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Supervisor’s Foreword

Understanding the complex properties of strongly correlated electron materials
has been an outstanding problem at the forefront of research in condensed matter
physics for nearly 40 years. It was stimulated by the discovery of the heavy
fermion superconductors and the quest for identifying the microscopic mechanism
responsible for the emergence of their unconventional superconducting phase. The
similarity of the heavy fermion’s phase diagram with that of subsequently discov-
ered unconventional superconductors, such as the cuprate (high-temperature) or
iron-based superconductors, has raised the question of a common, universal pairing
mechanism. In particular, the proximity of the unconventional superconducting
phase to antiferromagnetism in the phase diagram of all of these materials has
given rise to the hypothesis of a pairing mechanism mediated by the exchange
of antiferromagnetic fluctuations. For the heavy fermion materials, whose salient
feature is a lattice of magnetic moments that are either Kondo screened by
conduction electrons or ordered antiferromagnetically, this hypothesis has remained
unproven despite an impressive body of theoretical and experimental studies. A
major obstacle in verifying the hypothesis has been a lack of insight into the complex
electronic and magnetic structure of these materials.

The work by Dr. John Van Dyke described in this book represents a major
breakthrough in exploring and confirming this 30-year-old hypothesis for the heavy
fermion material CeCoIn5, considered to be a prototype material for the entire
class of heavy fermion compounds. Dr. Van Dyke demonstrated—making use of
recent groundbreaking quasiparticle interference (QPI) experiments by the group
of Prof. J.C. Seamus Davis (Cornell University)—that characteristic signatures in
the QPI spectrum of CeCoIn5 can be employed to extract not only the momentum
form of its superconducting order parameter—exposing its unconventional dx2-y2-
symmetry—but also the multi-band electronic structure crucial for the emergence
of superconductivity. However, to quantitatively identify the microscopic pairing
mechanism, a second crucial, and so far missing, element was necessary—the
form of the superconducting pairing interaction that was proposed to arise from
the antiferromagnetic coupling between the localized moments. Dr. Van Dyke
showed that the momentum structure of this interaction can be extracted from the
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viii Supervisor’s Foreword

experimental QPI data, allowing him to develop a quantitative microscopic theory
for the unconventional superconducting state in CeCoIn5. This work resulted in
seven predictions for this material’s striking physical properties: the symmetry
and momentum structure of the multi-band superconducting order parameter, the
critical temperature, the momentum and energy dependence of the QPI as well
as the phase-sensitive QPI spectrum, the temperature dependence of the spin-
lattice relaxation rate, the energy position of the magnetic resonance peak, as
well as the spatial form of the differential conductance around defects. The good
quantitative agreement of these theoretical results with experimental measurements
provided strong and direct evidence for the proposed mechanism underlying the
unconventional superconducting state in heavy fermion materials.

Extending his work to investigate the nonequilibrium properties of heavy fermion
materials, Dr. Van Dyke showed that the onset of Kondo screening and the ensuing
changes in the electronic structure of the material significantly alter the spatial paths
of currents flowing through heavy fermion systems. The considerable experimental
advances in imaging the spatial flow of currents over the last few years have
therefore opened a new venue for exploring the out-of-equilibrium signatures of
strong correlation effects.

In the last part of his thesis, Dr. Van Dyke investigated the nonequilibrium
charge transport in a new topological state of matter, the topological insulators
(TIs), which are characterized by an insulating bulk, and gapless edge or surface
modes. The topological nature of these materials renders their properties robust
against many forms of disorder, making them of great interest for a whole range
of technological applications in quantum computation and spin-based electronics.
A major hurdle in the realization of these applications has been the lack of ability
to independently create and control spin and charge currents at the nanoscale. Dr.
Van Dyke showed that this obstacle can be overcome and that such control can be
established by breaking the time-reversal symmetry of nanoscopic TIs via magnetic
defects. This symmetry breaking does not only enable one to create nearly 100%
spin-polarized charge currents, but it also allows for the design of novel spin diodes.
The flow of spin and charge in these diodes can be controlled at the nanoscale by
changing the gate and bias voltages, which provides the missing link in the use of
TIs for technological applications. These results open unprecedented opportunities
to employ nanoscale TIs for applications in spintronics and quantum information.

The study of topological and strongly correlated materials will continue to
fascinate physicists for years to come, and Dr. Van Dyke’s thesis provides a nice
introduction into these exciting fields of research.

Chicago, IL, USA Dirk Morr
October 2017
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