen H, Christensen J (2000) Gastrointestinal tone. Neurogastroenterol Mot 12:501–508

    Article  CAS  Google Scholar 

  208. Montgomery LEA, Tansey EA, Johnson CD, Roe SM, Quinn JG (2016) Autonomic modification of intestinal smooth muscle contractility. Adv Physiol Educ 40(1):104–109

    Article  PubMed  Google Scholar 

  209. Donnerer J, Liebmann I, Holzer-Petsche U (2014) Hexamethonium-induced augmentation of the electrical twitch response in the guinea-pig ileum longitudinal muscle-myenteric plexus strip. Neurosci Lett 577:34–37

    Article  PubMed  CAS  Google Scholar 

  210. Every-Palmer S, Lentle RG, Reynolds G, Hulls C, Chambers P, Dunn H, Ellis PM (2017) Spatiotemporal mapping techniques show clozapine impairs neurogenic and myogenic patterns of activity in the colon of the rabbit in a dose-dependent manner. Front Pharmacol 8:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Costa M, Dodds KN, Wiklendt L, Spencer NJ, Brookes SJ, Dinning PG (2013) Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat. Am J Physiol Gastrointest Liver Physiol 305(10):G749–G759

    Article  PubMed  CAS  Google Scholar 

  212. Dinning PG, Costa M, Brookes SJ, Spencer NJ (2012) Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon. Am J Physiol Gastrointest Liver Physiol 303(1):G83–G92

    Article  PubMed  CAS  Google Scholar 

  213. Lentle RG, Reynolds GW, Janssen PW (2013) Gastrointestinal tone; its genesis and contribution to the physical processes of digestion. Neurogastroenterol Motil 25(12):931–942

    Article  PubMed  CAS  Google Scholar 

  214. Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    Article  PubMed  CAS  Google Scholar 

  215. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173(4412):971–973

    Article  PubMed  CAS  Google Scholar 

  216. Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105(5):2217–2223

    Article  PubMed  CAS  Google Scholar 

  217. Petkov GV, Boev KK (1996) The role of sarcoplasmic reticulum and sarcoplasmic reticulum Ca2+-ATPase in the smooth muscle tone of the cat gastric fundus. Pflugers Arch 431(6):928–935

    Article  PubMed  CAS  Google Scholar 

  218. Wray S, Burdyga T, Noble K (2005) Calcium signalling in smooth muscle. Cell Calcium 38(3–4):397–407

    Article  PubMed  CAS  Google Scholar 

  219. Grasa L, Rebollar E, Arruebo MP, Plaza MA, Murillo MD (2004) The role of Ca2+ in the contractility of rabbit small intestine in vitro. J Physiol Pharmacol 55:639–650

    PubMed  CAS  Google Scholar 

  220. Bolton TB (2006) Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J Physiol 570(Pt 1):5–11

    Article  PubMed  CAS  Google Scholar 

  221. Smith JB (1996) Calcium homeostasis in smooth muscle cells. New Horiz 4(1):2–18

    PubMed  CAS  Google Scholar 

  222. Guerrero-Hernández A, Gómez-Viquez L, Guerrero-Serna G, Rueda A (2002) Ryanodine receptors in smooth muscle. Front Biosci 7:d1676–d1688

    Article  PubMed  Google Scholar 

  223. Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287(38):31624–31632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261(14):6300–6306

    PubMed  CAS  Google Scholar 

  225. Lesh RE, Nixon GF, Fleischer S, Airey JA, Somlyo AP, Somlyo AV (1998) Localization of ryanodine receptors in smooth muscle. Circ Res 82:175–185

    Article  PubMed  CAS  Google Scholar 

  226. Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F (2016) Tight junction disruption induced by type 3 secretion system effectors injected by enteropathogenic and enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 6:87

    Article  PubMed  PubMed Central  Google Scholar 

  227. He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C, et al (2013) Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology 144(7):1456–1465

    Article  CAS  Google Scholar 

  228. Abrams J, Davuluri G, Seiler C, Pack M (2012) Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine. Neurogastroenterol Motil 24(3):288–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Murthy KS (2006) Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol 68:345–374

    Article  PubMed  CAS  Google Scholar 

  230. Jaaro H, Rubinfeld H, Hanoch T, Seger R (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci U S A 94(8):3742–3747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19(4):2435–2444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Magnier C, Papp B, Corvazier E, Bredoux R, Wuytack F, Eggermont J et al (1992) Regulation of sarco-endoplasmic reticulum Ca(2+)-ATPases during platelet-derived growth factor-induced smooth muscle cell proliferation. J Biol Chem 267(22):15808–15815

    PubMed  CAS  Google Scholar 

  233. Raeymaekers L, Jones LR (1986) Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochim Biophys Acta 882(2):258–265

    Article  PubMed  CAS  Google Scholar 

  234. Ferguson DG, Young EF, Raeymaekers L, Kranias EG (1988) Localization of phospholamban in smooth muscle using immunogold electron microscopy. J Cell Biol 107(2):555–562

    Article  PubMed  CAS  Google Scholar 

  235. Paul RJ (1998) The role of phospholamban and SERCA3 in regulation of smooth muscle-endothelial cell signalling mechanisms: evidence from gene-ablated mice. Acta Physiol Scand 164(4):589–597

    Article  PubMed  CAS  Google Scholar 

  236. Chen W, Lah M, Robinson PJ, Kemp BE (1994) Phosphorylation of phospholamban in aortic smooth muscle cells and heart by calcium/calmodulin-dependent protein kinase II. Cell Signal 6(6):617–630

    Article  PubMed  CAS  Google Scholar 

  237. Eto M, Ohmori T, Suzuki M, Furuya K, Morita F (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem 118(6):1104–1107

    Article  PubMed  CAS  Google Scholar 

  238. Perrino BA (2016) Calcium sensitization mechanisms in gastrointestinal smooth muscles. J Neurogastroenterol Motil 22(2):213–225

    Article  PubMed  PubMed Central  Google Scholar 

  239. Zhang Y, Hermanson ME, Eddinger TJ (2013) Tonic and phasic smooth muscle contraction is not regulated by the PKCα—CPI-17 pathway in swine stomach antrum and fundus. PLoS ONE 8(9):e74608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Mizuno Y, Isotani E, Huang J, Ding H, Stull JT, Kamm KE (2008) Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo. Am J Physiol Cell Physiol 295(2):C358–C364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T et al (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389(6654):990–994

    Article  PubMed  CAS  Google Scholar 

  242. Hitchcock-DeGregori SE, Irving TC (2014) Hugh E. Huxley: the compleat biophysicist. Biophys J 107(7):1493–1501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Huxley HE (2008) Memories of early work on muscle contraction and regulation in the 1950’s and 1960’s. Biochem Biophys Res Commun 369:34–42

    Article  PubMed  CAS  Google Scholar 

  244. Maruyama K (1995) Birth of the sliding filament concept in muscle contraction. J Biochem 117(1):1–6

    Article  PubMed  CAS  Google Scholar 

  245. Squire JM (2016) Muscle contraction: sliding filament history, sarcomere dynamics and the two Huxleys. Global Cardiol Sci Pract 11:1–23

    Google Scholar 

  246. Rall JA (2014) Mechanism of muscular contraction, perspectives in physiology. Birth of the sliding filament model of muscular contraction: proposal. Springer, New York

    Google Scholar 

  247. Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271:1403–1415

    Article  PubMed  CAS  Google Scholar 

  248. Haeberle JR (1994) Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. J Biol Chem 269(17):12424–12431

    PubMed  CAS  Google Scholar 

  249. Arner A, Malmqvist U (1998) Cross-bridge cycling in smooth muscle: a short review. Acta Physiol Scand 164(4):363–372

    Article  PubMed  CAS  Google Scholar 

  250. Preller M, Holmes KC (2013) The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 70(10):651–660

    Article  CAS  Google Scholar 

  251. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Freeman, New York

    Google Scholar 

  252. Marcucci L, Truskinovsky L (2010) Mechanics of the power stroke in myosin II. Phys Rev E Stat Nonlin Soft Matter Phys 81(5 Pt 1):051915

    Article  PubMed  CAS  Google Scholar 

  253. Chen B, Gao H (2011) Motor force homeostasis in skeletal muscle contraction. Biophys J 101(2):396–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Tyska MJ, Dupuis DE, Guilford WH, Patlak JB, Waller GS, Trybus KM et al (1999) Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci U S A 96(8):4402–4407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Greenberg MJ, Lin T, Shuman H, Ostap EM (2015) Mechanochemical tuning of myosin-I by the N-terminal region. PNAS 112(26):E3337–E3344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Hai C-M, Kim HR (2005) An expanded latch-bridge model of protein kinase C-mediated smooth muscle contraction. J Appl Physiol 98:1356–1365

    Article  PubMed  CAS  Google Scholar 

  257. Han S, Speich JE, Eddinger TJ, Berg KM, Miner AS, Call C, Ratz PH (2006) Evidence for absence of latch-bridge formation in muscular saphenous arteries. Am J Physiol Heart Circ Physiol 291(1):H138–H146

    Article  PubMed  CAS  Google Scholar 

  258. Stull JT, Gallagher PJ, Herring BP, Kamm KE (1991) Vascular smooth muscle contractile elements. Hypertension 17(6 Pt 1):723–732

    Article  PubMed  CAS  Google Scholar 

  259. Murphy RA, Rembold CM (2005) The latch-bridge hypothesis of smooth muscle contraction. Can J Physiol Pharmacol 83(10):857–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Harris DE, Warshaw DM (1991) Length vs. active force relationship in single isolated smooth muscle cells. Am J Physiol 260(5 Pt 1):C1104–C1112

    Article  CAS  Google Scholar 

  261. Stephens NL, Van Niekerk W (1977) Isometric and isotonic contractions in airway smooth muscle. Can J Physiol Pharmacol 55(4):833–838

    Article  PubMed  CAS  Google Scholar 

  262. Oishi K, Itoh Y, Isshiki Y, Kai C, Takeda Y, Yamaura K et al (2000) Agonist-induced isometric contraction of smooth muscle cell-populated collagen gel fiber. Am J Physiol Cell Physiol 279(5):C1432–C1442

    Article  PubMed  CAS  Google Scholar 

  263. Faulkner JA (1985) Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 95(2):455–459

    Article  Google Scholar 

  264. Faulkner JA (2003) Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 95(2):455–459

    Article  PubMed  Google Scholar 

  265. Colliander EB, Tesch PA (1990) Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand 140(1):31–39

    Article  PubMed  CAS  Google Scholar 

  266. Alfredson H, Pietilä T, Jonsson P, Lorentzon R (1998) Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med 26(3):360–366

    Article  PubMed  CAS  Google Scholar 

  267. Satyendra L, Byl N (2006) Effectiveness of physical therapy for Achilles tendinopathy: an evidence based review of eccentric exercises. Isokinet Exerc Sci 14(1):71–80

    Google Scholar 

  268. Jonathan MN, Nathan C, Chris H, Van Dusseldorp T, Kravitz L, Kerksick CM (2017) The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3):773–786

    Article  Google Scholar 

  269. Behrens M, Mau-Moeller A, Weippert M, Fuhrmann J, Wegner K, Skripitz R et al (2015) Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci Rep 5:10209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Ulrich G, Parstorfer M (2016) Effects of plyometric vs. concentric and eccentric conditioning contractions on upper body postactivation potentiation. Int J Sports Physiol Perform 13:1–21

    Google Scholar 

  271. Duthie HL, Kirk D (1978) Electrical activity of human colonic smooth muscle in vitro. J Physiol 283:319–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Yensen C, Matar W, Renaud J-M (2002) K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 283(1):C169–C177

    Article  PubMed  CAS  Google Scholar 

  273. Petit J, Filippi GM, Gioux M, Hunt CC, Laporte Y (1990) Effects of tetanic contraction of motor units of similar type on the initial stiffness to ramp stretch of the cat peroneus longus muscle. J Neurophysiol 64(6):1724–1732

    Article  PubMed  CAS  Google Scholar 

  274. Renaud JM, Comtois A (1994) The effect of K+ on the recovery of the twitch and tetanic force following fatigue in the sartorius muscle of the frog, Rana pipiens. J Muscle Res Cell Motil 15(4):420–431

    Article  PubMed  CAS  Google Scholar 

  275. Alipour-Haghighi F, Titze IR, Perlman AL (1989) Tetanic contraction in vocal fold muscle. J Speech Hear Res 32(2):226–231

    Article  PubMed  CAS  Google Scholar 

  276. Hood DA, Gorski J, Terjung RL (1986) Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle. Am J Physiol 250(4 Pt 1):E449–E456

    PubMed  CAS  Google Scholar 

  277. Zemlickova E, Johannes F-J, Aitken A, Dubois T (2004) Association of CPI-17 with protein kinase C and casein kinase I. Biochem Biophys Res Commun 316(1):39–47

    Article  PubMed  CAS  Google Scholar 

  278. Rattan S (2017) Ca2+/calmodulin/MLCK pathway initiates, and RhoA/ROCK maintains, the internal anal sphincter smooth muscle tone. Am J Physiol Gastrointest Liver Physiol 312(1):G63–G66

    Article  PubMed  Google Scholar 

  279. Ringvold HC, Khalil RA (2017) Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv Pharmacol 78:203–301

    Article  PubMed  CAS  Google Scholar 

  280. Huang J, Mahavadi S, Sriwai W, Hu W, Murthy KS (2006) Gi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway. Biochem J 396(1):193–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Luksha L, Agewall S, Kublickiene K (2009) Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 202(2):330–344

    Article  PubMed  CAS  Google Scholar 

  282. Ozkor MA, Quyyumi AA (2011) Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract 2011:156146

    Article  PubMed  PubMed Central  Google Scholar 

  283. Williams SP, Dorn GW 2nd, Rapoport RM (1994) Prostaglandin I2 mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 267(2 Pt 2):H796–H803

    PubMed  CAS  Google Scholar 

  284. Roger EM, Keir PG (2013) The motor unit and muscle action. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science, 5th ed. McGraw-Hill Medical, New York

    Google Scholar 

  285. Kaya RD, Hoffman RL, Clark BC (2014) Reliability of a Modified Motor Unit Number Index (MUNIX) technique. J Electromyogr Kinesiol 24(1):18–24

    Article  PubMed  Google Scholar 

  286. Monti RJ, Roy RR, Edgerton VR (2001) Role of motor unit structure in defining function. Muscle Nerve 24(7):848–866

    Article  PubMed  CAS  Google Scholar 

  287. Song NN, Xu WX (2016) Physiological and pathophysiological meanings of gastrointestinal smooth muscle motor unit SIP syncytium. Sheng Li Xue Bao 68(5):621–627

    PubMed  Google Scholar 

  288. Koh SD, Ward SM, Sanders KM (2012) Ionic conductances regulating the excitability of colonic smooth muscles. Neurogastroenterol Motil 24:705–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Bogaerts M, Deggoujf N, Huart C, Hupin C, Laureyns G, Lemkens P et al (2012) Physiology of the mouth and pharynx, Waldeyer’s ring, taste and smell. B-ENT 8(19):13–20

    PubMed  Google Scholar 

  290. Donner MW, Bosnia JF, Robertson DL (1985) Anatomy and physiology of the pharynx. Gastrointest Radiol 10(1):197–212

    Article  Google Scholar 

  291. Salsench J, Martínez-Gomis J, Torrent J, Bizar J, Samsó J, Peraire M (2005) Relationship between duration of unilateral masticatory cycles and the type of lateral dental guidance: a preliminary study. Int J Prosthodont 18(4):339–346

    PubMed  Google Scholar 

  292. Palmer JB, Rudin NJ, Lara G, Crompton AW (1992) Coordination of mastication and swallowing. Dysphagia 7(4):187–200

    Article  PubMed  CAS  Google Scholar 

  293. Gerstner G, Madhavan S, Crane E (2011) Mammalian oral rhythms and motor control. In: Klika V (ed) Biomechanics in applications. InTech, Croatia

    Google Scholar 

  294. Hedegård B, Lundberg M, Wictorin L (1970) Masticatory function—a cineradiographic study. IV. Duration of the masticatory cycle. Acta Odontol Scand 28(6):859–865

    Article  PubMed  Google Scholar 

  295. Bates JF, Stafford GD, Harrison A (1975) Masticatory function—a review of the literature. 1. The form of the masticatory cycle. J Oral Rehabil 2(3):281–301

    Article  PubMed  CAS  Google Scholar 

  296. Langenbach GEJ, Zhang F, Herring SW, Hannam AG (2002) Modelling the masticatory biomechanics of a pig. J Anat 201(5):383–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Rowlands JA (1984) Videofluorography: the role of temporal averaging. Med Phys 11(2):129–136

    Article  PubMed  CAS  Google Scholar 

  298. Martin-Harris B, Jones B (2008) The videofluorographic swallowing study. Phys Med Rehabil Clin N Am 19(4):769–785

    Article  PubMed  PubMed Central  Google Scholar 

  299. Shigezumi M, Shibata T, Arisue M, Hattori M, Ishijima T, Hirai T (2000) A case of habitual temporomandibular dislocation treated with eminoplasty using T-shaped titanium miniplate and its evaluation of mandibular movement. J Jpn Soc TMJ 12(1):62–67

    Google Scholar 

  300. Gedrange T, Walter B, Tetzlaff I, Kasper M, Schubert H, Harzer W, Bauer R (2003) Regional alterations in fiber type distribution, capillary density, and blood flow after lower jaw sagittal advancement in pig masticatory muscles. J Dent Res 82(7):570–574

    Article  PubMed  CAS  Google Scholar 

  301. Landes CA, Sterz M (2003) Evaluation of condylar translation by sonography versus axiography in orthognathic surgery patients. J Oral Maxillofac Surg 61(12):1410–1417

    Article  PubMed  Google Scholar 

  302. Minami I, Oogai K, Nemoto T, Nakamura T, Igarashi Y, Wakabayashi N (2010) Measurement of jerk-cost using a triaxial piezoelectric accelerometer for the evaluation of jaw movement smoothness. J Oral Rehabil 37(8):590–595

    PubMed  CAS  Google Scholar 

  303. Chambers ES, Bridge MW, Jones DA (2009) Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 587(8):1779–1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Steele CM, Miller AJ (2010) Sensory input pathways and mechanisms in swallowing: a review. Dysphagia 25(4):323–333

    Article  PubMed  PubMed Central  Google Scholar 

  305. Rudenga K, Green B, Nachtigal D, Small DM (2010) Evidence for an integrated oral sensory module in the human anterior ventral insula. Chem Senses 35(8):693–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Bu’Lock F, Woolridge MW, Bairn JD (1990) Development of coordination of sucking, swallowing, and breathing: ultrasound study of term and preterm infants. Dev Med Child Neurol 32:669–678

    Article  Google Scholar 

  307. Gewolb IH, Vice FL, Schweitzer-Kenney EL, Taciak VL, Bosma JF (2001) Developmental patterns of rhythmic suck and swallow in preterm infants. Dev Med Child Neurol 43:22–27

    Article  PubMed  CAS  Google Scholar 

  308. Matsuo K, Palmer JB (2008) Anatomy and physiology of feeding and swallowing—normal and abnormal. Phys Med Rehabil Clin N Am 19(4):691–707

    Article  PubMed  PubMed Central  Google Scholar 

  309. Cassiani RA, Santos CM, Parreira LC, Dantas RO (2011) The relationship between the oral and pharyngeal phases of swallowing. Clinics (Sao Paulo) 66(8):1385–1388

    Article  Google Scholar 

  310. Jaffer NM, Edmund NG, Au FW-F, Steele CM (2015) Fluoroscopic evaluation of oro-pharyngeal dysphagia: anatomy, technique, and common etiologies. AJR Am J Roentgenol 204(1):49–58

    Article  PubMed  PubMed Central  Google Scholar 

  311. Robbins JA, Bridges AD, Taylor A (2006) Oral, pharyngeal and esophageal motor function in aging. PART 1 Oral cavity, pharynx and esophagus. GI Motil. Online https://doi.org/10.1038/gimo39

  312. Soares TJ, Moraes DP, de Medeiros GC, Sassi FC, Zilberstein B, de Andrade CR (2015) Oral transit time: a critical review of the literature. Arq Bras Cir Dig 28(2):144–147

    Article  PubMed  PubMed Central  Google Scholar 

  313. Thompson TZ, Obeidin F, Davidoff AA, Hightower CL, Johnson CZ, Rice SL, Sokolove R-L, Taylor BK, Tuck JM, Pearson WG Jr (2014) Coordinate mapping of hyolaryngeal mechanics in swallowing. J Vis Exp 87:51476

    Google Scholar 

  314. Hendrix TR (1993) Coordination of peristalsis in pharynx and esophagus. Dysphagia 8(2):74–78

    Article  PubMed  CAS  Google Scholar 

  315. Bredenoord AJ (2015) Minor disorders of esophageal peristalsis: highly prevalent, minimally relevant? Clin Gastroenterol Hepatol 13(8):1424–1425

    Article  PubMed  Google Scholar 

  316. Fleshler B, Hendrix TR, Kramer P, Ingelfinger FJ (1959) The characteristics and similarity of primary and secondary peristalsis in the esophagus. J Clin Invest 38(1 Pt 1-2):110–116

    Article  PubMed Central  CAS  Google Scholar 

  317. Liao D, Krarup AL, Lundager FH, Drewes AM, Gregersen H (2014) Quantitative differences between primary and secondary peristaltic contractions of the esophagus. Dig Dis Sci 59(8):1810–1816

    Article  PubMed  Google Scholar 

  318. Christensen J (1997) Mechanisms of secondary esophageal peristalsis. Am J Med 103(5):44S–46S

    Article  PubMed  CAS  Google Scholar 

  319. Schoeman MN, Holloway RH (1995) Integrity and characteristics of secondary oesophageal peristalsis in patients with gastro-oesophageal reflux disease. Gut 36(4):499–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Bardan E, Xie P, Aslam M, Kern M, Shaker R (2000) Disruption of primary and secondary esophageal peristalsis by afferent stimulation. Am J Physiol Gastrointest Liver Physiol 279(2):G255–G261

    Article  PubMed  CAS  Google Scholar 

  321. Horgan PG (2005) Supportive and treatment measures for patients with postoperative ileus. Semin Colon Rectal Surg 16(4):211–214

    Article  Google Scholar 

  322. Hübner M, Scott M, Champagne B (2015) Postoperative ileus: prevention and treatment. In: Feldman LS, Delaney CP, Ljungqvist O, Carli F (eds) The SAGES/ERAS® society manual of enhanced recovery programs for gastrointestinal surgery. Springer International Publishing, Cham

    Google Scholar 

  323. Ballantyne GH (1984) The meaning of ileus. Its changing definition over three millennia. Am J Surg 148(2):252–256

    Article  PubMed  CAS  Google Scholar 

  324. Choi PW (2017) Strangulated small bowel obstruction caused by broad ligament hernia: report of a case and review of literature. Am J Med Case Rep 5(2):38–40

    Google Scholar 

  325. Takahashi R, Akagi Y, Tanaka T, Kaibara A, Kajiwara S, Shima I et al (2014) Clinicopathological evaluation of anoxic mucosal injury in strangulation ileus. BMC Surg 14:79

    Article  PubMed  PubMed Central  Google Scholar 

  326. Kimura H, Earashi M, Konishi K, Tsuneda A, Tazawa K, Inoue T et al (1996) Strangulation ileus resulting from encasement of a loop of the small intestine by the great omentum, caused by abnormal adhesion. J Gastroenterol 31(5):714–716

    Article  PubMed  CAS  Google Scholar 

  327. Athanasakis E, Kafetzakis A, Hatzakis G, Daskalogiannaki M, Chalkiadakis G, Georgopoulos D (2002) Internal herniation and strangulation of the ileus through a post-traumatic defect of the mesentery in an intensive care unit patient. A case report. Intensive Care Med 28(4):523

    Article  PubMed  Google Scholar 

  328. Katis PG, Dias SM (2004) Volvulus: a rare twist on small-bowel obstruction. CMAJ 171(7):728

    Article  PubMed  PubMed Central  Google Scholar 

  329. Atamanalp SS (2013) Sigmoid volvulus: diagnosis in 938 patients over 45.5 years. Tech Coloproctol 17(4):419–424

    Article  PubMed  Google Scholar 

  330. Meyers MA (1988) Internal abdominal hernias. In: Dynamic radiology of the abdomen. Springer, New York

    Chapter  Google Scholar 

  331. Ueda J, Yoshida H, Makino H, Yokoyama T, Maruyama H, Hirakata A et al (2012) Transmesocolic hernia of the ascending colon with intestinal obstruction. Case Rep Gastroenterol 6(2):344–349

    Article  PubMed  PubMed Central  Google Scholar 

  332. Matsuo K, Palmer JB (2009) Coordination of mastication, swallowing and breathing. Jpn Dent Sci Rev 45(1):31–40

    Article  PubMed  Google Scholar 

  333. Martin-Harris B (2006) Coordination of respiration and swallowing. GI Motil. Online https://doi.org/10.1038/gimo10

  334. Wilson SL, Thach BT, Brouillette RT, Abu-Osba YK (1981) Coordination of breathing and swallowing in human infants. J Appl Physiol Respir Environ Exerc Physiol 50(4):851–858

    PubMed  CAS  Google Scholar 

  335. Erasmus CE, van Hulst K, Rotteveel JJ, Willemsen MAAP, Jongerius PH (2012) Clinical practice—swallowing problems in cerebral palsy. Eur J Pediatr 171(3):409–414

    Article  PubMed  Google Scholar 

  336. Nishino T (2012) The swallowing reflex and its significance as an airway defensive reflex. Front Physiol 3:489

    PubMed  Google Scholar 

  337. Ertekin C, Aydogdu I (2003) Neurophysiology of swallowing. Clin Neurophysiol 114(12):2226–2244

    Article  PubMed  Google Scholar 

  338. Roman C (1986) Neural control of deglutition and esophageal motility in mammals. J Physiol (Paris) 81(2):118–131

    CAS  Google Scholar 

  339. Ludlow CL (2015) Central nervous system control of voice and swallowing. J Clin Neurophysiol 32(4):294–303

    Article  PubMed  PubMed Central  Google Scholar 

  340. Meltzer SJ (1899) On the causes of the orderly progress of the peristaltic movement in the esophagus. Am J Physiol 2:266–272

    Google Scholar 

  341. Meltzer SJ (1907) Deglutition through an esophagus partly deprived of its muscularis, with demonstration. Proc Soc Exp Biol Med 4:40–43

    Article  Google Scholar 

  342. Lang IM (2009) Brain stem control of the phases of swallowing. Dysphagia 24(3):333–348

    Article  PubMed  Google Scholar 

  343. Amri M, Car A, Jean A (1984) Medullary control of the pontine swallowing neurones in sheep. Exp Brain Res 55(1):105–110

    Article  PubMed  CAS  Google Scholar 

  344. Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81(2):929–969

    Article  PubMed  CAS  Google Scholar 

  345. Car A, Jean A, Roman C (1998) Deglutition: physiologic and neurophysiologic aspects. Rev Laryngol Otol Rhinol (Bord) 119(4):219–225

    CAS  Google Scholar 

  346. Enomoto S, Schwartz G, Lund JP (1987) The effects of cortical ablation on mastication in the rabbit. Neurosci Lett 82(2):162–166

    Article  PubMed  CAS  Google Scholar 

  347. Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG et al (1990) Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol 258(5 Pt 1):G675–G681

    PubMed  CAS  Google Scholar 

  348. Conklin JL (2013) Evaluation of esophageal motor function with high-resolution manometry. J Neurogastroenterol Motil 19(3):281–294

    Article  PubMed  PubMed Central  Google Scholar 

  349. Cook IJ (2008) Diagnostic evaluation of dysphagia. Nat Clin Pract Gastroenterol Hepatol 5:393–403

    Article  PubMed  Google Scholar 

  350. Khan A, Carmona R, Traube M (2014) Dysphagia in the elderly. Clin Geriatr Med 30(1):43–53

    Article  PubMed  Google Scholar 

  351. Baijens LWJ, Speyer R (2009) Effects of therapy for dysphagia in Parkinson’s disease: systematic review. Dysphagia 24(1):91–102

    Article  PubMed  Google Scholar 

  352. Restivo DA, Casabona A, Nicotra A, Zappia M, Elia M, Romano MC et al (2013) ALS dysphagia pathophysiology—differential botulinum toxin response. Neurology 80(7):616–620

    Article  PubMed  CAS  Google Scholar 

  353. King SN, Dunlap NE, Tennant PA, Pitts T (2016) Pathophysiology of radiation-induced dysphagia in head and neck cancer. Dysphagia 31(3):339–351

    Article  PubMed  PubMed Central  Google Scholar 

  354. Marshall JB (1985) Dysphagia. Pathophysiology, causes, and evaluation. Postgrad Med 77(5):58–63, 67–68

    Article  PubMed  CAS  Google Scholar 

  355. Kuo P, Holloway RH, Nguyen NQ (2012) Current and future techniques in the evaluation of dysphagia. J Gastroenterol Hepatol 27(5):873–881

    Article  PubMed  Google Scholar 

  356. Richter JE (2010) Achalasia—an update. J Neurogastroenterol Motil 16(3):232–242

    Article  PubMed  PubMed Central  Google Scholar 

  357. Zendehdel K, Nyrén O, Edberg A, Ye W (2011) Risk of esophageal adenocarcinoma in achalasia patients, a retrospective cohort study in Sweden. Am J Gastroenterol 106:57–61

    Article  PubMed  Google Scholar 

  358. Perkin GD, Murray-Lyon I (1998) Neurology and the gastrointestinal system. J Neurol Neurosurg Psychiatry 65:291–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Farrokhi F, Vaezi MF (2007) Idiopathic (primary) achalasia. Orphanet J Rare Dis 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  360. Agrusa A, Romano G, Frazzetta G, De Vita G, Chianetta D, Di Buono G et al (2014) Achalasia secondary to submucosal invasion by poorly differentiated adenocarcinoma of the cardia, Siewert II: consideration on preoperative workup. Case Rep Surg 2014:654917

    PubMed  PubMed Central  Google Scholar 

  361. Stavropoulos SN, Friedel D, Modayil R, Parkman HP (2016) Diagnosis and management of esophageal achalasia. BMJ 354:i2785

    Article  PubMed  Google Scholar 

  362. Swaney JM, Smith YM, Sachai W (2016) Primary achalasia: practice implications. JNP 12(7):473–478

    Google Scholar 

  363. Pandolfino JE, Gawron AJ (2015) Achalasia—a systematic review. JAMA 313(18):1841–1852

    Article  PubMed  Google Scholar 

  364. Kaths MJ, Foltys DB, Scheuermann U, Strempel M, Niebisch S, Ebert M et al (2015) Achalasia with megaesophagus and tracheal compression in a young patient: a case report. Int J Surg Case Rep 14:16–18

    Article  PubMed  PubMed Central  Google Scholar 

  365. Soybel DI (2005) Anatomy and physiology of the stomach. Surg Clin 85(5):875–894

    Article  Google Scholar 

  366. Daniels IR, Allum WH (2005) The anatomy and physiology of the stomach. In: Fielding JWL, Hallissey MT (eds) Upper gastrointestinal surgery. Springer, London

    Google Scholar 

  367. Waseem S, Moshiree B, Draganov PV (2009) Gastroparesis: current diagnostic challenges and management considerations. World J Gastroenterol 15(1):25–37

    Article  PubMed  PubMed Central  Google Scholar 

  368. Wilmer A, Van Cutsem E, Andrioli A, Tack J, Coremans G, Janssens J (1998) Ambulatory gastrojejunal manometry in severe motility-like dyspepsia: lack of correlation between dysmotility, symptoms, and gastric emptying. Gut 42:235–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  369. Thumshirn M (2002) Pathophysiology of functional dyspepsia. Gut 51(Suppl I):i63–i66

    Article  PubMed  PubMed Central  Google Scholar 

  370. Shoji T, Fukudo S, Nomura T, Satake M, Endo Y, Karahashi K et al (2001) Gastric hyposensitivity and large gastric capacity in patients with bulimia nervosa, but not in patients with anorexia nervosa. Gastroenterology 120(5):A462

    Article  Google Scholar 

  371. Ziessman HA, O’Malley JP, Thrall JH (2014) Gastrointestinal system. In: Thrall J (ed) Nuclear medicine: the requisites, 4th edn. Saunders, Philadelphia

    Google Scholar 

  372. O’Grady G, Wang TH-H, Du P, Angeli T, Lammers WJEP, Cheng LK (2014) Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Exp Pharmacol Physiol 41(10):854–862

    Article  CAS  Google Scholar 

  373. Koch KL (2014) Gastric dysrhythmias: a potential objective measure of nausea. Exp Brain Res 232(8):2553–2561

    Article  PubMed  Google Scholar 

  374. Mcnearney TA, Sallam HS, Hunnicutt SE, Doshi D, Wollaston DE, Mayes MD, Chen JDZ (2009) Gastric slow waves, gastrointestinal symptoms and peptides in systemic sclerosis patients. Neurogastroenterol Motil 21(12):1269

    Article  PubMed  PubMed Central  Google Scholar 

  375. Ray K (2012) Motility: mapping gastric dysrhythmias in gastroparesis—a slow wave of electrical activity. Nat Rev Gastroenterol Hepatol 9:363

    Article  PubMed  Google Scholar 

  376. Koch KL (2003) Diagnosis and treatment of neuromuscular disorders of the stomach. Curr Gastroenterol Rep 5(4):323–330

    Article  PubMed  Google Scholar 

  377. Angeli TR, Du P, Midgley D, Paskaranandavadivel N, Sathar S, Lahr C et al (2016) Acute slow wave responses to high-frequency gastric electrical stimulation in patients with gastroparesis defined by high-resolution mapping. Neuromodulation 19(8):864–871

    Article  PubMed  PubMed Central  Google Scholar 

  378. Scorza K, Williams A, Phillips JD, Shaw J (2007) Evaluation of nausea and vomiting. Am Fam Physician 76(1):76–84

    PubMed  Google Scholar 

  379. Zhao J-B, Chen P-M, Gregersen H (2013) Changes of phasic and tonic smooth muscle function of jejunum in type 2 diabetic Goto-Kakizaki rats. World J Diabetes 4(6):339–348

    Article  PubMed  PubMed Central  Google Scholar 

  380. Sanders KM, Berry RG (1985) Effects of ethyl alcohol on phasic and tonic contractions of the proximal stomach. J Pharmacol Exp Ther 235(3):858–863

    PubMed  CAS  Google Scholar 

  381. Thornbury KD (1999) Tonic and phasic activity in smooth muscle. Ir J Med Sci 168(3):201–207

    Article  PubMed  CAS  Google Scholar 

  382. Golenhofen K, Mandrek K (1991) Phasic and tonic contraction processes in the gastrointestinal tract. Dig Dis 9(6):341–346

    Article  PubMed  CAS  Google Scholar 

  383. Sanjeevi A (2007) Gastric motility. Curr Opin Gastroenterol 23(6):625–630

    Article  PubMed  Google Scholar 

  384. Bredenoord AJ, Chial HJ, Camilleri M, Mullan BP, Murray JA (2003) Gastric accommodation and emptying in evaluation of patients with upper gastrointestinal symptoms. Clin Gastroenterol Hepatol 1(4):264–272

    Article  PubMed  Google Scholar 

  385. Schwizer W, Steingötter A, Fox M, Zur T, Thumshirn M, Bösiger P, Fried M (2002) Non-invasive measurement of gastric accommodation in humans. Gut 51(Suppl I):i59–i62

    Article  PubMed  PubMed Central  Google Scholar 

  386. Xiao A, Wang H, Lu X, Zhu J, Huang D, Xu T et al (2015) H2S, a novel gasotransmitter, involves in gastric accommodation. Sci Rep 5:16086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Talley NJ (2011) Rumination syndrome. Gastroenterol Hepatol (NY) 7(2):117–118

    Google Scholar 

  388. Brun R, Kuo B (2010) Functional dyspepsia. Therap Adv Gastroenterol 3(3):145–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  389. Lacy BE, Everhart K, Crowell MD (2011) Functional dyspepsia is associated with sleep disorders. Clin Gastroenterol Hepatol 9(5):410–414

    Article  PubMed  Google Scholar 

  390. Talley NJ, Ford AC (2015) Functional dyspepsia. N Engl J Med 373:1853–1863

    Article  PubMed  CAS  Google Scholar 

  391. Papadopoulos V, Mimidis K (2007) The rumination syndrome in adults: a review of the pathophysiology, diagnosis and treatment. J Postgrad Med 53:203–206

    Article  PubMed  CAS  Google Scholar 

  392. Cunningham CL, Banez GA (2006) Rumination and cyclic vomiting syndrome -biopsychosocial assessment and treatment. Pediatric gastrointestinal disorders. Springer, Boston

    Google Scholar 

  393. Indrio F, Riezzo G, Raimondi F, Cavallo L, Francavilla R (2009) Regurgitation in healthy and non healthy infants. Ital J Pediatr 35:39

    Article  PubMed  PubMed Central  Google Scholar 

  394. Arts-Rodas D, Benoit D (1998) Feeding problems in infancy and early childhood: identification and management. Paediatr Child Health 3(1):21–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  395. Başal Y, Akcan AB, Polat YD, Günel C, Eryilmaz A, Başak S (2016) Rarely seen nasal congenital problems causing neonatal upper respiratory obstruction: a case series. Pediatr Rep 8(1):6456

    Article  PubMed  PubMed Central  Google Scholar 

  396. Scott M, Gelhot AR (1999) Gastroesophageal reflux disease: diagnosis. Am Fam Physician 59(5):1161–1169

    PubMed  CAS  Google Scholar 

  397. Bredenoord AJ, Pandolfino JE, Smout AJPM (2013) Gastro-oesophageal reflux disease. Lancet 381(9881):1933–1942

    Article  PubMed  Google Scholar 

  398. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293

    Article  PubMed  PubMed Central  Google Scholar 

  399. Vinik AI (1999) Diabetic neuropathy: pathogenesis and therapy. Am J Med 107(2):17–26

    Article  Google Scholar 

  400. Kanatsuka A, Osegawa M, An T, Suzuki T, Hashimoto N, Makino H (1984) Augmented gastrin responses in diabetic patients with vagal neuropathy. Diabetologia 26(6):449–452

    Article  PubMed  CAS  Google Scholar 

  401. Szarka LA, Camilleri M (2009) Methods for measurement of gastric motility. Am J Physiol Gastrointest Liver Physiol 296(3):G461–G475

    Article  PubMed  CAS  Google Scholar 

  402. Yokrattanasak J, De Gaetano A, Panunzi S, Satiracoo P, Lawton WM, Lenbury Y (2016) A simple, realistic stochastic model of gastric emptying. PLoS ONE 11(4):e0153297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  403. Park MI, Camilleri M (2005) Gastric motor and sensory functions in obesity. Obes Res 13(3):491–500

    Article  PubMed  Google Scholar 

  404. Thumshirn M, Camilleri M, Choi MG, Zinsmeister AR (1999) Modulation of gastric sensory and motor functions by nitrergic and α2-adrenergic agents in humans. Gastroenterology 116(3):573–585

    Article  PubMed  CAS  Google Scholar 

  405. Wisén O, Hellström PM (1995) Gastrointestinal motility in obesity. J Intern Med 237(4):411–418

    Article  PubMed  Google Scholar 

  406. Maev IV, Samsonov AA, Vorob’ev LP, Salova LM, Zandanov AO, Dronova OB (2000) Motor and secretion function of stomach and duodenum, duodenogastric reflux in patients with duodenal ulcer. Klin Med (Mosk) 78(6):39–42

    CAS  Google Scholar 

  407. Drummond JC (1995) Elastance versus compliance. Anesthesiology 82(5):1309–1310

    Article  PubMed  CAS  Google Scholar 

  408. Römer M, Painsipp E, Schwetz I, Holzer P (2005) Facilitation of gastric compliance and cardiovascular reaction by repeated isobaric distension of the rat stomach. Neurogastroenterol Motil 17(3):399–409

    Article  PubMed  PubMed Central  Google Scholar 

  409. Parkman HP, Jones MP (2009) Tests of gastric neuromuscular function. Gastroenterology 136(5):1526–1543

    Article  PubMed  Google Scholar 

  410. De Schepper HU, Cremonini F, Chitkara D, Camilleri M (2004) Assessment of gastric accommodation: overview and evaluation of current methods. Neurogastroenterol Motil 16(3):275–285

    Article  PubMed  Google Scholar 

  411. Penagini R, Hebbard G, Horowitz M, Dent J, Bermingham H, Jones K, Holloway RH (1998) Motor function of the proximal stomach and visceral perception in gastro-oesophageal reflux disease. Gut 42(2):251–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  412. Tack J (2009) Gastric motor and sensory function. Curr Opin Gastroenterol 25(6):557–565

    Article  PubMed  Google Scholar 

  413. Tack J, Janssen P (2010) Gastroduodenal motility. Curr Opin Gastroenterol 26(6):647–655

    Article  PubMed  Google Scholar 

  414. Smith PM, Ferguson AV (2008) Neurophysiology of hunger and satiety. Dev Disabil Res Rev 14(2):96–104

    Article  PubMed  Google Scholar 

  415. Mattes RD (2010) Hunger and thirst: issues in measurement and prediction of eating and drinking. Physiol Behav 100(1):22–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  416. Sanger GJ, Hellström PM, Näslund E (2010) The hungry stomach: physiology, disease, and drug development opportunities. Front Pharmacol 1:145

    Article  PubMed  Google Scholar 

  417. Mathes WF, Brownley KA, Mo X, Bulik CM (2009) The biology of binge eating. Appetite 52(3):545–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  418. Umberg EN, Shader RI, Hsu LK, Greenblatt DJ (2012) From disordered eating to addiction: the “food drug” in bulimia nervosa. J Clin Psychopharmacol 32(3):376–389

    Article  PubMed  Google Scholar 

  419. Cronin RE (1987) Psychogenic polydipsia with hyponatremia: report of eleven cases. Am J Kidney Dis 9(5):410–416

    Article  PubMed  CAS  Google Scholar 

  420. McKiernan F, Hollis JH, McCabe GP, Mattes RD (2009) Thirst-drinking, hunger-eating; tight coupling? J Am Diet Assoc 109(3):486–490

    Article  PubMed  PubMed Central  Google Scholar 

  421. Ciampolini M, Lovell-Smith HD, Kenealy T, Bianchi R (2013) Hunger can be taught: hunger recognition regulates eating and improves energy balance. Int J Gen Med 6:465–478

    Article  PubMed  PubMed Central  Google Scholar 

  422. Laplace JP (1984) Motility of the small intestine: organization, regulation and functions. 15 years’ research on migrating complexes. Reprod Nutr Dev 24(5B):707–765

    Article  PubMed  CAS  Google Scholar 

  423. Gwynne RM, Thomas EA, Goh SM, Sjovall H, Bornstein JC (2004) Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J Physiol 556(2):557–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  424. Connell AM (1961) The motility of the small intestine. Postgrad Med J 37(434):703–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  425. Deloose E, Tack J (2016) Redefining the functional roles of the gastrointestinal migrating motor complex and motilin in small bacterial overgrowth and hunger signaling. Am J Physiol Gastrointest Liver Physiol 310(4):G228–G233

    Article  PubMed  Google Scholar 

  426. Takahashi T (2012) Mechanism of interdigestive migrating motor complex. J Neurogastroenterol Motil 18(3):246–257

    Article  PubMed  PubMed Central  Google Scholar 

  427. von Arnim U (2015) Gastroparesis: definition, diagnostics, and therapy. Internist (Berl) 56(6):625–630

    Article  Google Scholar 

  428. Siegle ML, Bühner S, Schemann M, Schmid HR, Ehrlein HJ (1990) Propagation velocities and frequencies of contractions along canine small intestine. Am J Physiol 258(5 Pt 1):G738–G744

    PubMed  CAS  Google Scholar 

  429. Lenz H, Blömer A, Düx A (1971) Analysis of the propulsive movements of the small intestine. Am J Digest Dis 16(12):1107–1115

    Article  PubMed  CAS  Google Scholar 

  430. Sarna SK, Otterson MF (1989) Small intestinal physiology and pathophysiology. Gastroenterol Clin North Am 18(2):375–404

    PubMed  CAS  Google Scholar 

  431. Huizinga JD, Chen J-H, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL et al (2014) The origin of segmentation motor activity in the intestine. Nat Commun 5:3326

    Article  PubMed  CAS  Google Scholar 

  432. Hennig GW, Gregory S, Brookes SJ, Costa M (2010) Non-peristaltic patterns of motor activity in the guinea-pig proximal colon. Neurogastroenterol Motil 22(6):e207–e217

    Article  PubMed  CAS  Google Scholar 

  433. Chambers JD, Bornstein JC, Thomas EA (2008) Insights into mechanisms of intestinal segmentation in guinea pigs: a combined computational modeling and in vitro study. Am J Physiol Gastrointest Liver Physiol 295(3):G534–G541

    Article  PubMed  CAS  Google Scholar 

  434. Gwynne RM, Bornstein JC (2007) Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292(4):G1162–G1172

    Article  PubMed  CAS  Google Scholar 

  435. Huizinga JD, Parsons SP, Chen J-H, Pawelka A, Pistilli M, Li Chunpei et al (2015) Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity. Am J Physiol Cell Physiol 309(6):C403–C414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  436. Huizinga JD, Lammers WJEP (2008) Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 296(1):G1–G8

    Article  PubMed  CAS  Google Scholar 

  437. Huizinga JD, McKay CM, White EJ (2006) The many facets of intestinal peristalsis. Am J Physiol Gastrointest Liver Physiol 290(6):G1347–G1349

    Article  PubMed  CAS  Google Scholar 

  438. Quigley EMM (1996) Gastric and small intestinal motility in health and disease. Gastroenterol Clin 25(1):113–145

    Article  CAS  Google Scholar 

  439. Sternini C, Anselmi L, Guerrini S, Cervio E, Pham T, Balestra B et al (2004) Role of galanin receptor 1 in peristaltic activity in the guinea pig ileum. Neuroscience 125(1):103–112

    Article  PubMed  CAS  Google Scholar 

  440. Meltzer SJ, Auer J (1907) Peristaltic rush. Am J Physiol 20:259–281

    Google Scholar 

  441. Gershon MD (2004) Serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 20(Suppl 7):3–14

    Article  PubMed  CAS  Google Scholar 

  442. Nezami BG, Srinivasan S (2010) Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep 12(5):358–365

    Article  PubMed  PubMed Central  Google Scholar 

  443. Stukan M, Kruszewski JW, Dudziak M, Kopiejć A, Preis K (2013) Intestinal obstruction during pregnancy. Ginekol Pol 84(2):137–141

    PubMed  Google Scholar 

  444. von der Ohe MR, Camilleri M, Kvols LK, Thomforde GM (1993) Motor dysfunction of the small bowel and colon in patients with the carcinoid syndrome and diarrhea. N Engl J Med 329(15):1073–1078

    Article  PubMed  Google Scholar 

  445. Basha ME, Duke GE (1999) Effect of fasting on small intestinal antiperistalsis in the Nicholas turkey (Meleagris gallopavo). J Exp Zool 283(4–5):469–477

    Article  PubMed  CAS  Google Scholar 

  446. Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  447. Bayliss WM, Starling EH (1900) The movements and innervation of the large intestine. J Physiol 26:107–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  448. Spencer NJ, Hennig GW, Smith TK (2002) A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon. J Physiol 545(Pt 2):629–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  449. Alvarez WC (1915) The motor functions of the intestine from a new point of view. JAMA LXV(5):388–394

    Article  Google Scholar 

  450. Alvarez WC (1924) Bayliss and Starling’s law of the intestine or the myenteric reflex. Am J Physiol 69:229–248

    Google Scholar 

  451. Cannon WB (1912) Peristalsis, segmentation, and the myenteric reflex. Am J Physiol 30:114–128

    Google Scholar 

  452. Fleckenstein P (1978) Migrating electrical spike activity in the fasting human small intestine. Am J Dig Dis 23(9):769–775

    Article  PubMed  CAS  Google Scholar 

  453. Rayner V, Wenham G (1986) Small intestinal motility and transit by electromyography and radiology in the fasted and fed pig. J Physiol 379:245–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  454. Kruis W, Azpiroz F, Phillips SF (1985) Contractile patterns and transit of fluid in canine terminal ileum. Am J Physiol 249(2 Pt 1):G264–G270

    PubMed  CAS  Google Scholar 

  455. Lammers WJEP (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol Gastrointest Liver Physiol 289(5):G898–G903

    Article  PubMed  CAS  Google Scholar 

  456. Seerden TC, Lammers WJEP, De Winter BY, De Man JG, Pelckmans PA (2005) Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 289(6):G1043–G1051

    Article  PubMed  CAS  Google Scholar 

  457. Campbell I (2012) The mouth, stomach and intestines. Anaesth Inten Care Med 13(2):56–58

    Article  Google Scholar 

  458. Kerlin P, Phillips S (1983) Differential transit of liquids and solid residue through the human ileum. Am J Physiol 245:G38–G43

    PubMed  CAS  Google Scholar 

  459. Seow-Choen F (2009) The physiology of colonic hydrotherapy. Colorectal Dis 11(7):686–688

    Article  PubMed  CAS  Google Scholar 

  460. Maurer AH (2015) Gastrointestinal motility, part 2: small-bowel and colon transit. J Nucl Med 56(9):1395–1400

    PubMed  CAS  Google Scholar 

  461. Rose C, Parker A, Jefferson B, Cartmell E (2015) The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol 45(17):1827–1879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  462. Smith TK, Oliver GR, Hennig GW, O’Shea DM, Vanden Berghe P, Kang SH, Spencer NJ (2003) A smooth muscle tone-dependent stretch-activated migrating motor pattern in isolated guinea-pig distal colon. J Physiol 551(Pt 3):955–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  463. D’Antona G, Hennig GW, Costa M, Humphreys CM, Brookes SJ (2001) Analysis of motor patterns in the isolated guinea-pig large intestine by spatio-temporal maps. Neurogastroenterol Motil 13(5):483–492

    Article  PubMed  Google Scholar 

  464. Shafik A (1997) Electrosigmoidogram, electrorectogram and their relation. Front Biosci 2:b12–b16

    Article  PubMed  Google Scholar 

  465. Sarna SK (2010) Colonic motility: from bench side to bedside. Integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  466. Fischer B, Hoh S, Wehler M, Hahn EG, Schneider HT (2001) Faecal elastase-1: lyophilization of stool samples prevents false low results in diarrhoea. Scand J Gastroenterol 36(7):771–774

    Article  PubMed  CAS  Google Scholar 

  467. Schouw NL, Danteravanich S, Mosbaek H, Tjell JC (2002) Composition of human excreta—a case study from Southern Thailand. Sci Total Environ 286(1–3):155–166

    Article  PubMed  CAS  Google Scholar 

  468. Tare V, Yadav KD (2009) Fate of physico-chemical parameters during decomposition of human feces. Glob J Environ Res 3(1):18–21

    CAS  Google Scholar 

  469. Santiago A, Panda S, Mengels G, Martinez X, Azpiroz F, Dore J et al (2014) Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol 14:112

    Article  PubMed  PubMed Central  Google Scholar 

  470. Misawa H, Hoshi T, Kitame F, Homma M, Nakamura K (1986) Isolation of an antigenically unique methanogen from human feces. Appl Environ Microbiol 51(2):429–431

    PubMed  PubMed Central  CAS  Google Scholar 

  471. Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-Kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480:91–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  472. Fukuzawa M (2014) Progress in the treatment of and research on Hirschsprung’s disease. Nihon Geka Gakkai Zasshi 115(6):312–316

    PubMed  Google Scholar 

  473. Yamataka A, Kato Y, Tibboel D, Murata Y, Sueyoshi N, Fujimoto T et al (1995) A lack of intestinal pacemaker (c-Kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg 30:441–444

    Article  PubMed  CAS  Google Scholar 

  474. Vanasin B, Ustach TJ, Schuster MM (1974) Electrical and motor activity of human and dog colon in vitro. Johns Hopkins Med J 134(4):201–210

    PubMed  CAS  Google Scholar 

  475. Sarna SK (1991) Physiology and pathophysiology of colonic motor activity (2). Dig Dis Sci 36(7):998–1018

    Article  PubMed  CAS  Google Scholar 

  476. Gonella J, Bouvier M, Blanquet F (1987) Extrinsic nervous control of motility of small and large intestines and related sphincters. Physiol Rev 67(3):902–961

    Article  PubMed  CAS  Google Scholar 

  477. Holdstock DJ, Misiewicz JJ, Smith T, Rowlands EN (1970) Propulsion (mass movements) in the human colon and its relationship to meals and somatic activity. Gut 11(2):91–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  478. Bassotti G, Crowell MD, Whitehead WE (1993) Contractile activity of the human colon: lessons from 24 hour studies. Gut 34(1):129–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  479. Bhate PA, Patel JA, Parikh P, Ingle MA, Phadke A, Sawant PD (2015) Total and segmental colon transit time study in functional constipation: comparison with healthy subjects. Gastroenterol Res 8(1):157–159

    Article  CAS  Google Scholar 

  480. Read NW, Miles CA, Fisher D, Holgate AM, Kime ND, Mitchell MA et al (1980) Transit of a meal through the stomach, small intestine, and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology 79(6):1276–1282

    PubMed  CAS  Google Scholar 

  481. Camilleri M (2004) Chronic diarrhea: a review on pathophysiology and management for the clinical gastroenterologist. Clin Gastroenterol Hepatol 2(3):198–206

    Article  PubMed  Google Scholar 

  482. Bassotti G, Antonelli E, Villanacci V, Baldoni M, Dore MP (2014) Colonic motility in ulcerative colitis. United European Gastroenterol J 2(6):457–462

    Article  PubMed  PubMed Central  Google Scholar 

  483. Sarna SK (1993) Colonic motor activity. Surg Clin North Am 73(6):1201–1223

    Article  PubMed  CAS  Google Scholar 

  484. Misiewicz JJ (1984) Human colonic motility. Scand J Gastroenterol 93:43–51

    CAS  Google Scholar 

  485. Suzuki N, Gomi Y (1992) Evidence that stretch receptors for peristalsis are located in the mucosal layer of the guinea pig ileum. Jpn J Pharmacol 60(3):261–267

    Article  PubMed  CAS  Google Scholar 

  486. Tsuji S, Anglade P, Ozaki T, Sazi T, Yokoyama S (1992) Peristaltic movement evoked in intestinal tube devoid of mucosa and submucosa. Jpn J Physiol 42(3):363–375

    Article  PubMed  CAS  Google Scholar 

  487. Hennig GW, Costa M, Chen BN, Brookes SJH (1999) Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J Physiol 517(Pt 2):575–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  488. Smith TK, Robertson WJ (1998) Synchronous movements of the longitudinal and circular muscle during peristalsis in the isolated guinea-pig distal colon. J Physiol 506(Pt 2):563–577

    PubMed  PubMed Central  CAS  Google Scholar 

  489. Lee KJ (2015) Pharmacologic agents for chronic diarrhea. Intest Res 13(4):306–312

    Article  PubMed  PubMed Central  Google Scholar 

  490. Quigley EM (1987) Small intestinal motor activity—its role in gut homeostasis and disease. Q J Med 65(246):799–810

    PubMed  CAS  Google Scholar 

  491. Canadian Agency for Drugs and Technologies in Health (2014) Dioctyl sulfosuccinate or docusate (calcium or sodium) for the prevention or management of constipation: a review of the clinical effectiveness. CADTH Rapid Response Reports, Ottawa, Canada

    Google Scholar 

  492. Canadian Agency for Drugs and Technologies in Health (2014) Treatments for constipation: a review of systematic reviews. CADTH Rapid Response Reports, Ottawa, Canada

    Google Scholar 

  493. Schmulson MJ, Drossman DA (2017) What is new in Rome IV. J Neurogastroenterol Motil 23(2):151–163

    Article  PubMed  PubMed Central  Google Scholar 

  494. de Milliano I, Tabbers MM, van der Post JA, Benninga MA (2012) Is a multispecies probiotic mixture effective in constipation during pregnancy? ‘A pilot study’. Nutr J 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  495. Gordon M, Naidoo K, Akobeng AK, Thomas AG (2013) Cochrane review: osmotic and stimulant laxatives for the management of childhood constipation (review). Evid Based Child Health 8(1):57–109

    Article  PubMed  Google Scholar 

  496. Kortz WJ (1985) Intestinal obstruction and pregnancy. In: Gleicher N (ed) Principles of medical therapy in pregnancy. Springer, New York

    Google Scholar 

  497. Vanagunas A (2008) Gastrointestinal complications in pregnancy. Glob Libr Women’s Med. https://doi.org/10.3843/GLOWM.10172

    Article  Google Scholar 

  498. İlhan M, Arabaci E, Turgut S, Karaman O, Danalioglu A, Tasan E (2014) Esophagus motility in overt hypothyroidism. J Endocrinol Invest 37(7):639–644

    Article  PubMed  CAS  Google Scholar 

  499. Yaylali O, Kirac S, Yilmaz M, Akin F, Yuksel D, Demirkan N, Akdag B (2009) Does hypothyroidism affect gastrointestinal motility? Gastroenterol Res Pract 2009:529802

    Article  PubMed  Google Scholar 

  500. Leeds AR (1987) Dietary fibre: mechanisms of action. Int J Obes 11(1):3–7

    PubMed  Google Scholar 

  501. Abdel-Aziz H, Windeck T, Ploch M, Verspohl EJ (2006) Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur J Pharmacol 530(1–2):136–143

    Article  PubMed  CAS  Google Scholar 

  502. Huang Q, Iwamoto Y, Aoki S, Tanaka N, Tajima K, Yamahara J et al (1991) Anti-5-hydroxytryptamine3 effect of galanolactone, diterpenoid isolated from ginger. Chem Pharm Bull 39(2):397–399

    Article  CAS  Google Scholar 

  503. Marx WM, Teleni L, McCarthy AL, Vitetta L, McKavanagh D, Thomson D, Isenring E (2013) Ginger (Zingiber officinale) and chemotherapy-induced nausea and vomiting: a systematic literature review. Nutr Rev 71(4):245–254

    Article  PubMed  Google Scholar 

  504. Lete I, Allué J (2016) The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr Med Insights 11:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  505. Ahrens FA, Zhu BL (1982) Effects of epinephrine, clonidine, l-phenylephrine, and morphine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in pig jejunum. Can J Physiol Pharmacol 60(12):1680–1685

    Article  PubMed  CAS  Google Scholar 

  506. Kromer W (1993) Gastrointestinal effects of opioids. In: Herz A, Akil H, Simon EJ (eds) Opioids II, vol 104. Springer, Heidelberg

    Chapter  Google Scholar 

  507. Sun X, Wang X, Wang GD, Xia Y, Liu S, Qu M et al (2011) Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine. Dig Dis Sci 56(2):330–338

    Article  PubMed  CAS  Google Scholar 

  508. Glare P, Pereira G, Kristjanson LJ, Stockler M, Tattersall M (2004) Systematic review of the efficacy of antiemetics in the treatment of nausea in patients with far-advanced cancer. Support Care Cancer 12(6):432–440

    Article  PubMed  Google Scholar 

  509. Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151(6):737–748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  510. Artigas F, Nutt DJ, Shelton R (2002) Mechanism of action of antidepressants. Psychopharmacol Bull 36(2):123–132

    PubMed  Google Scholar 

  511. Feighner JP (1999) Mechanism of action of antidepressant medications. J Clin Psychiatry 60(4):4–13

    PubMed  CAS  Google Scholar 

  512. Schwartz TL, Goradia V (2013) Managing insomnia: an overview of insomnia and pharmacologic treatment strategies in use and on the horizon. Drugs Context 2013:212257

    PubMed  PubMed Central  Google Scholar 

  513. Menezes C, Rodrigues B, Magalhães E, Melo A (2007) Botulinum toxin type A in refractory chronic migraine: an open-label trial. Arq Neuropsiquiatr 65(3A):596–598

    Article  PubMed  Google Scholar 

  514. Wieckiewicz M, Grychowska N, Zietek M, Wieckiewicz G, Smardz J (2017) Evidence to use botulinum toxin injections in tension-type headache management: a systematic review. Toxins (Basel) 9(11):E370

    Article  PubMed Central  Google Scholar 

  515. Münchau A, Bhatia KP (2000) Uses of botulinum toxin injection in medicine today. BMJ 320(7228):161–165

    Article  PubMed  PubMed Central  Google Scholar 

  516. Nigam PK, Nigam A (2010) Botulinum toxin. Indian J Dermatol 55(1):8–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  517. Ahmadi J, Azary S, Ashjaei B, Paragomi P, Khalifeh-Soltani A (2013) Intrasphincteric botulinum toxin injection in treatment of chronic idiopathic constipation in children. Iran J Pediatr 23(5):574–578

    PubMed  PubMed Central  Google Scholar 

  518. Arbizu RA, Rodriguez L (2015) Use of Clostridium botulinum toxin in gastrointestinal motility disorders in children. World J Gastrointest Endosc 7(5):433–437

    Article  PubMed  PubMed Central  Google Scholar 

  519. Keshtgar AS, Ward HC, Clayden GS (2009) Transcutaneous needle-free injection of botulinum toxin: a novel treatment of childhood constipation and anal fissure. J Pediatr Surg 44(9):1791–1798

    Article  PubMed  Google Scholar 

  520. Emile SH, Elfeki HA, Elbanna HG, Youssef M, Thabet W, Abd El-Hamed TM et al (2016) Efficacy and safety of botulinum toxin in treatment of anismus: a systematic review. World J Gastrointest Pharmacol Ther 7(3):453–462

    Article  PubMed  PubMed Central  Google Scholar 

  521. Itoh Z, Nakaya M, Suzuki T, Arai H, Wakabayashi K (1984) Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am J Physiol 247:G688–G694

    PubMed  CAS  Google Scholar 

  522. Armstrong DN, Ballantyne GH, Modlin IM (1992) Erythromycin stimulates ileal motility by activation of dihydropyridine-sensitive calcium channels. J Surg Res 52(2):140–146

    Article  PubMed  CAS  Google Scholar 

  523. Broad J, Mukherjee S, Samadi M, Martin JE, Dukes GE, Sanger GJ (2012) Regional- and agonist-dependent facilitation of human neurogastrointestinal functions by motilin receptor agonists. Br J Pharmacol 167(4):763–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  524. Deloose E, Vos R, Janssen P, Van den Bergh O, Van Oudenhove L, Depoortere I, Tack J (2016) The motilin receptor agonist erythromycin stimulates hunger and food intake through a cholinergic pathway. Am J Clin Nutr 103(3):730–737

    Article  PubMed  CAS  Google Scholar 

  525. Broad J, Sanger GJ (2013) The antibiotic azithromycin is a motilin receptor agonist in human stomach: comparison with erythromycin. Br J Pharmacol 168(8):1859–1867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  526. Basch E, Prestrud AA, Hesketh PJ, Kris MG, Feyer PC, Somerfield MR et al (2011) Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 29(31):4189–4198

    Article  PubMed  PubMed Central  Google Scholar 

  527. Agrawal A, Hila A, Tutuian R, Mainie I, Castell DO (2007) Bethanechol improves smooth muscle function in patients with severe ineffective esophageal motility. J Clin Gastroenterol 41(4):366–370

    Article  PubMed  CAS  Google Scholar 

  528. Blonski W, Vela MF, Freeman J, Sharma N, Castell DO (2009) The effect of oral buspirone, pyridostigmine, and bethanechol on esophageal function evaluated with combined multichannel esophageal impedance-manometry in healthy volunteers. J Clin Gastroenterol 43(3):253–260

    Article  PubMed  CAS  Google Scholar 

  529. Vitton V, Benezech A, Honoré S, Sudour P, Lesavre N, Auquier P, Baumstarck K (2015) CON-COUR study: interferential therapy in the treatment of chronic constipation in adults: study protocol for a randomized controlled trial. Trials 16:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  530. Lu ML, He J, Lu S (2015) Electrical stimulation therapy for slow transit constipation in children: a systematic review. Int J Colorectal Dis 30(5):697–702

    Article  PubMed  Google Scholar 

  531. Wang X, Yin J (2015) Complementary and alternative therapies for chronic constipation. Evid Based Complement Alternat Med 2015:396396

    PubMed  PubMed Central  Google Scholar 

  532. Li Y, Zheng H, Zeng F, Zhou S-Y, Zhong F, Zheng H-B et al (2012) Use acupuncture to treat functional constipation: study protocol for a randomized controlled trial. Trials 13:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  533. Xiong F, Wang Y, Li S, Tian M, Zheng C-H, Huang G-Y (2014) Clinical study of electro-acupuncture treatment with different intensities for functional constipation patients. J Huazhong Univ Sci Technol (Med Sci) 34(5):775–781

    Article  Google Scholar 

  534. DeCamp LR, Byerley JS, Doshi N, Steiner MJ (2008) Use of antiemetic agents in acute gastroenteritis—a systematic review and meta-analysis. Arch Pediatr Adolesc Med 162(9):858–865

    Article  PubMed  Google Scholar 

  535. Olkkola KT, Ahonen J (2008) Midazolam and other benzodiazepines. Handb Exp Pharmacol 182:335–360

    Article  CAS  Google Scholar 

  536. Enrico P, Giuseppe V, Gabriele F, Walter M, Salvatore G, Leonardo G et al (1997) Ondansetron versus metoclopramide in the treatment of postoperative nausea and vomiting. Anesth Analg 85(2):395–399

    Google Scholar 

  537. Savant K, Khandeparker RV, Berwal V, Khandeparker PV, Jain H (2016) Comparison of ondansetron and granisetron for antiemetic prophylaxis in maxillofacial surgery patients receiving general anesthesia: a prospective, randomised, and double blind study. J Korean Assoc Oral Maxillofac Surg 42(2):84–89

    Article  PubMed  PubMed Central  Google Scholar 

  538. Gupta K, Singh I, Gupta PK, Chauhan H, Jain M, Rastogi B (2014) Palonosetron, ondansetron, and granisetron for antiemetic prophylaxis of postoperative nausea and vomiting—a comparative evaluation. Anesth Essays Res 8(2):197–201

    Article  PubMed  PubMed Central  Google Scholar 

  539. Board T, Board R (2006) The role of 5-HT3 receptor antagonists in preventing postoperative nausea and vomiting. AORN J 83(1):209–216, 219–220

    Article  PubMed  Google Scholar 

  540. Liu M, Zhang H, Du B-X, Xu F-Y, Zou Z, Sui B, Shi X-Y (2015) Neurokinin-1 receptor antagonists in preventing postoperative nausea and vomiting. A systematic review and meta-analysis. Medicine (Baltimore) 94(19):e762

    Article  CAS  Google Scholar 

  541. Chu C-C, Hsing C-H, Shieh J-P, Chien C-C, Ho C-M, Wang J-J (2014) The cellular mechanisms of the antiemetic action of dexamethasone and related glucocorticoids against vomiting. Eur J Pharmacol 722:48–54

    Article  PubMed  CAS  Google Scholar 

  542. Ho CM, Ho ST, Wang JJ, Tsai SK, Chai CY (2004) Dexamethasone has a central antiemetic mechanism in decerebrated cats. Anesth Analg 99(3):734–739

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menizibeya Osain Welcome MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welcome, M.O. (2018). Gastrointestinal Motor Function. In: Gastrointestinal Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-91056-7_7

Download citation

Publish with us

Policies and ethics