Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

  • 611 Accesses

Abstract

The importance and demand for relatively cheap and available skin-replacement products encouraged many research groups worldwide to focus on creating biomaterials for skin substitution [1]. Engineered tissues that not only close wounds, but also stimulate the regeneration of the dermis, would provide a significant benefit in human wound healing [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maver T, Maver U, Kleinschek KS, Raščan IM, Smrke DM. Advanced therapies of skin injuries. Wiener Klinische Wochenschrift. 2015:1–12.

    Google Scholar 

  2. Serra R, Rizzuto A, Rossi A, Perri P, Barbetta A, Abdalla K, et al. Skin grafting for the treatment of chronic leg ulcers—a systematic review in evidence-based medicine. Int Wound J. 2016.

    Google Scholar 

  3. Mohd Hilmi AB, Halim AS. Vital roles of stem cells and biomaterials in skin tissue engineering. World J Stem Cells. 2015;7(2):428–36.

    Article  Google Scholar 

  4. Huang S, Xiaobing F. Tissue-engineered skin: bottleneck or breakthrough. Int J Burns and Trauma. 2011;1(1):10.

    Google Scholar 

  5. Boyce ST. Fabrication, quality assurance, and assessment of cultured skin substitutes for treatment of skin wounds. Biochem Eng J. 2004;20(2–3):107–12.

    Article  CAS  Google Scholar 

  6. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58.

    Article  CAS  Google Scholar 

  7. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng: C. 2017;78(Supplement C):1246–62.

    Article  CAS  Google Scholar 

  8. Sabolinski ML, Alvarez O, Auletta M, Mulder G, Parenteau NL. Cultured skin as a ‘smart material’ for healing wounds: experience in venous ulcers. Biomaterials. 1996;17(3):311–20.

    Article  CAS  Google Scholar 

  9. O’ceallaigh S, Herrick SE, Bluff JE, McGrouther DA, Ferguson MW. Quantification of total and perfused blood vessels in murine skin autografts using a fluorescent double-labeling technique. Plast Reconstr Surg. 2006;117(1):140–51.

    Google Scholar 

  10. Hachiya A, Sriwiriyanont P, Kaiho E, Kitahara T, Takema Y, Tsuboi R. An in vivo mouse model of human skin substitute containing spontaneously sorted melanocytes demonstrates physiological changes after UVB irradiation. J Gen Intern Med. 2005;20(5):364–72.

    Google Scholar 

  11. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2009;rsif20090403.

    Google Scholar 

  12. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF®) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair and Regeneration. 1999;7(4):201–7.

    Article  CAS  Google Scholar 

  13. Otto W, Nanchahal J, Lu Q-L, Boddy N, Dover R. Survival of allogeneic cells in cultured organotypic skin grafts. Plast Reconstr Surg. 1995;96(1):166–76.

    Article  CAS  Google Scholar 

  14. Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstre Surg Glob Open. 2015;3(1).

    Article  Google Scholar 

  15. Supp DM, Boyce ST. Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J Burn Care & Res. 2002;23(1):10–20.

    Article  Google Scholar 

  16. Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.

    Article  CAS  Google Scholar 

  17. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22.

    Article  Google Scholar 

  18. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919–26.

    Article  Google Scholar 

  19. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  Google Scholar 

  20. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  Google Scholar 

  21. Wei Y, Hu H, Wang H, Wu Y, Deng L, Qi J. Cartilage regeneration of adipose-derived stem cells in a hybrid scaffold from fibrin-modified PLGA. Cell Transplant. 2009;18(2):159–70.

    Article  Google Scholar 

  22. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  CAS  Google Scholar 

  23. Strong AL, Neumeister MW, Levi B. Stem Cells and tissue engineering: regeneration of the skin and its contents. Clin Plast Surg. 2017;44(3):635–50.

    Article  Google Scholar 

  24. Tabor AJ, Kellar RS, Lancaster JJ, Goldman S, McAllister TN, L’Heureux N. Cardiovascular tissue engineering. In: Ducheyne P, editor. Comprehensive biomaterials II. Oxford: Elsevier; 2017. p. 236–55.

    Chapter  Google Scholar 

  25. Naves LB, Almeida L, Rajamani L. Nanofiber composites in skin tissue engineering. In: Ramalingam M, Ramakrishna S, editors. Nanofiber composites for biomedical applications. Woodhead Publishing; 2017. p. 275–300.

    Chapter  Google Scholar 

  26. Stergar J, Maver U. Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol. 2016:1–15.

    Google Scholar 

  27. Bhardwaj N, Chouhan D, Mandal BB. 3D functional scaffolds for skin tissue engineering. In: Deng Y, Kuiper J, editors. Functional 3D tissue engineering scaffolds. Woodhead Publishing; 2018. p. 345–65.

    Chapter  Google Scholar 

  28. Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater. 2003;67B(2):675–9.

    Article  CAS  Google Scholar 

  29. Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Controlled Release. 2010;142(2):149–59.

    Article  CAS  Google Scholar 

  30. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.

    Article  CAS  Google Scholar 

  31. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–9.

    Article  CAS  Google Scholar 

  32. VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res, Part A. 2002;59(3):585–90.

    Article  CAS  Google Scholar 

  33. Malyala SK, YRK, C.S.P.Rao. Organ printing with life cells: a review. Mater Today: Proc. 2017;4:1074–83.

    Article  Google Scholar 

  34. Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci. 2015;15(2):153–82.

    Article  CAS  Google Scholar 

  35. Kim TG, Shin H, Lim DW. Biomimetic scaffolds for tissue engineering. Adv Func Mater. 2012;22(12):2446–68.

    Article  CAS  Google Scholar 

  36. Liao J, Shi K, Ding Q, Qu Y, Luo F, Qian Z. Recent developments in scaffold-guided cartilage tissue regeneration. J Biomed Nanotechnol. 2014;10(10):3085–104.

    Article  CAS  Google Scholar 

  37. Tanaka Y, Yamaoka H, Nishizawa S, Nagata S, Ogasawara T, Asawa Y, et al. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials. 2010;31(16):4506–16.

    Article  CAS  Google Scholar 

  38. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55(2):141–50.

    Article  CAS  Google Scholar 

  39. Ge Z, Li C, Heng BC, Cao G, Yang Z. Functional biomaterials for cartilage regeneration. J Biomed Mater Res, Part A. 2012;100(9):2526–36.

    Google Scholar 

  40. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.

    Article  CAS  Google Scholar 

  41. Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater. 2012;3(4):799–838.

    Article  CAS  Google Scholar 

  42. Jeong CG, Hollister SJ. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials. 2010;31(15):4304–12.

    Article  CAS  Google Scholar 

  43. Lee NK, Oh HJ, Hong CM, Suh H, Hong SH. Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol Bioprocess Eng. 2009;14(2):180–6.

    Article  CAS  Google Scholar 

  44. Liao J, Qu Y, Chu B, Zhang X, Qian Z. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep. 2015;5.

    Google Scholar 

  45. Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, et al. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep. 2014;4:4457.

    Article  Google Scholar 

  46. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–6.

    Article  CAS  Google Scholar 

  47. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, et al. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials. 1997;18(11):769–76.

    Article  CAS  Google Scholar 

  48. Serrano MC, Chung EJ, Ameer GA. Advances and applications of biodegradable elastomers in regenerative medicine. Adv Func Mater. 2010;20(2):192–208.

    Article  CAS  Google Scholar 

  49. Talukdar S, Nguyen QT, Chen AC, Sah RL, Kundu SC. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials. 2011;32(34):8927–37.

    Article  CAS  Google Scholar 

  50. Naranda J, Susec M, Maver U, Gradisnik L, Gorenjak M, Vukasovic A, et al. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci Rep. 2016;6:28695.

    Article  CAS  Google Scholar 

  51. Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57(Supplement C):1–25.

    Article  CAS  Google Scholar 

  52. Vyas C, Poologasundarampillai G, Hoyland J, Bartolo P. 3D printing of biocomposites for osteochondral tissue engineering. In: Ambrosio L, editor. Biomedical composites (2nd ed.). Woodhead Publishing; 2017. p. 261–302.

    Chapter  Google Scholar 

  53. Rana D, Ratheesh G, Ramakrishna S, Ramalingam M. Nanofiber composites in cartilage tissue engineering. In: Ramalingam M, Ramakrishna S, editors. Nanofiber composites for biomedical applications. Woodhead Publishing; 2017. p. 325–44.

    Chapter  Google Scholar 

  54. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng: C. 2017.

    Google Scholar 

  55. Aliakbarshirazi S, Talebian A. Electrospun gelatin nanofibrous scaffolds for cartilage tissue engineering. Mater Today: Proc. 2017;4(7, Part 1):7059–64.

    Article  Google Scholar 

  56. Wang C, Hou W, Guo X, Li J, Hu T, Qiu M, et al. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng: C. 2017;79(Supplement C):507–15.

    Article  CAS  Google Scholar 

  57. Agheb M, Dinari M, Rafienia M, Salehi H. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. Mater Sci Eng: C. 2017;71(Supplement C):240–51.

    Article  CAS  Google Scholar 

  58. Cao L, Zhang F, Wang Q, Wu X. Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater Sci Eng: C. 2017;79(Supplement C):697–701.

    Article  CAS  Google Scholar 

  59. Han M-E, Kim S-H, Kim HD, Yim H-G, Bencherif SA, Kim T-I, et al. Extracellular matrix-based cryogels for cartilage tissue engineering. Int J Biol Macromol. 2016;93(Part B):1410–9.

    Article  CAS  Google Scholar 

  60. Han M-E, Kang BJ, Kim S-H, Kim HD, Hwang NS. Gelatin-based extracellular matrix cryogels for cartilage tissue engineering. J Ind Eng Chem. 2017;45(Supplement C):421–9.

    Article  CAS  Google Scholar 

  61. Division UNP. World population prospects: The 2015 revision, key findings and advance tables; 2015. 1–60 p.

    Google Scholar 

  62. Union OE. Health at a glance: Europe. OECD Publishing; 2014.

    Google Scholar 

  63. Arcos D, Boccaccini AR, Bohner M, Díez-Pérez A, Epple M, Gómez-Barrena E, et al. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater. 2014;10(5):1793–805.

    Article  CAS  Google Scholar 

  64. Finsgar M, Uzunalic AP, Stergar J, Gradisnik L, Maver U. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci Rep. 2016;6:26653.

    Article  CAS  Google Scholar 

  65. Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104(Part B):1372–82.

    Article  CAS  Google Scholar 

  66. Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, et al. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater. 2017.

    Google Scholar 

  67. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng: C. 2015;47(Supplement C):237–47.

    Article  CAS  Google Scholar 

  68. Lim J, You M, Li J, Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng: C. 2017;79(Supplement C):917–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Maver .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maver, T., Maver, U., Pivec, T., Kurečič, M., Persin, Z., Stana Kleinschek, K. (2018). Tissue Engineering Products. In: Bioactive Polysaccharide Materials for Modern Wound Healing. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-89608-3_6

Download citation

Publish with us

Policies and ethics