
Lag Compensation for First-Person Shooter
Games in Cloud Gaming

Zhi Li1 , Hugh Melvin1(&) , Rasa Bruzgiene2 , Peter Pocta3 ,
Lea Skorin-Kapov4 , and Andrej Zgank5

1 National University of Ireland, Galway, Ireland
hugh.melvin@nuigalway.ie

2 Kaunas University of Technology, Kaunas, Lithuania
3 University of Zilina, Zilina, Slovakia
4 University of Zagreb, Zagreb, Croatia

5 University of Maribor, Maribor, Slovenia

Abstract. Cloud gaming is an emerging technology that combines cloud
computing with computer games. Compared to traditional gaming, its core
advantages include ease of development/deployment for developers, and lower
technology costs for users given the potential to play on thin client devices. In
this chapter, we firstly describe the approach, and then focus on the impact of
latency, known as lag, on Quality of Experience, for so-called First Person
Shooter games. We outline our approach to lag compensation whereby we
equalize within reason the up and downlink delays in real-time for all players.
We describe the testbed in detail, the open source Gaming Anywhere platform,
the use of NTP to synchronise time, the network emulator and the role of the
centralized log server. We then present results that firstly validate the mecha-
nism and also use small scale and preliminary subjective tests to assess and
prove its performance. We conclude the chapter by outlining ongoing and future
work.

Keywords: Cloud gaming � Quality of experience � Network delay
Lag compensation

1 Introduction

The gaming industry plays an important role in the entertainment and software
industries. According to “Video Game Revenue Forecast: 2017-22”, it is expected that
the global market of video games will grow up to $174 billion by 2022 [1].

Traditionally, computer games are downloaded from the Internet and installed on a
PC or other end user device allowing players to run the corresponding game. With
game sizes running into multiple gigabytes, the installation process may take the order
of hours, with perhaps additional time required to install patches of new game versions.
Furthermore, when players wish to play newly released games, they may require a
higher specified hardware configuration to enable all the visual effects, and so they
have to upgrade their computers to meet the particular specification. Both of these
factors can result in frustration and may result in gamers give up the game [2].

© The Author(s) 2018
I. Ganchev et al. (Eds.): Autonomous Control for a Reliable Internet of Services, LNCS 10768, pp. 104–127, 2018.
https://doi.org/10.1007/978-3-319-90415-3_5

http://orcid.org/0000-0002-6040-6390
http://orcid.org/0000-0002-6731-2792
http://orcid.org/0000-0002-0816-8700
http://orcid.org/0000-0001-6791-1325
http://orcid.org/0000-0002-3208-7601
http://orcid.org/0000-0002-1411-5293
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90415-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90415-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90415-3_5&domain=pdf

Unlike conventional computer games, cloud gaming has a different paradigm. The
‘heavy lifting’ of game processing is done by servers in the cloud [3]. Game actions are
captured by game clients and sent to cloud server(s). The resulting game scenes are
rendered by the cloud servers and the audio and video frames are streamed back to
clients over the broadband network. Gamers thus interact and control games through
thin clients, the thin client being a lightweight process (often a browser) which interacts
with the remote server [2]. Figure 1 shows the relationship between the server and
client in a cloud gaming service, with gamer actions captured and sent to the
cloud-based gaming provider which then streams a video back to the client. For this
reason, cloud gaming allows gamers to play games with simple devices (also referred
to as thin client devices) without having to install the games or to continuously upgrade
computer hardware.

For these reasons, game developers and users/gamers are paying more attention to
cloud gaming systems [3]. From the developer perspective, the benefits include the
potential of reaching out to more gamers, easier testing of ideas to improve cloud
gaming systems, avoiding piracy due to the fact that games are not being downloaded
to client devices [4].

From the gamer perspective, the benefits include access to games anytime (on
demand), without the need to download games, reduced costs due to the fact that the
computer hardware does not need to be upgraded frequently, and ability to play games
on different platforms, such as PC, smartphone, tablet and so on.

Fig. 1. Cloud gaming service

Lag Compensation for First-Person Shooter Games in Cloud Gaming 105

Although cloud games open up a new direction for the video games industry, it is
not without its challenges [2]. According to previous research, not only the bandwidth
but also the CPU has a significant influence on cloud gamers’ Quality of Experience
(QoE) [5]. Ideally, gamers would like to play games with both high quality videos, and
where games are delay sensitive, low latency. Latency, also known as lag in gaming, is
especially important in the First Person Shooter (FPS) game genre. However - high
quality videos, for example, 720p/1080p at 50 fps, can make cloud gaming systems
vulnerable to a high network latency [3] as much more network capacity is needed than
in the case of conventional video games (e.g., 5000 kb/s vs. 50 kb/s) [3]. To meet the
needs of cloud gamers, network service providers thus have to take network latency,
efficiency, high video quality, and error resiliency into consideration [6]. These factors
represent significant challenges to the roll out of large scale cloud gaming services.
Without adequate infrastructure that meets the specific needs of cloud gaming, the
potential and benefits will not be realised.

In this chapter, we focus on the impact of lag on QoE for so-called FPS games. In
multi-player scenarios, different lag values experienced among players can lead to
unfair game play and frustration among players [7]. In [8], the authors report findings
that state that different QoS leads to unfairness or imbalanced games when there are no
mechanisms for mitigating the QoS differences. Previous research has analysed the
potential of achieving fairness in multi-player networked games through automated
latency balancing [9]. We further tackle these challenges in the context of cloud
gaming. We describe in detail our approach to lag compensation whereby we equalise
within reason the up and downlink delays in real-time for all players, aiming to achieve
fairness among players and consequently improve QoE.

At present, several cloud service providers have developed cloud gaming platforms,
most of which are closed source (e.g., Sony PlayStation Now, NVIDIA GeForce Now).
Therefore, game developers cannot test and fine-tune their games on them [3] and they
have to do the tests and fine-tuning of the games on emulators. This fact increases the
difficulty of improving cloud gaming systems to better reflect gamers’ needs and
expectations.

In response to this, Gaming Anywhere (GA) was designed and developed. It is the
first open-source cloud gaming platform that allows researchers to quickly explore their
ideas. More importantly, GA has greatly promoted the evolution of cloud gaming
within the video game industry [3].

The remainder of this chapter is structured as follows. Section 2 provides a liter-
ature survey on gaming QoE. It firstly deals with the impact of latency and packet loss
on game QoE, before focusing specifically on latency. It then examines the impact of
delay for different game genres. Section 3 introduces the concept of lag compensation
and outlines our two research objectives. Section 4 outlines in detail how lag equali-
zation was implemented on the Gaming Anywhere platform in order to address both
research objectives. Section 5 presents results that firstly validate the lag compensation
mechanism and then outlines the results of preliminary subjective tests. Section 6
concludes the paper by outlining ongoing and future work.

106 Z. Li et al.

2 Literature Review

A key research challenge has been to determine the impact of a wide range of influence
factors on gaming QoE, including a wide range of human, system, and context factors
[10–12]. Focusing on system influence factors, and as outlined in the previous section,
cloud gaming demands a high level of network Quality of Service (QoS) to deliver
acceptable user perceived quality (QoE) to players. Key QoS-related factors include
packet loss and delay, with their impact on QoE differing for different types (genres) of
games.

In this section, we review relevant literature that outlines the impact that both
roundtrip delay (latency), also known as Response Delay (RD) or lag, and packet loss
have on the end user experience in general, and also for different game genres. As the
main focus of this chapter is on lag compensation, we focus more on lag in the
literature review.

Given the inherently interactive nature of gaming in general, a key challenge is
meeting delay requirements. This involves the delivery of both user control inputs
(mouse, keyboard strokes) to the game server and uninterrupted presentation of con-
tinuous game content to players, transmitted in the form of a video stream. For this
reason, conventional methods for diminishing the effects of poor network conditions
and consequent jitter on streaming media, such as buffering data for display, are not
readily applicable in the context of cloud gaming. Moreover, lag compensation tech-
niques applicable in “traditional” gaming, such as client-side prediction [13], are not
applicable in the context of cloud gaming, where the client is simply decoding and
portraying the stream received from the server. Consequently, numerous studies have
addressed the impact of latency due to heterogeneous and variable network conditions
on the end user QoE of cloud gaming.

As reported in [5, 14–16], packet loss and delay have a significant impact on cloud
gaming QoE. Basically, network congestion results in network delay jitter and when
queue size is exceeded, packet loss occurs. Delay and jitter impact both on uplink time
between the player sending input events to the server, and downlink transmission of
game scenes that are eventually displayed on the screen. Moreover, as it has been
shown in [17], a high network delay disrupts an interaction between server and players
and negatively influence players’ QoE.

It is important to note that not all cloud games are equally sensitive to latency, as is
of course also the case for “traditional” networked games [18]. For Real-time Strategy
(RTS) games, the process of constructing buildings or moving troops towards a bat-
tlefield is unaffected by latency as high as 1000 ms [15]. However, First Person
Shooter (FPS) games, where users are shooting at a moving target tend to be more
sensitive to latency with delays of over 100 ms seen as unacceptable [19]. Moreover,
the effects of latency are based on two action properties: precision and deadline.
Precision refers to the accuracy of actions, whereas deadline refers to the timeliness of
events. Games with higher precision and tight deadline are more sensitive to latency.
For this reason, FPS players always emphasis precision and deadline [20].

As it has been reported above, latency plays a very important role when it comes to
cloud gaming. Despite this fact, there is no work, to the best of our knowledge, dealing

Lag Compensation for First-Person Shooter Games in Cloud Gaming 107

specifically with the impact of delay compensation on QoE in the context of cloud
gaming. Therefore, we have decided to focus on this issue in this chapter. More
specifically, we showcase lag compensation impact on QoE in a case study involving
an FPS cloud game.

3 Lag Compensation

Figure 2 shows the relationship between the server and the client for cloud gaming.
The client sends control events to the server over the network, then the server
samples/executes the input commands and delivers a stream (Audio/Video) back to the
client. Finally, the client receives and decodes the stream to be portrayed on the screen.
This round-trip delay is also known as response delay.

Basically, lag compensation is a technique that attempts to equalise lag for all
players in a cloud gaming scenario. For example, in Fig. 3, there are two players (P1
and P2) that are playing an FPS cloud game.

Fig. 2. The relationship between the server and the client

Fig. 3. Two players with different RD

108 Z. Li et al.

The game server is located in Dublin, Ireland, P1 plays in London with an average
lag of say 100 ms (equal delay in both directions) while P2 is in Galway, Ireland with
an average lag of say 10 ms, again with equal delay in both directions. Since P1 has a
longer RD than P2, P1 will have a relatively bad game experience as P2 has an inherent
advantage.

To analyse and visualise this lag difference further considers Fig. 4, where the
player in Galway (P2) has moved from Position A to Position B.

The red hitbox shows the A position where P2 was prior to moving. However, due
to longer RD for P1, his view of the game still shows P2 at position A. When P1
executes a shoot action, the gameplay information is sent to the server. When this
command arrives at the server, the target P2 has already moved to position B. As a
result, P1 misses P2 even though P1 correctly aimed at the opponent in his view of the
game. To eliminate this issue, lag compensation is needed on server side, such that an
artificial delay is added to P2 so that both P1 and P2 experience the same lag on both up
and downlink traffic and the game thus becomes fairer. Figure 5 shows the game after
lag compensation.

Fig. 4. Example of Lag in an FPS game (taken from https://developer.valvesoftware.com/wiki/
Source_Multiplayer_Networking) (Color figure online)

Fig. 5. Game after lag compensation

Lag Compensation for First-Person Shooter Games in Cloud Gaming 109

https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

As shown, equal delays are added to both the uplink (client to server or c2s) and
downlink (server to client or s2c) traffic. The assumption of equal delays in both
directions is in reality rarely true, largely due to asymmetry in traffic flows.

3.1 Research Objectives

Having given a brief overview of literature relating to the QoE of gaming, and intro-
duced the proposed lag equalization concept, we define two key research objectives
that are the focus for the remainder of the chapter:

1. How feasible is it to implement a real-time lag compensation strategy for cloud
gaming?

2. Will the lag compensation approach result in improved QoE for FPS gamers?

4 Implementation

In this section, we describe the implementation details related to the testbed used to
address both research objectives. We firstly describe the cloud gaming platform
Gaming Anywhere that was used, followed by the game that was chosen for the
platform. Other testbed requirements and tools such as time synchronization and net-
work emulator are also briefly described.

4.1 Infrastructure

As previously mentioned, GA is designed to better bridge the computer game industry
and the research community. The most attractive feature is its openness, with GA being
the first open-source cloud gaming platform. Unlike other existing systems, GA allows
developers and researchers to explore their ideas on a real testbed and extend current
system. As defined previously, the response delay RD is the time between GA client
sending input events to GA server and the responding game scenes being displayed on
the player’s screen. Basically, the RD is composed of three components [21]:

• Processing delay (PD): it represents the time between when the server receives the
control events and sends the encoded frames to the client.

• Playout delay (OD): it is the time to decode and render the decoded frames on the
screen on the client side.

• Network delay (ND): it is the time required for a round trip data exchange between
the client and the server.

With the platform chosen, the next step was to choose a suitable game with which
to test/validate our approach. As outlined in the Literature Review, an FPS game was
most suited as these have the tightest lag constraints, i.e., are more sensitive to lag than
other game genres. For this reason, the game Assault Cube was chosen.

110 Z. Li et al.

4.2 Game Setup

To test the basic operation of the approach, a two-player set up was chosen. To ensure
that players are in the same game but have different game views, two instances of the
GA server are needed, one per player. This means that each player (client) has its own
server. One of these servers becomes the Master game server and the other a slave
server. For this reason, 4 computers were needed to setup the experimental environ-
ment. For a more scalable implementation, a VM approach is required to run all GA
servers as described later. Since all machines are in the same university lab and each of
them connects to the network via IEEE 802.3u Fast Ethernet 100 Mbps switched
network, network delays are minimal. Figure 6 shows the experimental environment.

4.3 Assault Cube Configuration

Assault Cube (AC) is an FPS game which is based on the CUBE engine and available
for free on Windows, Linux and OS X. It supports single player and multi-player game
mode. AC is launched in Server1 first, and this becomes the master/host for a
multi-player game scenario. AC is then launched in Server2, by selecting multi-player
mode and joining the game created by Server1 as a slave. Figure 6 illustrates the
connection between the two servers and also between the two GA clients/players and
their respective GA servers. As shown in Figs. 1 and 2, the actual data flow is bidi-
rectional. Once set up, each GA client sends its game actions to its server and receives
video feed from its own server.

Fig. 6. The experimental environment

Lag Compensation for First-Person Shooter Games in Cloud Gaming 111

4.4 Time Synchronization

Network Time Protocol (NTP) is designed to synchronise system time of computers
across IP networks to Universal Coordinated Time (UTC), achieving millisecond
(ms) level synch or better across well provisioned wired LANs and single ms level
synch across well configured WANs. In this experiment, NTP plays a key role in
synchronising time across the GA servers and GA clients. This then facilitates accurate
delay measurements as outlined in the next section. In our university LAN, the server
to client (s2c) delay and client to server (c2s) are minimal with RTT measured via the
ping utility of the order of a few ms or less. Due to NTP tolerances when running on
Windows platform and resulting clock offsets, the s2c and c2s delays occasionally are
determined as less than 0 or greater than the RTT.

For our testbed, Server1 was set as the reference clock (NTP server mode) with the
other GA server and both GA clients setup as NTP clients. With this configuration,
shown in Fig. 7, time offsets of around 1 ms were typical with occasional fluctuations.
Although the synchronisation performance of NTP on Windows platform is not as
good as on Unix type platforms, the levels of synchronization achieved (1–2 ms) are
sufficient for the case where we are looking at network delays of 100 ms and more.

Fig. 7. NTP setup

112 Z. Li et al.

4.5 Each Way Delay Measurement

The GA platform utilizes the Live555 Realtime Transport Protocol RTP library to
transport audio/video from server to client. RTP and its companion control protocol
RTCP are very widely used in VoIP conferencing software such as WebRTC and
Facebook, WhatsApp voice clients. For our purposes, the RTCP library source code
was modified to enable calculation of each way delay. By default, RTCP traffic, which
runs in parallel to the media RTP flows for both audio and video, enable the calculation
of Round Trip Delay, i.e., RTT minus residency time on remote host (described above
as Network Delay in [21]). By adding code to also return the local timestamp when the
RTCP receiver report packet is sent back, this facilitates the calculation of both
upstream and downstream delay for each stream, once NTP is correctly implemented.

4.6 Network Emulator

In a real Cloud Gaming environment, the players are often at different geographic
locations with different network latency, resulting in an unfair game for the player with
longer RD. In order to emulate this scenario and thus test the implementation of lag
equalization, Network Emulator for Windows Toolkit (NEWT) (available from https://
blogs.technet.microsoft.com/juanand/2010/03/05/standalone-network-emulator-tool/)
was used on the server side to emulate different network environments for both uplink
(c2s) and downlink (s2c) traffic for each player.

4.7 Centralized Log Server

Since multiple GA server instances are required – one per player, a centralized log
server is required to collect delay data in real-time from each GA server, perform QoE
analysis, and then transmit required up and downlink lag compensation delays back to
each corresponding GA server. The data sent from each server to the centralized log
server includes synchronization source SSRC, server to client (s2c) delay, client to
server (c2s) delay, IP address, and port number. Figure 8 illustrates the data generated
and gathered by each GA server into a char array, and sent to a centralized log server in
real-time.

Figure 9 illustrates the centralized log server within the whole architecture. Once it
receives data, it will compare s2c delay and c2s delay between different GA servers,
and determine what compensating delay to add on upstream (player control actions)
and downstream (video/audio) in real-time for each player.

UDP sockets are used instead of TCP sockets to minimize delay and maximize
responsiveness of system – it does not need any connection setup such as

Fig. 8. Data structure in GA server

Lag Compensation for First-Person Shooter Games in Cloud Gaming 113

https://blogs.technet.microsoft.com/juanand/2010/03/05/standalone-network-emulator-tool/
https://blogs.technet.microsoft.com/juanand/2010/03/05/standalone-network-emulator-tool/

three-way-handshake, and ignores lost packets which would otherwise incur more
delay when sending data. UDP sockets are thus an appealing choice for non-critical
delay-sensitive applications.

Since data contains characters and integers, we use an object array to store data
together. Figure 10 illustrates the data structure in centralized log server. Once the
centralized log server receives data from more than 1 player, it starts to do the analysis
and generates the table of data above. Firstly, from incoming data packets the cen-
tralized log server determines the player with the largest s2c delay for audio and video
respectively. Based on upstream delays for RTCP RR traffic, it calculates an average
(of video/audio) c2s delay also. As outlined earlier, the threshold of roundtrip delay for
FPS games is 100 ms. For this reason, we implement a threshold such that whenever
the round-trip delay is greater than 100 ms, the data for that player is not considered as

Fig. 9. Centralized log server

114 Z. Li et al.

it makes no sense to penalise every player with more than 100 ms round-trip time after
lag compensation.

As shown in Fig. 11, Client1 and Client2 have 30 ms and 50 ms round-trip time
respectively while client3 has 120 ms. Since the threshold is 100 ms, the centralized
log server will just do comparison of data for Client 1 and 2.

Fig. 10. Data structure in centralized log server

Fig. 11. Threshold network latency for FPS games

Lag Compensation for First-Person Shooter Games in Cloud Gaming 115

Once determined, the centralized log server sends recommended compensation
delay data back to each GA server based on IP address. The respective GA servers then
introduce these additional delays on upstream control traffic (player actions) and
downstream data (audio/video).

Figure 12 shows the full structure of testbed in this experiment and also outlines the
data flows as well as role of network emulator and lag compensation.

As shown above, we introduce emulated delays of 20 (10/10) and 40 (20/20) ms to
Client1 and Client2 respectively. This results in lag compensation of 10 ms on both up
and down link traffic for Client2 – shown in grey above so that c2s and s2c are equal
for both clients. Note that the delays shown here are symmetric, which is rarely the case
in reality. Further details on setting up the testbed and background work can be found
in [22].

Fig. 12. Full system architecture and data flows

116 Z. Li et al.

5 Results

In this section, we outline results that address both research objectives from Sect. 3.1.
We firstly present a range of results for the 2-player scenario in order to validate the
performance of the lag compensation mechanism. We present baseline delays with no
emulated delays to get a sense for delays as measured across the university LAN
network and the possible need for lag compensation to cope with inherent delay
asymmetries. We then outline a range of tests whereby we introduce both up and
downlink delays for different players using the network emulator and see how the lag
compensation mechanism performs. Moving to objective 2, we then present results of
preliminary subjective tests that exposed players to a range of delays with and without
lag compensation and captured the resulting QoE scores. The section concludes with a
discussion of ongoing and future work.

5.1 Baseline Results

Figure 13 shows the analysed data processed by the log server from the two
servers/players deployed across the LAN network environment with no artificial delays
added by the network emulator. Player 1 data is shown in the first 2 data rows, Data 1
for video and Data 2 for audio. Player 2 data is shown in the next 2 rows, Data 3 for
video and Data 4 for audio. As outlined above, the columns (left to right) show SSRC
(v for video and a for audio), s2c delay, delay added to downstream (s2c) traffic, c2s
delay, average c2s delay (of video and audio stream), delay added to upstream traffic
(c2s), IP address and 2 ports. The average c2s is calculated (from audio and video
RTCP traffic) and used to delay the uplink control traffic.

Fig. 13. Analysed data with no emulated delays

Lag Compensation for First-Person Shooter Games in Cloud Gaming 117

The output shows how the lag compensating mechanism is achieving the goal of
equalising the delays for both players. For example, Player 1 measured s2c delays are
7/5 ms for v/a respectively whereas Player 2 has 6/1 ms for v/a respectively. Therefore,
in order to equalise this, compensating delays for Player 2 s2c of 1/4 ms are added for
v/a so that totals for Player 2 are 7 (1 + 6) and 5 (4 +1) i.e. same as Player 1.

Moving to c2s delays, Player 1 has measured c2s delays of 4/4 ms for v/a
respectively whereas Player 2 has 6/6 ms for v/a respectively. Therefore, in order to
equalise this, Player 1 c2s added delays are 2 for v/a so that total for Player 1 is 6
(4 + 2) i.e. same as Player 2.

5.2 Emulated Delays

In order to fully test the lag compensation mechanism, we then added delays using the
NEWT emulator and monitored both how quickly these delays were picked up by the
mechanism and then how compensating delays were added to equalise delays for both
players. We firstly added 10 ms to both up and downlink delay for Player1/Client1 and
20 ms delay for up and downlink delay for Player2/Client2. As shown in Figs. 14 and
15, we use “ping” to validate performance of network emulator which returned aver-
ages of 19 and 39 ms.

Fig. 14. Validating network emulator in client1

Fig. 15. Validating network emulator in client2

118 Z. Li et al.

Figure 16 shows the analysed data for two players under these emulated network
environments. It can be seen that the actual delays as measured by modified RTCP code
are not 10/10 and 20/20 as implemented by the emulator. The delays are closer to those
seen above under zero emulated delays plus the emulated delays plus additional noise
caused by non-determinism in various application software and OS stack etc. This
results for example in s2c delays for Player 1 of 15/19 ms v/a, c2s delays of Player 1
15/12 v/a, and for Player 2, s2c v/a delays of 26/30 ms and c2s delays of 24/26 ms v/a.

Based on these results, GA server1 requires:

• additional delay of 11 ms on downstream s2c v/a stream so that Player 1 has a total
of 26 ms (15 + 11) for video and 30 (19 + 11) for audio – same as Player 2,

• additional delay of 12 ms on upstream so that totals are 25 ms – same as Player 2.

We then changed network latency to 30 ms (15 ms up/downstream) and 60 ms
(30 ms up/down stream) for Player 1 and 2 respectively. The results are shown in Fig. 17.

Fig. 16. Analysed data with different network environments

Fig. 17. Analyzed data after changed network latency

Lag Compensation for First-Person Shooter Games in Cloud Gaming 119

As above, the log server detects the changed network conditions and communicates
the appropriate changes to respective streams back to GA servers in order to equalise
delays.

Figure 18 shows the full set of emulated delays implemented for 6 different tests
and Fig. 19 illustrates the resulting analysed data.

Fig. 18. Emulated delays: Test Index 0–5

Fig. 19. Analysed data for tests (Index 0–5) with different network latency

120 Z. Li et al.

The data (left to right) has two additional columns outlining total s2c and c2s delays
(measured + compensation delays). The columns are:

• SSRC,
• s2c delay,
• delay added to downstream s2c,
• total s2c delay after lag equalization,
• c2s delay,
• avg c2s delay,
• delay added to downstream c2s,
• total c2s delay after lag equalization and
• IP address.

In each case, the mechanism is seen to work correctly by firstly detecting the impact
of the emulated delays (including noise) typically within one second and then imple-
menting lag compensation so that total c2s and s2c delays for player 1 and 2 are equal.

5.3 Preliminary Subjective Testing

Although the initial plan was to setup all GA servers in virtual machines for subjective
testing, some technical problems and limitations arose, and thus the tests were carried
out using separate servers. Since Assault Cube can supports a maximum of 5 players in
a LAN, we thus used 10 computers (5 as GA servers and 5 as GA clients) to run the
game. As shown in Fig. 20, a multiplayer game was created in Server1 and others
joined the game created by Server1. The GA connection between GA servers and GA
clients was then established. NTP was also configured in both GA servers and clients to
synchronise system time. Finally, the network emulator was used to introduce artificial
delay to implement different network environment.

Fig. 20. Testbed

Lag Compensation for First-Person Shooter Games in Cloud Gaming 121

Test Scenarios
10 people were divided into two groups (5/5) to perform the test. All of the participants
were postgraduate students and were familiar to varying degrees with gaming. As
shown in Fig. 21, each group (Player 1 - Player 5) firstly played the game without any
emulated network delay, thus providing a baseline for the tests. A series of delay
scenarios (10 in total - uplink/downlink in ms) were then introduced for each player
both with and without lag compensation with each scenario lasting 3 min. After each
scenario, players were given a small amount of time to fill out a questionnaire and
report the overall QoE and game fairness on a scale of 1–5. Both groups underwent the
same series of scenarios.

Test Results
The overall QoE in absence of lag equalization reported by participants is shown in
Fig. 22. Whilst the sample size is small, the bar chart clearly shows that the overall
QoE decreased with increasing delay which is in line with other studies on FPS games.
Figure 23 illustrates the perceived game fairness for different emulated delay scenarios
with and without lag compensation. Again, whilst preliminary and based on a small
sample size, the results clearly show that in absence of lag compensation, higher

Fig. 21. Test scenarios

122 Z. Li et al.

relative network latency results in lower game fairness. However, the game fairness
remains high once lag compensation is introduced. It is very interesting to note that
there was no decrease in QoE as emulated delays increased, presumably as all par-
ticipants were experiencing the same delays and values were less than the 100 ms
threshold that is reported as being the threshold for acceptability in FPS games.

More comprehensive and rigorous tests are planned to fully evaluate the effec-
tiveness of our approach. More detailed results from the above preliminary tests are
available in [22].

Fig. 22. Average overall QoE reported for different test scenarios. Delays portrayed on the x
axis indicate RTTs.

Fig. 23. Perceived game fairness

Lag Compensation for First-Person Shooter Games in Cloud Gaming 123

5.4 Next Step – Virtualization

The above tests were carried out using dedicated servers for each player GA instance.
In order to scale up the testbed, we plan to run all GA server instances using Virtual
Machines (VM). This will also help to eliminate some of the non-determinism seen
above in the results. This architecture is shown in Fig. 24, whereby each GA server
runs in a dedicated VM and sets up connections with each client.

6 Conclusions

In this chapter, we examine cloud gaming from the delay (lag) perspective, and in
particular the impact of lag on QoE of gamers. Cloud gaming is an emerging service,
which combines cloud computing and online gaming. It opens a promising direction
for the computer games industry but several challenges still remain to provide good
QoE for every player. We review the literature and then analyze certain QoS-related
key factors and characteristics, which influence the QoE for cloud gaming, especially
for so-called FPS games. The conclusion is that for FPS games, network latency
presents one of the most important QoE factors. In this context, we propose a lag
equalization strategy to level the playing field in the context of QoE and outline two
research objectives. The first objective is to examine the feasibility of implementing a
real-time lag compensation mechanism for cloud gaming. To meet this objective,

Fig. 24. Run GA server instances in a VM

124 Z. Li et al.

we implemented a cloud gaming system with both up and downlink lag compensation
based on the Gaming Anywhere platform, an open platform for researchers. The FPS
game Assault Cube was used to showcase the implementation. The mechanism uses a
modified version of the RTCP protocol along with NTP to ensure adequate time
synchronization to yield accurate each way delays. These are communicated to a
centralized monitoring service that then determines and communicates back to each
server the necessary up and downlink compensation delays. The lag compensation
approach was evaluated in an emulated environment whereby a series of tests were
carried out with differing uplink and downlink emulated delays to emulate differing
network conditions. The results validate the mechanism by successfully implementing
real-time delay equalization. To meet objective 2, we then carried out preliminary
subjective tests with a small group of participants. Results firstly confirmed the impact
of lag on QoE as detailed in the literature review and then validated our lag com-
pensation approach whereby the reported QoE remained high for high delay values
once equalization was implemented. Our future research will firstly optimize the
experimental cloud gaming environment by introducing virtual machines for scala-
bility. More comprehensive subjective QoE tests using the proposed lag compensation
approach will then be undertaken to more rigorously evaluate its effectiveness.

Acknowledgments. This work has been partially supported by the ICT COST Action IC1304 -
Autonomous Control for a Reliable Internet of Services (ACROSS), November 14, 2013–
November 13, 2017, funded by European Union.

Andrej Zgank’s work was partially funded by the Slovenian Research Agency (research core
funding No. P2-0069).

We would also like to acknowledge the technical support received by the core GA developer
Chun-Ying Huang.

References

1. Jackson, P.: Video Game Revenue Forecast: 2017–22 (2017). https://www.ovum.com/
research/video-game-revenue-forecast-2017-22/. Accessed 26 Apr 2017

2. Huang, C.Y., Chen, D.Y., Hsu, C.H., Chen, K.T.: GamingAnywhere: an open-source cloud
gaming testbed. In: Proceedings of the 2013 ACM Multimedia conference (Open Source
Software Competition Track), pp. 827–830. ACM, Barcelona (2013). http://dx.doi.org/10.
1145/2502081.2502222

3. Claypool, M., Finkel, D.: The effects of latency on player performance in cloud-based
games. In Proceedings of the 13th Annual Workshop on Network and Systems Support for
Games (NetGames), pp. 1–6. IEEE, Nagoya (2014). https://doi.org/10.1109/NetGames.
2014.7008964

4. Cai, W., Shea, R., Huang, C.Y., Chen, K.T., et al.: A survey on cloud gaming: future of
computer games. IEEE Access 4, 7605–7620 (2016). https://doi.org/10.1109/ACCESS.
2016.2590500

5. Wen, Z.-Y., Hsiao, H.-F.: QoE-driven performance analysis of cloud gaming services. In:
Proceedings of the 16th International Workshop on Multimedia Signal Processing (MMSP),
pp. 1–6. IEEE, Jakarta (2014). https://doi.org/10.1109/MMSP.2014.6958835

Lag Compensation for First-Person Shooter Games in Cloud Gaming 125

https://www.ovum.com/research/video-game-revenue-forecast-2017-22/
https://www.ovum.com/research/video-game-revenue-forecast-2017-22/
http://dx.doi.org/10.1145/2502081.2502222
http://dx.doi.org/10.1145/2502081.2502222
http://dx.doi.org/10.1109/NetGames.2014.7008964
http://dx.doi.org/10.1109/NetGames.2014.7008964
http://dx.doi.org/10.1109/ACCESS.2016.2590500
http://dx.doi.org/10.1109/ACCESS.2016.2590500
http://dx.doi.org/10.1109/MMSP.2014.6958835

6. Amiri, M., Al Osman, H., Shirmohammadi, S.: Datacenter traffic shaping for delay reduction
in cloud gaming. In: Proceedings of the International Symposium on Multimedia (ISM),
pp. 569–574. IEEE, San Jose (2016). https://doi.org/10.1109/ISM.2016.0124

7. Brun, J., Safaei, F., Boustead, P.: Fairness and playability in online multiplayer games. In:
Proceedings of the 3rd IEEE Consumer Communications and Networking Conference
(CCNC 2006), pp. 1199–1203. IEEE, Las Vegas (2006). https://doi.org/10.1109/CCNC.
2006.1593228

8. Zander, S., Armitage, G.: Empiricallymeasuring theQoS sensitivity of interactive online game
players. In: Proceedings of the Australian Telecommunications Networks and Applications
Conference (ATNAC 2004), pp. 511–518. ATNAC, Sydney (2004)

9. Zander, S., Leeder, I., Armitage, G.: Achieving fairness in multiplayer network games
through automated latency balancing. In; Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in Computer Entertainment Technology, pp. 117–
124. ACM, Valencia (2005). https://doi.org/10.1145/1178477.1178493

10. Jarschel, M., Schlosser, D., Scheuring, S., Hoßfeld, T.: Gaming in the clouds: QoE and the
users’ perspective. Math. Comput. Model. 57(11–12), 2883–2894 (2013). https://doi.org/10.
1016/j.mcm.2011.12.014

11. Möller, S., Pommer, D., Beyer, J., Rake-Revelant, J.: Factors influencing gaming QoE:
lessons learned from the evaluation of cloud gaming services. In: Proceedings of the 4th
International Workshop on Perceptual Quality of Systems (PQS), TU-Berlin, Vienna,
Austria, pp. 1–5 (2013)

12. Slivar, I., Skorin-Kapov, L., Suznjevic, M.: Cloud gaming QoE models for deriving video
encoding adaptation strategies. In: Proceedings of the 7th International Conference on
Multimedia Systems (MMSys 2016), pp. 18:1–18:12. ACM, Klagenfurt (2016). https://doi.
org/10.1145/2910017.2910602

13. Bernier, Y.W.: Latency compensating methods in client/server in-game protocol design and
optimization. In: Proceedings of the Game Developers Conference, vol. 98033, no.
425 (2001)

14. Slivar, I., Suznjevic, M., Skorin-Kapov, L., Matijasevic, M.: Empirical QoE study of
in-home streaming of online games. In: Proceedings of the 14th Annual Workshop on
Network and Systems Support for Games (NetGames), pp. 1–6. IEEE, Nagoya (2014)

15. Clincy, V., Wilgor, B.: Subjective evaluation of latency and packet loss in a cloud-based
game. In: Proceedings of the 10th International Conference on Information Technology:
New Generations (ITNG), pp. 473–476. IEEE, Las Vegas (2013). https://doi.org/10.1109/
ITNG.2013.79

16. Jarschel, M., Schlosser, D., Scheuring, S., Hoßfeld, T.: An evaluation of QoE in cloud
gaming based on subjective tests. In: Proceedings of the 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2011), pp. 330–
335. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/IMIS.
2011.92

17. Amiri, M., Malik, K.P.S., Al Osman, H., Shirmohammadi, S.: Game-aware resource
manager for home gateways. In: Proceedings of the International Symposium on Multimedia
(ISM), pp. 403–404. IEEE, San Jose (2016). https://doi.org/10.1109/ISM.2016.0091

18. Claypool, M., Claypool, K.: Latency and player actions in online games. Mag. Commun.
ACM 49(11), 40–45 (2006). https://doi.org/10.1145/1167838.1167860

19. Beyer, J., Varbelow, R., Antons, J.N., Zander, S.: A method for feedback delay measurement
using a low-cost arduino microcontroller: lesson learned: delay influenced by video bitrate
and game-level. In: Proceedings of the 7th International Workshop on Quality of Multimedia
Experience (QoMEX), pp. 1–2. IEEE, Pylos-Nestoras (2013). https://doi.org/10.1109/
QoMEX.2015.7148095

126 Z. Li et al.

http://dx.doi.org/10.1109/ISM.2016.0124
http://dx.doi.org/10.1109/CCNC.2006.1593228
http://dx.doi.org/10.1109/CCNC.2006.1593228
http://dx.doi.org/10.1145/1178477.1178493
http://dx.doi.org/10.1016/j.mcm.2011.12.014
http://dx.doi.org/10.1016/j.mcm.2011.12.014
http://dx.doi.org/10.1145/2910017.2910602
http://dx.doi.org/10.1145/2910017.2910602
http://dx.doi.org/10.1109/ITNG.2013.79
http://dx.doi.org/10.1109/ITNG.2013.79
http://dx.doi.org/10.1109/IMIS.2011.92
http://dx.doi.org/10.1109/IMIS.2011.92
http://dx.doi.org/10.1109/ISM.2016.0091
http://dx.doi.org/10.1145/1167838.1167860
http://dx.doi.org/10.1109/QoMEX.2015.7148095
http://dx.doi.org/10.1109/QoMEX.2015.7148095

20. Amiri, M., Osman, H.A., Shirmohammadi, S., Abdallah, M.: Toward delay-efficient
game-aware data centers for cloud gaming. ACM Trans. Multimedia Comput. Commun.
Appl. (TOMM) 12(5), 71/1–71/19 (2016). https://doi.org/10.1145/2983639

21. Huang, C.-Y., et al.: GamingAnywhere: the first open source cloud gaming system. ACM
Trans. Multimedia Comput. Commun. Appl. (TOMM) 10(1), 10/1–10/25 (2014). https://doi.
org/10.1145/2537855

22. Li, Z.: Time Aware Gaming – Levelling the playing field for everyone. In: MSc thesis,
National University of Ireland, Galway, Ireland, August 2017. Available on Request

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Lag Compensation for First-Person Shooter Games in Cloud Gaming 127

http://dx.doi.org/10.1145/2983639
http://dx.doi.org/10.1145/2537855
http://dx.doi.org/10.1145/2537855
http://creativecommons.org/licenses/by/4.0/

	Lag Compensation for First-Person Shooter Games in Cloud Gaming
	Abstract
	1 Introduction
	2 Literature Review
	3 Lag Compensation
	3.1 Research Objectives

	4 Implementation
	4.1 Infrastructure
	4.2 Game Setup
	4.3 Assault Cube Configuration
	4.4 Time Synchronization
	4.5 Each Way Delay Measurement
	4.6 Network Emulator
	4.7 Centralized Log Server

	5 Results
	5.1 Baseline Results
	5.2 Emulated Delays
	5.3 Preliminary Subjective Testing
	5.4 Next Step – Virtualization

	6 Conclusions
	Acknowledgments
	References

