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Abstract. Over the last few years, there has been an almost exponen-
tial increase of the number of mobile applications that deal with sensi-
tive data, such as applications for e-commerce or health. When dealing
with sensitive data, classical authentication solutions based on username-
password pairs are not enough, and multi-factor authentication solutions
that combine two or more authentication elements of different categories
are required. Many different such solutions are available, but they usu-
ally cover the scenario of a user accessing web applications on their lap-
tops, whereas in this paper we focus on native mobile applications. This
changes the exploitable attack surface and thus requires a specific analy-
sis. In this paper, we present the design, the formal specification and the
security analysis of a solution that allows users to access different mobile
applications through a multi-factor authentication solution providing a
Single Sign-On experience. The formal and automated analysis that we
performed validates the security goals of the solution we propose.

1 Introduction

Context and Motivations. Over the last few years, there has been an almost
exponential increase of the number of mobile applications (or apps, for short)
that deal with sensitive data, ranging from apps for e-commerce, banking and
finance to apps for well-being and health. One of the main reasons behind such
a success is that mobile apps considerably increase the portability and efficiency
of online services. Banking apps allow users not only to check their account
balances but also to move money and pay bills or friends [1]. Mobile health
apps range from personal health records (PHR) to personal digital assistants
using connected devices such as smartwatches and other body-worn devices or
implants. As reported in [2], there are nowadays more than 100,000 mobile health
apps on the market, a number that is increasing on a weekly basis.

However, also the reports on security and privacy issues in mobile apps
are increasing on a weekly basis, bearing concrete witness to the fact that the
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management of sensitive data is often not properly taken into account by the
developers of the apps. For example, the studies performed by He et al. [3] on
free mobile health apps available on the Google Play store show that the major-
ity of these apps send sensitive data in clear text and store it on third party
servers that do not support the required confidentiality measures.

When dealing with sensitive data, classical authentication solutions based
on username-password pairs are not enough. The “General Data Protection
Regulation” [4] mandates that specific security measures must be implemented,
including multi-factor authentication, a strong(er) authentication solution that
combines two or more authentication elements of different categories (e.g.,
a password combined with a pin sent to a mobile device, or some biomet-
ric data). There are many alternative solutions on the market for providing
multi-factor authentication. Examples are FIDO (Fast IDentity Online, https://
fidoalliance.org), which enables mobile devices to act as U2F (Universal 2nd
Factor) authentication devices over Bluetooth or NFC, and Mobile Connect
(https://mobileconnect.io), which identifies users through their mobile phone
numbers.

In addition to the establishment of high-level security for authentication solu-
tions for mobile apps, it is essential to take the usability aspect into considera-
tion. Monitoring apps often require a daily or even hourly use, but understand-
ably users cannot be bothered by a long and complex authentication procedure
each time they want to read or update their data, especially on mobile devices
where the keyboard is small and sometimes uncomfortable to use. A better
usability can be provided by supporting a Single Sign-On (SSO) experience,
which allows users to access different, federated apps by performing a single
login carried out with a selected identity provider (e.g., Facebook or Google).
While the authentication session is valid, users can directly access all the apps
in the federation, without having to enter their credentials again and again.

Contributions. In this paper, we present the design, the formal specification and
the security analysis of a solution that allows users to access different mobile apps
through a multi-factor authentication solution providing a SSO experience.

We focus on multi-factor authentication solutions that use One Time Pass-
words (OTPs), which are passwords that are valid for a short time and can
only be used once. We have selected OTP-generation approaches as they are
commonly used to provide strong authentication and many alternative solu-
tions (from physical to software tools) are available on the market. For instance,
Google Authenticator is a mobile app that generates OTPs [5]. Like Google
Authenticator, many of the OTP-generation solutions on the market are appli-
cable only for web solutions and use mobile devices as an additional factor.

However, in the scenario considered in this paper, users are not accessing
web apps on their laptops or desktop computers, but instead they are accessing
native mobile apps. In relation to SSO and multi-factor authentication, web
and mobile environments and channels guarantee different security properties,
e.g., in web scenarios identity providers can authenticate service provider apps
using shared secrets, but this is not possible for native mobile apps that are
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unable to keep values secret. This changes the exploitable attack surface and
thus requires a specific analysis. To the best of our knowledge, the definition of
a multi-factor authentication solution for native apps is still not well specified.
Even if there are some solutions currently used, their security analyses have
been performed informally or semi-formally at best, and without following a
standardized formal procedure. This makes a comparison between the different
solutions both complex and potentially misleading.

For the security assumptions and the design of a native SSO solution, our
work is based on [6,7]. In this previous work, we presented a solution for native
SSO and performed a semi-formal security analysis. In this work, we extend
these studies by providing a multi-factor authentication solution and a formal
analysis of the identified security goals.

Summarizing, our contributions are four-fold as we have

1. designed a multi-factor authentication solution that uses OTPs as an authen-
ticator factor and provides a SSO experience for native apps;

2. provided a description of the proposed solution detailing the security and
trust assumptions;

3. formally defined the security goals of our multi-factor authentication solution;

4. formally analyzed our solution by modeling the flow, assumptions and goals
using a formal language (ASLan++) and model-checking the identified secu-
rity goals with the SATMC tool.

The results of our analysis show that our solution behaves as expected.

Organization. Section 2 provides background on strong authentication solutions
and SSO for native mobile apps, and on ASLan++ and SATMC. Section 3
describes the design of the proposed multi-factor authentication solution, dis-
cusses the peculiarities of a multi-factor authentication solution compared to a
basic username-password authentication, and identifies the corresponding secu-
rity assumptions and security goals. For concreteness, Sect. 4 describes our solu-
tion in the context of mHealth apps, and the solution is then formally analyzed
using SATMC. Section 5 discusses related work and Sect. 6 draws conclusions.

2 Background

This section provides the basic notions required to understand the proposed
design for a multi-factor authentication solution that supports a SSO experi-
ence and its security assessment. In Sect. 2.1, we describe the entities involved
in a multi-factor authentication and SSO solution, discuss the different OTP-
generation approaches, and identify the functional requirements of a native SSO
solution. In Sect. 2.2, we provide useful background for our formal analysis.

2.1 Multi-factor Authentication and Native SSO

The entities involved in a multi-factor native SSO solution are: a User (User)
that wants to access a native Service Provider app (SP¢); an Identity Provider
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server (IdPg) that manages the digital identities of the users and provides the
multi-factor process; a User Agent (UA), which could be a browser or a native
app used to perform the multi-factor process between the SP¢ and IdPg. Option-
ally, the SP¢ app could have a backend server (SPg).

A multi-factor authentication solution augments the security of the basic
username-password authentication by exploiting two or more authentication fac-
tors. In [8], it is defined as:

“a procedure based on the use of two or more of the following elements —
categorised as knowledge, ownership and inherence: i) something only the
user knows, e.g., static password, code, personal identification number; ii)
something only the user possesses, e.g., token, smart card, mobile phone;
iii) something the user is, e.g. biometric characteristic, such as a finger-
print. In addition, the elements selected must be mutually independent [. . .]
at least one of the elements should be non-reusable and non-replicable”.

The more factors are used during the authentication process, the more confidence
a service has that the user is correctly identified.

There are many multi-factor techniques on the market. In this paper, we
focus on a well-accepted solution that combines a PIN code (“something only
the user knows”) with the generation of an OTP using a software OTP generator
(“something only the user possesses”). When an OTP-generation approach is
used, a different password is generated for each authentication request and is
valid only once, providing a fresh authentication property. Thus, compromising
an old OTP does not have security consequences in the authentication process.

There exist many algorithms for generating OTPs and we can classify them
into three main OTP-generation approaches:

— Time synchronization: the OTP is generated starting from a shared secret
key (called seed) and the current time of the operation. IdPg must validate
this value: only OTPs that fall into a short temporal range are accepted.

— Lamport’s algorithm [9]: the first OTP is generated from a seed value and each
successor OTP value is based on the value of its predecessor. For example,
if s is a seed value and F(z) is a one-way function, we have the following
OTPs: 0y = 8,02 = F(01),03 = F(0g),...0, = F(0,—1). The last OTP, o,
is stored on IdPg. When a User wants to login, she sends o, _; to the server,
and the server applies the function F' and checks that the result corresponds
to the stored value. If the two values correspond, IdPg authenticates User
and updates the stored value with o,,_ ;. In the next login, User will use 0,,_2
and so on. After n logins, User has to change the seed value and calculate
new OTP values.

— Challenge/Response: in the execution of this approach, IdPg presents a “chal-
lenge” (e.g., a random number) and User answers with a valid “response”,
which is an OTP value calculated using a mathematical algorithm starting
from the challenge.
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Although our solution is parametric in the OTP-generation approach, in
Sect. 4, we will detail and analyze the time synchronization approach in the
context of a real-world scenario.

Native SSO protocols allow users to access multiple SP¢ apps through a sin-
gle authentication performed with an IdPg. As identified in [6], the two require-
ments that we expect for a native SSO solution are: (i) the IdP user credentials
can be used to gain access to several SPc apps—this implies that a User does not
need to have credentials with a SP¢ to access it; (i) if a User has already a login
session with an IdPg, then she can access new SP¢ apps without re-entering her
IdP credentials—only the User consent is required.

2.2 Formal Analysis: ASLan++ and SATMC

The use of formal languages and automatic tools for analyzing security protocols
has allowed researchers to uncover a large number of vulnerabilities in protocols
that had been thought to be, or even informally proved to be, secure. Famous
examples range from protocols such as the Needham-Schroeder Public Key pro-
tocol to Kerberos or TLS (see [10] for details). These examples underline how the
design of a protocol that requires specific security goals is not a simple task, as its
security depends on several assumptions on trust and communication channels
(e.g., the federation between the involved parties, and the transport protocol
used in the message exchange). Several formal languages have been developed,
all sharing the idea to extract from the protocol message flow a description of the
entities involved, the exchanged messages and the channel assumptions. Formal
protocol specifications are then given in input to automated tools that check the
desired security goals of the protocol against realistic threat models.

In this paper, we use ASLan++ [11], the input specification language of
the AVANTSSAR Platform [12]. ASLan++ is a high-level formal language that
formalizes the interactions between the different protocol roles, where a role
represents a sequence of operations (e.g., sending and receiving messages) that
must be executed by the entity that plays that role. ASLan++ supports the
specification of different channel assumptions and security goals, most notably
different variants of authentication and confidentiality. In our analysis, we use
SATMC [13], which is one of the model checkers of the AVANTSSAR platform.
SATMC uses state-of-the-art SAT Solvers and allows for the specification of
security goals written using the Linear Temporal Logic.

3 Description of Our mID(OTP) Solution

In this section, we present a mobile identity management solution that augments
the security of the native SSO solution proposed in [6] by adding a multi-factor
authentication based on the generation of OTPs. We called it mID(OTP) to
highlight the dual goal that our solution pursued: (i) to establish a multi-factor
authentication and (i) to manage identities for native mobile apps, e.g., provid-
ing a SSO service. As we will describe, mID(OTP) is parametric on the OTP
generation (i.e., it supports different OTP-generation approaches).
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In the mobile context, two possible design choices are available: a UA could be
played either by a browser (external or embedded in the SPo app) or by a native
app. In the design of mID(OTP), we have preferred the latter choice, as a native
app can be (easily) extended to support the generation of an authentication
factor (e.g., by adding the code for a OTP generator or a library to process the
user’s fingerprint). In addition, as the UA is involved in the authentication phase
with the IdPg, it must be trusted in knowing the user’s IdP credentials. Thus,
we assume that this native app, called IDOTP, is released directly by the IdPg.

mID(OTP) consists of three phases: registration, activation and exploitation,
which we describe in the following subsections.

3.1 Registration and Activation Phases of mID(OTP)

The registration phase of mID(OTP) is performed by the SP¢ developers and
corresponds to the exchange of some information about SP¢, such as the package
name and logo, together with its certificate fingerprint key_hash (i.e., the hash
of the certificate of the app). Note that key_hash depends on the private key
of the SP¢ developer and is thus different for apps by different developers. The
registration phase can be performed in different ways, e.g., entering the data into
an online dashboard or via an email exchange. As a trust relationship between
SPc and IdPg is established as result of the registration phase, it is important
that the IdPg validates the SP¢ data and in some cases (e.g., when user personal
or sensitive data are involved) a service-level agreement could be required as well.

The activation phase of mID(OTP) is performed by the User to configure the
native app IDOTP on her smartphone. In addition to the procedure described
in [6]—user login and release of a token (token_IdP) used (from here on) to iden-
tify the user session in place of the user credentials—at the end of the activation
phase the IDOTP is configured to generate OTPs, usually requiring the creation
of a PIN code for the future interactions.

Also the activation phase can be performed in different ways. As a multi-
factor authentication is configured during this phase, it is essential to provide
the User with an activation code—exchanged using a secure channel (e.g., after
an in-person identification)—that she has to enter during the process.

3.2 Exploitation Phase of mID(OTP)

The exploitation phase of mID(OTP), which is shown in Fig. 1, is performed
every time the User accesses a SP¢ that requires the multi-factor authentication
and SSO experience offered by IDOTP. In Step S1, User opens the SPc app
that sends a request to SPg including a session token token_sync (Step S2). SPg
checks the validity of token_sync. If token_sync has expired, SPg sends an error
message asking for a login to SP¢ (Step S3), otherwise Step S7 is executed. If
a login form is presented to User, she clicks the login button (Step Al) and
SP¢ sends a login request to IDOTP (Step A2). As a consequence, in Step A3
IDOTP reads the key_hash value of SPc and in Step A4 sends a request to
IdPg asking the SPs data. The received key_hash is used by IdPg to validate
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Fig. 1. Exploitation phase of mID(OTP).

the SP¢ identity. If SP¢ is valid, IdPg returns to IDOTP a consent containing
the meta-data of SP¢ (Step A5). In Step A6, User checks whether SP¢ is the
app that she wants to access and decides whether to give her consent or not. If
User agrees, the OTP is generated following one of the approaches described in
Sect. 2.1 (Step A7). Then, in Step A8, IDOTP sends a token request to IdPg
including the OTP value, key_hash and token_IdP, which corresponds to the user
credentials entered during the activation phase. IdPg checks the validity of OTP,
key_hash and token_IdP. If they are valid, a token (token_SP) for the SP app is
returned (Step A9). token_SP contains the identity of User, IdPg and SP, and is
digitally signed with delﬂs, the private key of IdPs. In Step A10, IDOTP returns
token_SP to SP¢ as result of Step A2. To finalize the authentication, SP¢
sends a token request to SPg with token_SP (Step S4). SPg checks the validity
of token_SP, and if it is valid, creates and sends to SP¢ a token token_sync
(Step S5). This token will be used by SPc to synchronize user data in the
future interactions, until its expiration. When SP¢ needs to synchronize data,
sends a request to the SPg including token_sync (Step S6), and SPg returns the
requested resource to SP¢ (Step S7).

We have labeled the steps with “S” and “A”. The S steps are related to the SP
(but note that our representation is only an example and each SP could support
different solutions). The A steps represent the steps related to the authentication
solution. As the S steps can vary depending on the choices of the SP developers,
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in our analysis, we will focus on the A steps. Compared to the protocol flow
proposed in [6], we have enhanced its security by adding the generation, exchange
and validation of OTPs. For example, the OTP extension protects mainly against
a stolen smartphone. Indeed, even if the user’s smartphone is stolen, the intruder
cannot login as the victim without generating the expected OTP.

3.3 Towards a Formal Specification of Multi-factor Authentication

We now discuss the peculiarities of a multi-factor authentication solution com-
pared to a basic username-password authentication; in doing so, we introduce
some concepts that will be the key for the formal analysis.

In a basic username-password authentication, the expected security goal is:

(G1,) SP authenticates User

Here, User is required to provide an authentication factor: either credentials
(something only she knows) or a session token (e.g., a cookie stored in her
browser) in order to properly complete the authentication process. If this is
the case, it is possible to specify a minimum set of security assumptions (e.g.,
on the behavior of User or on the communication channels) that are necessary
to guarantee G1,4. For example, if the channel used for the login is not https,
then an intruder can eavesdrop the User’s password and impersonate her in the
future. We call these assumptions strong assumptions (to distinguish them from
the weak assumptions that we define later).

A multi-factor authentication solution augments the security of the basic
username-password authentication by exploiting two or more authentication fac-
tors. By the definition given in Sect. 2.1, we infer that mID(OTP) is a two-factor
authentication solution using knowledge and ownership elements (factors). We
do not consider inherence factors. In addition, instead of considering the inde-
pendent factors, we introduce the concept of instance-factors.

We call instance-factor (IFactor) every specific instance of either an owner-
ship factor (IFactor,) or a knowledge factor (IFactory). The multi-factor authen-
tication solution mID(OTP) that we propose contains three instance-factors:

— the IFactor, token_IdP that is stored in IDOTP and in IdPg as a result of
the activation phase (used as a session token in place of the user credentials
to provide a SSO experience);

— another IFactory that can vary according to the specific OTP generator used,
e.g., a PIN known by the user (used to protect the OTP generator);

— an [Factor, that is stored in IDOTP (and possibly shared with IdPg), accord-
ing to the OTP-generator approach used (e.g., a seed value or a private key).

Note that the IFactor, token_IdP is present in all instances of our solution,
whereas the other two factors may differ depending on the specific solution (and
this is the reason why we cannot name them explicitly a priori).

Compared to classic notion of authentication factors, instance-factors can
have a dependency. For example, the two IFactor, are stored in IDOTP. Thus,
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by breaching the IDOTP app both of them are compromised. However, it is
important to note that different mitigations can be implemented for the differ-
ent instance-factors. For example, in our solution, if a User realizes that the
IDOTP has been compromised (e.g., if her smartphone has been stolen), she
can invalidate token_IdP, thus blocking possible attacks.

We are not aware of any formal definition of the multi-factor authentication
property apart from [14]. In [14] they analyzed a two-factor and two-channel
authentication solution that combines a classic single-factor solution with the
exchange of a second factor using the GSM/3G/4G communication infrastruc-
ture of the user’s mobile phone. By generalizing the definition in [14] by consid-
ering a solution involving n instance-factors, we can define the following security
goal:

(G1lpypa) Goal Gly (i.e., SP authenticates User) holds even if an intruder
knows up to n — 1 instance-factors.

Thus, the addition of instance-factors ensures some “redundancy”, meaning that
even if one of them is compromised there are no attacks.

We call weak assumption (wa) an assumption that, whenever it is not valid or
not implemented properly, causes the disclosure of a non-empty set of instance-
factors of the same type, i.e., either IFactor, or IFactory. We refer to this
set as the set of instance-factors associated with wa and denote it by writing
IF(wa).! For example, if a weak assumption wal states that the intruder can-
not read the values typed by User, and in the authentication process User has
to enter her password and PIN, then IF(wal) = {password, PIN}. This def-
inition can be easily extended to a set of weak assumptions WA’ as follows:
IF(WA") = U e, e war IF (wa;). We write WA to denote the set of all the weak

assumptions.

Defining Security Goals. The notions that we just introduced allow us to
rephrase the definition of the security goal G1,/p4 of a multi-factor authentica-
tion solution in the following way:

(G1ypra) Goal G114 holds under the strong assumptions and under chosen sub-
sets of weak assumptions (WA’) such that the set of instance fac-
tors associated to WA \ WA’ does not include all the instance-factors.
That is, |[IF(WA\ WA")| < n.

A main characteristic of mID(OTP) is the use of OTPs. In G1/p4, we con-
sidered (among others) the instance-factors linked to the OTP generation. In
addition, as reported in Sect.2, an OTP “should be non-reusable and non-
replicable.” Indeed, if the OTP is not fresh, then the knowledge of an OTP
leads to the same attacks possible when knowing the instance-factors linked to

1 To compromise all instance-factors, at least two weak assumptions must be not valid.
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its generation. Thus, it is crucial that the following security goal about the OTP
is satisfied:

(G2) The OTP must prove its origin (meaning that /dPg authenticates IDOTP,
as IDOTP is the only app that possesses a secret value shared with IdPg
or a private key), and it is non-reusable (i.e., IdPg accepts only one OTP
for a specific operation so as to avoid replay attacks).

3.4 Assumptions

Our solution is based on different security assumptions, which we have classified
as strong or weak assumptions.

Strong Assumptions. We have identified the following assumptions and
checked them to be strong assumptions (see Sect.4.5): Trust Assumption that
clarifies the trust relationships between the different entities, Communication
Assumptions that specify the concrete implementation of the communication
channels required in mID(OTP), and Activation Assumption that identifies the
assumptions related to the activation phase of mID(OTP).

Trust Assumption. mID(OTP) is based on the following trust relationship:

(TA) IdPg is trusted by SPc.

Communication Assumptions. Communications between the parties are subject
to the following assumptions:

(ComA1) The communication between SPc and IDOTP is carried over
an inter-app communication implemented using StartActivity
ForResult (). This Android method—which allows an app to open
another app and get a result back—guarantees that the SPo app
that sends a request to IDOTP at Step A2 in Fig. 1 is the same app
that receives the result back from IDOTP at Step A10.

(ComA2) To read the key_hash value (Step A3 of Fig.1), IDOTP
uses the Android method getPackageInfo(client packageName,
PackageManager. GET SIGNATURES), which extracts the informa-
tion about the certificate fingerprint included in the package of SP¢.

(ComA3) The communication between IDOTP and IdPg occurs over a unilat-
eral SSL or TLS channel (henceforth SSL/TLS), established through
the exchange of a valid certificate (from IdPg to IDOTP).

Note that even if these assumptions refer to a concrete implementation of the
communication channels, in Sect.4.3 we will provide the formal counterpart
abstracting away the implementation details. By doing so, any implementation
satisfying the abstract assumptions can be used in place of the implementation
mentioned above (e.g., considering a similar solution in the case of i0S), and
the results of our security analysis still hold. For example, the main reason to
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have ComAl is to avoid the eavesdropping of the identity assertion (token_SP)
by a malicious app, as in this way an intruder can use it to impersonate the
user on another smartphone. An alternative implementation of ComA1 could be
obtained by requiring SP¢o to insert a fresh value in the token request. In this
way, SPc will accept only the token_SP that includes the expected fresh value.
Regardless of the design choice, it is crucial that SP¢ (and SPg if it is involved)
only accepts tokens that are released for itself for a particular operation.

Activation Assumption. Phishing attacks (e.g., a malicious app that creates a
fake login form and steals the user’s credentials) are one of the most common
types of attack and usually are beyond the scope of an authentication protocol. In
our analysis, together with a secure communication, we assume that no phishing
is possible during the activation phase:

(ActivA) The activation phase is correctly performed by User. That is, User
downloads the correct IDOTP (it is not a fake app) and correctly
follows the process, and the communication channels used are secure.

Weak Assumptions. We have identified two categories for weak assump-
tions: Background Assumptions that specify the assumptions on the environ-
ment (user’s smartphone), and User Behavior Assumptions that specify which
user behaviors are allowed in our model.

Background Assumptions. The environment is subject to these assumptions:

(BA1) Integrity and confidentiality of data stored in the device.
(BA2) There is no surveillance software (e.g., keylogger) installed on the user’s
device capable of reading the values that User types.

User Behavior Assumptions. To enforce a correct execution of the flow and to
investigate the security consequences of a stolen smartphone, in our analysis we
take into account the following behavioral rules:

(UBA1) User enters her IFactory only in the correct IDOTP app being careful
not to be seen by other people.

(UBA2) User is the only person using the IDOTP app that stores the IFactor),
associated to her identity.

4 Formal Specification and Analysis of the mID(OTP)
Solution: The mHealth Use-Case

In this section, we describe how the semi-formal description of the mID(OTP)
solution can be translated into a formal model (in this case, specified in
ASLan++). mID(OTP) provides a general solution for several application con-
texts. Instead of presenting at first the general model and then the formalization
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of a use-case, for brevity and concreteness, here we describe directly the for-
malization of a real use-case scenario that involves mHealth (mobile health)
apps. All the concepts presented apply in general to every solution based on
mID(OTP) (apart from a trivial renaming of the entities). Only the steps and
instance-factors related to the particular OTP generator used are specific for
this use-case.

In Sect. 4.1, we describe the entities and the steps of the OTP-generator app-
roach for this use-case. In Sects. 4.2 and 4.3, we detail the mapping between the
assumptions and their formal specification. In Sect. 4.4, we give the formalization
of the security goals. In Sect. 4.5, we present the results of our security analysis.

4.1 Description of the TreC Scenario

TreC is an acronym for “Cartella Clinica del Cittadino”, i.e., “Citizens’ Clinical
Record”. TreC is a platform developed in the Trentino region (Italy) for man-
aging personal health records (PHRs).? In addition to the web platform, which
is routinely used by around 80,000 users, TreC is currently designing and imple-
menting a number of native Android applications to support self-management
and remote monitoring of chronic conditions. These applications are used in a
“living lab” by voluntary chronic patients according to their hospital physicians.
Examples are:

— “TreC-Lab: Diario Diabete”, a mobile diary that allows patients to record
health data, such as the blood glucose level and physical activity, and

— “TreC: Referti”, which permits patients to consult their personal health data
and medical prescriptions from the smartphone.

In the traditional web scenario, patients access services using their local health-
care system credentials (leveraging a SAML-based SSO [15] solution), but a
solution for native SSO was missing. The solution we have proposed will allow
patients to access different TreC e-health native mobile apps (and possibly other
third-party e-health apps) through a single authentication act. An implementa-
tion of the proposed model is currently being tested by TreC users.

In the following, we instantiate the entities described in Sect.3 with the
entities involved in TreC: Patient plays the role of User who wants to access
her PHR on her smartphone. ADC (“Autenticazione del Cittadino”) is the IdP
of the local health care system and plays the role of IdPs. OTP-PAT plays the
role of IDOTP and manages the generation of OTPs and the SSO experience
for the apps installed on the phone that are part of the federation. TreC¢ (TreC
client) plays the role of SPc and is one of the apps that are part of the ADC
federation and it is used by Patient to read her PHR. TreCs (TreC server) plays
the role of SPg and manages user health data.

Figure 2 shows the A-steps of the exploitation phase of mID(OTP) for this
use-case. Compared to Fig. 1, we have detailed the OTP generation box (steps
AT a—), and graphically shown the channel properties, which we will explain

2 More information is available at https://trec.trentinosalute.net,.
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Fig. 2. MSC of the exploitation phase of the TreC scenario.

in Sect.4.3. Given that TreCs is not involved in the A-steps, for the sake of
brevity, in the rest of the section we refer to TreCe simply with TreC. Steps A7
(a—c) model the behavior of a Time-OTP (TOTP) algorithm [16], which is a
time synchronization algorithm that generates OTPs as a function of the time
of the execution and a seed (i.e., a shared secret). In general, the TOTP algo-
rithm requires that “the prover and verifier must either share the same secret
or the knowledge of a secret transformation to generate a shared secret” [16],
without specifying when and how to exchange this secret. In the analyzed use-
case, OTP-PAT obtains the seed value as part of the activation phase, and then
stores it encrypted with the PIN code ({|seed|}_-PIN) selected by Patient. Thus,
the OTP generation box depicted in Fig. 1 is replaced here with a PIN request
(Steps A7.a), the entering of the PIN (Steps A7.b) and the generation of the
OTP as a function of the seed—extracted using the PIN as decryption key—and
of time (Steps A7.c).

The TreC scenario corresponds to a multi-factor authentication with 3
instance-factors: token_IdP and {|seed|}_PIN are IFactor,, and PIN is an
IFactory,.

In the rest of this section, we present the formalism that we have used to
specify this use-case, detailing the initial state and the behavior of the entities,
the channels and the security goals. We also describe how we have formalized
the assumptions presented in Sect. 3.4. In Table 1, we show each assumption and
the corresponding formal specification. In addition, we model what in Sect. 3.3 is
indicated as an assumption not valid or not implemented properly by removing
it from the formal model, as shown in the last column of Table 1.
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4.2 Formal Specification of the Initial State and of the Behavior
of Entities

Initial States. The initial state of a protocol defines the initial knowledge of
the intruder, who is indicated with the letter i, and of all the honest entities
that participate in the protocol session, where a protocol session is a particular
run of the protocol, played by specific entities, using specific instances of the
communication channels and optionally, additional parameters that must be
passed as initial knowledge to the different entities. To model the TA assumption,
as shown in Tablel, in our analysis we have not considered sessions with i
playing the role of OTP-PAT and ADC.

Regarding the registration phase, we have modeled the data provided by the
TreC' developer as initial knowledge of ADC. In general, after the registration
phase, IdPg creates two databases: trustedSPs, containing the relation between
the SP¢ identities and their key_hash values, and metadataDB, containing the
relation between the key_hash and the information (e.g., name and logo) pro-
vided by the SP developers. As shown in Table1 by the ActivA assumption,
we have modeled the data obtained as result of the activation phase (token_IdP
and data required for generating OTPs) as initial knowledge of User, IDOTP

Table 1. Mapping between assumptions (Asm(s) for short) and formal specification.

Asm Formal specification
Specification of Asm Removal of Asm

TA We do not consider sessions with i add sessions with i playing the role of
playing the role of ADC ADC

ComA1 | 1ink(T20,02T) ; delete 1ink (T20,02T) ;

ComA2 | authentic_on(T20,TreC); and DB delete authentic_on(T20,TreC);
Keyhash

ComA3 | confidential _to(02A,ADC); delete confidential_to(02A,ADC);
weakly_authentic(02A) ; weakly_authentic(024) ;
weakly_confidential (A20); weakly_confidential (A20);
authentic_on(A20,ADC); authentic_on(A20,ADC); 1ink(02A,A20);
1ink (02A,A20);

ActivA | Data obtained during the activation add iknows (pinUser);
phase are nonpublic values shared as | iknows(token_IDP);
parameters between Patient, iknows ({ | seed| }_pinUser); in general
OTP-PAT and ADC add all the iknows (I Flactor); obtained

during the activation phase

BA1 “Built-in”: i cannot read the internal |add iknows(token_IDP); and

state of the other entities iknows ({ |seed|}_pinUser); in general
add all the iknows (I Factory);

BA2 “Built-in”: i cannot read the internal |add iknows(pinUser); in general add all
state of the other entities the iknows (I Factory);

UBA1 | confidential_to(P20,0TP-PAT); delete confidential_to(P20,0TP-PAT);

UBA2 |authentic_on(P20,Patient); delete authentic_on(P20,Patient);
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and IdPg. In particular, for the use-case, as result of the activation phase:
a Patient knows her PIN value (pinUser), OTP-PAT knows token_IDP and
{|seed|}_pinUser, and ADC creates a DB (usersDB) with Patient, token_IDP
and seed as entry.

To specify that the intruder knows a message m, we use the ASLan++ pred-
icate iknows (m). As shown in Table 1 for ActivA, BA1 and BA2, the removal of
an assumption (which we will do to consider different scenarios of the analysis)
boils down to adding some iknows facts to the initial knowledge of the intruder.

Behavior of Entities. The behavior of the honest entities is specified by the
evolution of the system, which consists of a sequence of operations performed
by each role. For simplicity, Fig.3 shows the evolution of the protocol using a
process view, which describes the messages exchanged in Fig. 2 for each entity
as a set of actions (e.g., receive or send a message and DB access). This formal
representation can be translated into various role-based formal languages and
input to different state-of-the-art security protocol analyzers. In our analysis, we
use ASLan++ and SATMC (see [11] for more details on language and tool).

The translation of the process view into ASLan++ is quite straightfor-
ward. The complete ASLan++ specification can be found at https://st.fbk.eu/
publications/POST-2018. Here, for lack of space, we provide only an example
by considering Steps 1 and 2 of Fig. 2, which involve the entities Patient, TreC
and OTP-PAT. Focusing on TreC, this exchange of messages in ASLan++ cor-
responds to

Patient -Ch_P2T-> Actor: Request; % Step 1
Actor -Ch_T20-> OTP-PAT: Actor; % Step 2

where Actor is the keyword used in ASLan++ to represent the entity taken into
consideration, in our example TreC'.

In our analysis, we have considered the behavior of a Dolev-Yao intruder [17],
who can overhear and modify messages using his initial knowledge and the knowl-
edge obtained from the traffic—this behavior is built-in in the SATMC tool. An
operation that is not allowed to i is the reading of the internal state of another
entity, where an internal state is a list of expressions known by the corresponding
entity. Thus, as highlighted in Table1, BA1 and BA2 are built-in in the tool.

4.3 Formal Specification of Channels

For a detailed definition of the properties of channels between two protocol
entities A and B we point the reader to [18,19]. In a nutshell, consider a message
M sent on a channel A2B from A to B. A2B is authentic if B can rely on the fact
that only A could have sent M. A2B is confidential if A can rely on the fact that
only B can receive M. A2B is weakly authentic if the channel input is exclusively
accessible to a single, but yet unknown, sender, and A2B is weakly confidential if
the channel output is exclusively accessible to a single, yet unknown, receiver. A
link between two channels A2B and B2A means that the entity sending messages
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Legend:

P, T, 0, and A stands for Patient, TreC, OTP-PAT, and ADC respectively, and P2T, P20, O2P,
02T, 02A, T20, A20 are their unidirectional channels.

Ch! M means that message M is sent over channel Ch.

Ch?M means that a message, says M, is received over channel Ch and a variable X is set to M.

e MI.M?2 is the concatenation of messages M1 and M2.

check(X,Y,...,Z) in DB means that (X,Y,...,Z) must be in DB, otherwise the protocol stops.

e M _inv (pk (ADC)) means that message M is digitally signed with the private key of ADC.

Fig. 3. Protocol view.

over the A2B is the same entity that receives messages from B2A. We have
represented these properties graphically in Fig.2 as follows: A e— B, A o—
B, A —e B, A —o B mean authentic, weak authentic, confidential and weak
confidential channel, respectively; moreover, we indicate a link property between
two channels with the same trace for the corresponding arrows.

As shown in Table 1, we have modeled as channel properties the tree commu-
nication assumptions (ComA1l, ComA2 and ComA3) and the two user behavior
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assumptions (UBA1 and UBA2). The modeling of these assumption is far from
a trivial mapping and requires an explanation.

ComA1 is related to the inter-app communication in the mobile. The property
expected by the StartActivityForResult method can be modeled by a link
property between the two channels used in the mobile: the app that has sent a
request is the same app that will receive the result.

ComA3 is modeled with five channel properties (see Table 1) that all together
model a TLS/SSL unilateral channel.

Regarding ComA2, we have modeled an Android method, which extracts the
key_hash value included in the package of an app, using an authentic channel
(used by TreC to send its identity to OTP-PAT) and a DB containing the
relations between the SP¢ identities and their key_hash, used by OTP-PAT
to read the correct key_hash value. This is due to the fact that this method—
executed by the Android OS—guarantees the authenticity of its output.

We have modeled UBA1 and UBAZ2 as properties of the channel from Patient
to OTP-PAT (P20). UBAL is necessary to prevent leakage of the PIN—entered
in a malicious app or watched by an intruder during the typing—thus, we have
modeled P20 as a confidential channel. UBA2 guarantees the possession of the
OTP-PAT app installed in the user’s smartphone. Having this assumption, only
the valid Patient can communicate with that particular installation of OTP-
PAT, thus we have modeled P20 as an authentic channel.

4.4 Formal Specification of Security Goals

As described in Sect. 3.3, we have defined G174 in terms of a traditional authen-
tication goal and the strong and weak assumptions. This means that, in the
formal model, we consider the traditional authentication goal G1 4 and we check
whether it holds under the strong assumptions and different (sub)sets of weak-
assumptions. The property must hold if the intruder is not able to compromise all
the instance-factors. G1 4 requires that a message is transmitted in an authenti-
cated and fresh manner, thus allowing TreC' to authenticate Patient and offering
replay-protection at the same time. For the definition of authentication we refer
to [20]: whenever the entity B completes a run of the protocol apparently with
the entity A, then A has previously been running the protocol apparently with
B, and the two entities agree on a message M. In ASLan++, this corresponds
to specifying the goal

(Gl4) SP_authn U on Request: () Patient *->> TreC,

where *->> indicates authenticity, directedness (i.e., the only (honest) receiver
of a message is the intended one [11]) and freshness. In addition, following the
definition in [20], associated goal labels are used to specify which values of M the
goal is referring to, namely, the Request value in State 1 of the Patient process
(in Fig.3) and the corresponding value in the last state of the TreC process
(State 3 in Fig. 3).
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Similarly, the OTP properties are checked by means of the goal
(G2) IDP_authn UA_on OTP: (.) OTP-PAT *->> ADC';

with the associated goal labels specifying for M the values otp_generation
(Seed,Time) in States 3 of both the OTP-PAT and the ADC processes in Fig. 3,
where we have modeled Seed as a constant value shared between OTP-PAT and
ADC, and Time as a session parameter (cf. [16]) shared between OTP-PAT and
ADC. Thus, ADC will accept only one OTP value for each session, enforcing
the property (informally described in Sect.3.3) that OTP is non-reusable.

4.5 Results of the Security Analysis

We are now ready to discuss the results of the security assessment that we
have performed on the mHealth use-case. Our focus is determining whether the
concurrent execution of a finite number of protocol sessions enjoys the expected
security goals in spite of the intruder. To this aim, we have mechanically analyzed
the formal model of our use-case using SATMC, a state-of-the-art model checker
for security protocols. SATMC carries out an iterative deepening strategy on
k. Initially k is set to 0, and then it is incremented till an attack is found (if
any) or kme is reached. If this is the case, no attack traces of length up to
kmae exist, where the length of the trace is computed by taking into account
the parallel execution of non-conflicting actions (actions executed in parallel are
considered as a single step). The trace includes the actions performed by attacker
and honest participants, where most of the actions of the attacker are executed
in parallel (and counted as a single step) with the ones of honest participants.
We set kjqp to 1.5 times the length of the longest trace of the protocol when
only honest entities participate. As a rule of thumb, with this choice we are
reasonably confident that no attack is possible with greater values of k4. In
our analysis, the length of the longest trace of the protocol when only honest
entities participate is 19, and thus we have set k... = 30. We have considered
several scenarios including (at most) three parallel sessions in which the intruder
either does not play any role or plays the role of SP¢ (the TreC app in the use-
case). In each session, we used different instances of the channels. The complete
set of specifications can be found at the companion website.

In Sect. 3.4, in relation to the security goal Glyra (and consequently to
G1l4), we have described a list of strong and weak assumptions that we have

Table 2. Analyses performed for G14.

Analysis | Strong Asm(s) | Weak Asm(s) Atk
1 all —1 all Yes
2 all all —1 No

3 all all -m (1<m<4) | *
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added to the model to constrain the intruder’s abilities. Table 2 summarizes the
security analyses that we have performed to check this goal.

Regarding the strong assumptions (TA, ComAl, ComA2, ComA3 and
ActivA), we have performed the following analyses:

Analysis 1

: We have checked that by removing only one of the five strong

assumptions from the model we have a violation of G14 (i.e., there
is an attack). For this analysis, we have thus performed 5 execu-
tions of SATMC removing one strong assumption at a time. To
provide an example of an attack, Fig.4 shows the attack trace
deriving from removing ComA2. In this attack, i can impersonate
trec simply because the channel used to exchange its identity is
not authentic; thus, i can pretend to be another app. Note that,
for the sake of clarity, this figure (and, similarly, the other figures
shown in this section) represents only the significant steps of the
attack traces found by the SATMC tool.?

Regarding the weak assumptions (BA1, BA2, UBA1, and UBA2), we have per-
formed the following analyses that are detailed in Table 3:

Analysis 2

Analysis 3

{adc.patient.trec} inv(pk(adc))

[«

i (otppat)

: We have checked that by removing only one of the four weak

assumptions from the model, SATMC does not find any attack
on the solution (i.e., the intruder is not able to impersonate the
user). Indeed, as shown in Table3, by removing only one weak
assumption, the intruder obtains only 1 or 2 instance-factors.

: We have checked that by removing specific subsets of weak assump-

tions it is possible to compromise all the instance-factors, causing
a violation of G14. In Table2, the star (*) denotes that the result

:otppat] :patient |:trec | :adc ‘
request?2 —_—
keyhash 5
e ——t-metadata |
—pinRequest—»
¢ pinUser

otp generatfion (seedotp, n(Cffime_1)) .trec.kpyhash.token fdp

{adc.paftient.trec} inv|(pk(adc))

A

{adc.patient.trec} inv (pk(adc))

Fig. 4. Attack trace without the strong assumption ComA2.

3 The original charts can be examined on the companion website https://st.fbk.eu/
publications/POST-2018.
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Table 3. Results for G14 (Analyses 2 and 3).

Removed weak Asm(s) | Compromised factors Atk
PIN | {seed}.PIN | token_IdP
BA1 X v v No
BA2 v X X No
UBA1 v X X No
UBA2 X v v No
(UBA1V BA2) ABAL v | v Yes
(UBA1V BA2) AUBA2 |v |v v Yes

can be “yes” or “no” depending on the chosen subset of weak
assumptions. The subsets shown in Table 3 violate G14 and result
in different attack traces. Figure 5 shows the attack trace deriving
from removing UBA1 and UBA2 (e.g., a proximity intruder that
watches the PIN entered by Patient and then steals the smart-
phone). In the attack, i initiates a session of the protocol with
trec pretending to be patient (indicated as i(patient)). By
entering the PIN code (pinUser) when requested by otppat, i
is able to impersonate the patient and obtaining the requested
resource (resourcesl). Figure6 shows the attack trace deriving
from removing both BA1 and BA2 (e.g., a hacker that steals the
PIN typed by Patient using a keylogger and reads token_IdP and
{|seed|}_PIN exploiting a malware installed on the smartphone).
In this case, i is able to generate an OTP and sends a token request
to adc.

ti | | ttrec |:patient :otppat adc
i(patient)
requestl__> trec_ |
—
———keyhash
—
11patm‘_\ ‘ patlent<_<'/_metadata
I pinUser— |
—_—
—
otp generation(seedotp,n(CTime 1)) .trec.keyhash.token idp
{adc.patient.trec} inv(pk(adc))
«—

{adc.patient.trec} inv(pk(adc))

Fig. 5. Attack trace obtained removing UBA1 and UBA2.
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|:adc| |:trec|

i(otppat)

otp generation(seedotp,n(CTime 1)) .trec.keyhash.token idp
——
{adc.patient.trec} inv(pk(adc))

requestl

.
otppat<€—

{adc.patient.trec} inv(pk(adc)

Fig. 6. Attack trace obtained removing BA1 and BA2.

As expected, when checking the solution w.r.t. the security goal G2—which
embodies the OTP properties—under all the (weak and strong) assumptions,
SATMC does not find any attack.

5 Related Work

OAuth 2.0 [21] and OpenID Connect [22] have been designed for light-RESTful
API services, and are considered the de-facto standards for managing authenti-
cation and authorization. These protocols are well-accepted in the web scenario,
but they provide only partial support for mobile apps (frequent use of the expres-
sion “out of scope”). This could lead to the implementation of insecure solutions.
An in-depth analysis of OAuth in the mobile environment—underlining possible
security problems and vulnerabilities—is available in [23,24].

Given the lack of specifications, the OAuth Working Group has released in
2017 a best practice with the title “OAuth 2.0 for Native Apps” [25]. The spec-
ification of [25] has two main differences with respect to our solution: the choice
of UA (browser vs native app) and the activation phase. The authors of [25] do
not described any security issues in using native apps as UA; they discourage
this because of the overhead on users to install a dedicated app. Nevertheless,
in some scenarios, we consider this to be an advantage rather than a drawback
because it allows for easily integrating new security mechanisms (e.g., access
control and a wider range of MFA solutions). Concerning the activation phase of
our solution, it allows for better mitigation of phishing as users directly interact
with our app. Instead, [25] requires a redirection from a (possible malicious)
SP¢ to a browser, thus users can be cheated by a fake browser invoked by SP¢.
We want to underline that, as described in [7], our solution is not designed from
scratch but on top of Facebook; and the formalization that we have presented
in this work can be easily extended to also analyze the OAuth solution of [25].

Much research has been carried out to discover vulnerabilities in different
implementations of OAuth 2.0 and OpenID Connect in web and mobile scenar-
ios. For instance, Sun et al. [26] analyzed hundreds of OAuth apps focusing on
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classical web attacks such as Cross-Site Scripting (XSS) and Cross-Site Request
Forgery (CSRF). Other studies, such as [27,28], analyzed the implementations
of multi-party web apps via browser-related messages. In the context of mobile
apps, a similar work is described in [29], where Yang et al. discovered an incor-
rect use of OAuth that permits an intruder to login as a victim without the
victim’s awareness. To evaluate the impact of this attack, they have shown that
more than 40% of 600 top-ranked apps were vulnerable.

Although these techniques are useful for the analysis of a specific implemen-
tation (as they are able to discover serious security flaws), it is important to
perform a comprehensive security analysis of the standard itself. In the context
of web apps, Fett et al. [30] performed a formal analysis of the OAuth protocol
using an expressive web model (defined in [31]) that describes the interaction
between browsers and servers in a real-world set-up. This formal analysis revealed
two unknown attacks on OAuth that violate the authorization and authentica-
tion properties. A similar analysis is performed for OpenID Connect in [32]. Two
other examples of formalizations of OAuth are [33], where the different OAuth
flows are modeled in the Applied Pi calculus and verified using ProVerif extended
with WebSpi (a library that models web users, apps and intruders), and [34],
where OAuth is modeled in Alloy.

In our analysis (cf. Sect.4) we used ASLan++ and SATMC. In the past,
SATMC has revealed severe security flaws in the SAML 2.0 protocol [15] and in
the variant implemented by Google [18]; by exploiting these flaws a dishonest
service provider could impersonate a user at another service provider. Moreover,
Yan et al. [35] used ASLan++ and SATMC to analyze four security properties
of OAuth: confidentiality, authentication, authorization, and consistency.

The aforementioned formal analyses, however, focus on the web app scenario,
whereas in this paper we deal with native apps. In [36], Ye et al. used Proverif
to analyze the security of a SSO implementation for Android. They applied
their approach to the implementation of the Facebook Login and identified a
vulnerability that exploits super user (SU) permissions. In contrast, our analysis
assumes that the user smartphone cannot be rooted. Indeed, if a malicious app
is able to obtain a SU permission, then it can set for itself the permission to
access all the data stored in the smartphone, compromising all the user data
and the tokens of the other apps installed on the rooted smartphone.

YubiKey NEO [37] is one of the most attractive mobile identity management
products on the market. It is a token device that supports OTPs and the FIDO
Alliance Universal 2nd Factor (U2F) protocol, and, by integrating an NFC (Near
Field Communication) technology, it can be used to provide a second-factor
also in the mobile context. Compared to this product, our solution provides a
multi-factor authentication solution for native mobile apps without requiring an
additional device.

6 Conclusions

We have presented the design of mID(OTP), a multi-factor authentication solu-
tion for native mobile apps that includes an OTP exchange and provides a
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SSO experience. In addition to the protocol flow, we have detailed the security
assumptions and defined two security goals: Gl related to a multi-factor
authentication solution and G2 that identifies the properties of a OTP. To per-
form a security analysis of mID(OTP), we have detailed the OTP-generation
approach in the context of a real use-case scenario (TreC). We have formally
modeled the flow, assumptions and goals of TreC using a formal language
(ASLan++) and checked the identified security goals using a model-checker
(SATMC).

The solution we have presented, as well as the formal specification and anal-
ysis that we have given, can be generalized quite straightforwardly to other
use-cases, which we are currently doing. As future work, we also plan to extend
the analysis to other authentication factors, such as biometric traits. In addition,
we started exploring an alternative formalization of multi-factor authentication
protocols that decomposes the protocol and models the authentication property
as a composition of two goals: one related to basic authentication (involving
User, UA, SPc and IdPg) and one related only to the generation and valida-
tion of the OTP (without involving SP¢). In this way, a proper separation is
kept between the multi-factor authentication performed with IdPg and the basic
authentication plus SSO experience offered to SP¢. As a preliminary analysis,
we can affirm that the two different definitions of goals lead to similar attack
traces.
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