Skip to main content

Cryopreservation of Hybrid Pinus elliottii × P. caribaea

  • Chapter
  • First Online:
Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants

Abstract

The cryopreservation of embryogenic cultures within operational forestry proves to be a crucial tool, to store clones without loss of juvenility, while field tests, to identify genotypes with significant genetic gain, are being conducted. Besides several conifers species have been cryopreserved till now, only few studies have been reported for hybrid species. The interspecific pine hybrid, P. elliottii var. elliottii x P. caribaea var. hondurensis has a major economic importance mainly in South America, West Africa and Australia. The hybrid superiority appears to be derived from a complementary recombination of traits from the two parental species–growth rate and high yield of resin production from P. caribaea var. hondurensis, combined with wind-firmness, adaptability to wet sites, high wood-density and stem straightness of P. elliottii var. elliottii. This chapter describes a complete cryopreservation procedure for embryonal mass of the hybrid P.elliottii var. elliottii x P. caribaea var. hondurensis, and a methodology to analyse the ploidy stability by flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

ABA :

Abscisic acid

BAP :

6-benzylaminopurine

DMSO :

Dimethyl sulfoxide

ECL:

Embryogenic cell line

EM:

Embryonal mass

mLV:

Modified Litvay’s medium

MVF:

Multi-varietal forestry

mLV:

Modified Litvay medium

PEG:

Polyethylene glycol

Pi:

Propidium iodide

PGR:

Plant growth regulators

SE:

Somatic embryogenesis

PEE:

Pinus elliottii var. elliottii

PCH:

Pinus caribaea var. hondurensis

References

  • Cappa EP, Marcó M, Garth Nikles D, Last IS (2013) Performance of Pinus elliottii, Pinus caribaea, their F1, F2 and backcross hybrids and Pinus taeda to 10 years in the Mesopotamia Region, Argentina. New For 44(2):197–218

    Article  Google Scholar 

  • Dieters M, Brawner J (2007) Productivity of Pinus elliottii, P. caribaea and Their F1 and F2 hybrids to 15 years in Queensland, Australia. Ann For Sci 64(7):691–698

    Article  Google Scholar 

  • Doležel J, Bartoš JAN (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95(1):99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85(4):625–631

    Article  Google Scholar 

  • Gauchat M, Rodríguez G, Belaber E, Bischoff D (2005) Pinus elliottii var. elliottii × P. caribaea var. honduresnsis. Hîbridos de Alta Productividad Combinando Crecimiento Y Forma. IDIA XXI Forestales 8:162–164

    Google Scholar 

  • Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell, Tissue Organ Cult 54(1):45–53

    Article  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25(1):3–22

    Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43(2–3):179–188

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in Conifer somatic embryogenesis since year 2000. Methods in Mol Biol (Clifton, NJ) 1359:131–166

    Google Scholar 

  • Klimaszewska K, Park Y-S, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol—Plant 37(3):392–399

    Article  Google Scholar 

  • Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek Fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Latutrie M, Aronen T (2013) Long-term cryopreservation of embryogenic Pinus sylvestris cultures. Scand J For Res 28(2):103–109

    Article  Google Scholar 

  • Lelu-Walter M-A, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier C, Trontin J-F (2016) Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: bottlenecks and recent advances. In: Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Cham, pp 319–365

    Chapter  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of a Loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4(6):325–328

    Article  CAS  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100(4):875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Montero M, Harding K (2015) Cryobionomics: evaluating the concept in plant cryopreservation. In: Barh D, Khan MS, Davies E (eds) PlantOmics: the Omics of plant science. Springer India, New Delhi, pp 655–682

    Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62(11):3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in arabidopsis. Nature 411(6834):212–214

    Article  CAS  PubMed  Google Scholar 

  • Nikles D (2000) Experience with some pinus hybrids in Queensland, Australia. In: Dungey H, Dieters M, Nikles D (eds.) Proceedings of QFRI/CRC-SPF symposium: hybrid breeding and genetics of forest trees, held 2000 at Noosa, Queensland, Australia. Department of Primary Industries, Brisbane, pp 27–43

    Google Scholar 

  • Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Dias MC, Santos C (2017a) Plant regeneration from ploidy-stable cryopreserved embryogenic lines of the hybrid Pinus elliottii × P. caribaea. Ind Crops Prod 105:215–224

    Article  CAS  Google Scholar 

  • Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Sousa D, Mano N, Figueiredo J, Dias MC, Santos C (2017b) Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants. Plant Cell, Tissue and Organ Cult (PCTOC) 132:71–84

    Article  CAS  Google Scholar 

  • Ozudogru EA, Lambardi M (2016) Cryotechniques for the long-term conservation of embryogenic cultures from woody plants. Methods in Mol Biol (Clifton, NJ) 1359:537–550

    Google Scholar 

  • Park Y-S, Beauliau J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga J, Moon H (eds) Vegetative propagation of forest trees, held 2016 at Seoul, South Korea. National Institute of Forest Science (NIFoS), pp 302–322

    Google Scholar 

  • Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol—Plant 34(3):231–239

    Article  Google Scholar 

  • Peredo EL, Arroyo-García R, Reed BM, Revilla MÁ (2008) Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). Cryobiology 57(3):234–241

    Article  CAS  PubMed  Google Scholar 

  • Roux J, Eisenberg B, Kanzler A, Nel A, Coetzee V, Kietzka E, Wingfield MJ (2007) Testing of selected South African Pinus hybrids and families for tolerance to the pitch canker pathogen, Fusarium circinatum. New For 33(2):109–123

    Google Scholar 

  • Salaj T, Matušíková I, Fráterová L, Piršelová B, Salaj J (2011) Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. Plant Cell, Tissue and Organ Cult (PCTOC) 106(1):55–61

    Article  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis Vinifera L.). BMC Plant Biol 8(1):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenone, R.A. and Pezzutti, R. V. (2003) ‘Productividad de Progenies de Pinus elliottii × Pinus caribaea var. hondurensis’. In: XII Congreso Forestal Mundial, held 2003 at Quebéc City, Canada, 1

    Google Scholar 

  • Shepherd M, Cross M, Dieters M, Henry R (2002) Branch architecture QTL for Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis Hybrids. Ann For Sci 59(5–6):617–625

    Google Scholar 

  • Shepherd M, Cross M, Dieters M, Toon P, Harding K, Nikles D, Henry R, Haines R (1999) Genetic mapping of wood properties in Pinus elliottii var. elliottii × P. Caribaea var. hondurensis hybrids. In: Proceedings of the 25th Biennial Southern forest tree improvement conference

    Google Scholar 

  • Slee MU (1970) Crossability values within the Slash-caribbean pinus species complex. Euphytica 19(2):184–189

    Article  Google Scholar 

  • Trueman SJ (2006) Clonal propagation and storage of subtropical pines in Queensland, Australia. South African For J 208(1):49–52

    Google Scholar 

  • van der Sijde HA, Roelofsen JW (2010) The potential of pine hybrids in South Africa. South African For J 136(1):5–14; 1986

    Google Scholar 

Download references

Acknowledgements

This research was suported by CENTRO-07-0202-FEDER-018579- “I & D em tecnologias e técnicas de clonagem ‘in vitro’, micropropagação e clonagem de plantas e genótipos”, co-funded by QREN, “Programa Mais Centro-Operacional Regional do Centro”, EU through European Regional Development Fund (FEDER), and FCT/MEC and FEDER, PT2020 Partnership Agreement & COMPETE 2020; POCI/01/0145/FEDER/007265, UID/QUI/50006/2013, UID/BIA/04004/2013, UID/QUI/00062/2013. F.C.T. funded M.C. Dias fellowship SFRH/BPD/100865/2014. Authors thank to Eng. Cláudio Pinheiro from Brazilian company Resisul for the supply of seeds and to Klon’s technicians D. Sousa, J. Figueiredo and N. Mano for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Marum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marum, L. et al. (2018). Cryopreservation of Hybrid Pinus elliottii × P. caribaea. In: Jain, S., Gupta, P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-89483-6_21

Download citation

Publish with us

Policies and ethics