Skip to main content

New Procedure to Construct an Anisotropic Elastic FE-Model Based on Swine Femoral Bones Using Numerical Modeling

  • Chapter
  • First Online:
Engineering Design Applications

Abstract

This work presents a new procedure to determine the density of bone tissue from collected data by means of computed axial tomography (CAT) and bone density correlations of cancellous and cortical tissue with their elastic properties which were obtained from structure reconstruction software to determine the apparent density of bone. The main objective is to determine the anisotropic elastic properties in swine femoral bones on two orthogonal directions to produce a most real behavior of bone FE-model. A TC Brilliance axial scanner (tomograph) was used to obtain the desired images, which were then processed in the Digital Imaging and Communication in Medicine format using different software packages, including Scan IPTM, Scan FE v3.1TM, and ANSYS vl2 TM. Five Duroc-Jersey type swine femur specimens were used for the analysis. These specimens are considered to be equivalent to human specimens of 50 to 55 years of age, since they have been used for eighteen months in experimental processes. The experimental procedure included the processing of 60 tomographic cuts, which allowed the determination of the zone where the density maximum and minimum values of the bone tissue seem to be located. The results obtained displayed the anisotropic elastic behavior for each bone specimen within a voxel unit of precision. The findings of this study could allow a significant advance in the development of customized endo-prostheses by determining the elastic properties of the bone and developing more accurate FE-models. This will contribute to the improvement of the performance of artificial implants as well as to increasing the service life of these prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)

    Article  Google Scholar 

  2. Herrera, A.: Densitometric and finite-element analysis of bone remodeling further to implantation of an uncemented anatomical femoral stem. Revista Ortopedica Traumatologia 52, 269–282 (2008)

    Article  Google Scholar 

  3. Hofer, M.: Manual Práctico de TC. Introducción a la TC. Ed. Médica Panamericana, Buenos Aires, Arg (2008)

    Google Scholar 

  4. Weaver, J., Chalmers, J.: Cancellous bone: its strength and changes with aging and evaluation of some methods for measuring its mineral content. J. Biomech. 8, 363–367 (1966)

    Google Scholar 

  5. Carter, D., Hayes, C.: The compression behavior of bone as a two-phase of porous structure. J. Bone Joint Surg. 59a, 954–962 (1977)

    Google Scholar 

  6. Hvid, I.: Trabecular bone strength patterns at the proximal tibial epiphisy. J. Orthop. 3, 462–472 (1985)

    Google Scholar 

  7. Levasseur, A., Ploeg, H.L., Petit, Y.: Comparison of the influences of structural characteristics on bulk mechanical behavior: experimental study using a bone surrogate. Med. Biol. Eng. Comput. 50, 61–67 (2012)

    Article  Google Scholar 

  8. Rajapakse, Ch.S., Magland, J.F., Wald, M.J., Liu, X.S., Zhang, X.H., Guo,X.E.: Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 47, 556–563 (2010)

    Article  Google Scholar 

  9. Sansalone, V., Naili, S., Bousson, V., Bergot, C., Peyrin, F., Zarka, J.: Determination of heterogeneous anisotropic elastic properties of human femoral bone: from nano-scopic to organ scale. J. Biomech. 43, 1857–1863 (2010)

    Article  Google Scholar 

  10. Mc Donnell, P., Harrison, N., Lohfeld, S., Kennedy, O., Zhang, Y., Mc Hugh, P.E.: Investigation of the mechanical interaction of the trabecular core with an external shell using rapid prototype and finite element models. J. Mech. Behav. Biomed. Mater. 3, 63–76 (2010)

    Article  Google Scholar 

  11. Hamed, E., Lee, Y., Jasiuk, I.: Multiscale modeling of elastic properties of cortical bone. Acta Mech. 213, 131–154 (2010)

    Article  Google Scholar 

  12. Hambli, R.: Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation. Finite Elem. Anal. Des. 47, 835–842 (2011)

    Article  Google Scholar 

  13. Wirtz, D., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., Forst, R.: Critical evaluation of known bone material properties to realize anisotropic FE simulation of the proximal femur. J. Biomech. 33, 1325–1330 (2000)

    Article  Google Scholar 

  14. Lee, Y., Seon, J., Shin, V., Kim, G., Jeon, M.: Anatomical evaluation of CT-MRI combined femoral model. Biomed. Eng. Online 7, 6 (2008)

    Article  Google Scholar 

  15. Torres, E.: Desarrollo de un maniquí virtual tipo vóxel a partir de imágenes en formato DICOM. Superficies y Vacío 23, 90–93 (2010)

    Google Scholar 

  16. Mauren, A., Tania, M., Helio, P.: Integrando reconstrucción 3D de imágenes tomográficas y prototipado rápido para la fabricación de modelos médicos. Revista Brasileira de Engenharia Biomédica 19, 103–115 (2003)

    Google Scholar 

  17. Beltrán, J., Hernández, L., Urriolagoitia-Calderón, G., González, A., Urriolagoitia-Sosa, G.: Biomechanics and numerical evaluation of cervical porcine models considering compressive loads using 2-D classic computer tomography CT, 3-D scanner and 3-D computed tomography. Appl. Mech. Mater. 24, 287–295 (2010)

    Article  Google Scholar 

  18. Hernández, L., Beltrán, J., Urriolagoitia-Calderón, G., González, A., Galán, M., Urriolagoitia-Sosa, G.: Biomechanical characterization of a cervical corporectomy using porcine specimens, following an experimental approach. Key Eng. Mater. 478, 103–111 (2011)

    Article  Google Scholar 

  19. Taylor, R., Roland, E., Ploeg, H., Hertixg, D., Klabunde, R., Warner, M.: Determination of orthotropic bone elastic constants using FEA and modal analysis. J. Biomech. 35(6), 767–773 (2002)

    Article  Google Scholar 

  20. Buroni, F.: Determinación de las constantes elásticas anisótropas del tejido óseo utilizando tomografías computadas. Aplicación a la construcción de modelos de elementos finitos. Mecánica Computacional XXIII, 1–24 (2004)

    Google Scholar 

Download references

Acknowledgements

Authors thank the support provided by the Instituto Politécnico Nacional, Consejo Nacional de Ciencia y Tecnología (CONACyT) and Hospital 1° de Octubre from the ISSSTE for the accomplishment of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Rodríguez-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Martínez, R., Miguel, C.R.TS., Urriolagoitia-Sosa, G., Romero-Ángeles, B., Urriolagoitia-Calderón, G. (2019). New Procedure to Construct an Anisotropic Elastic FE-Model Based on Swine Femoral Bones Using Numerical Modeling. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications. Advanced Structured Materials, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-79005-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79005-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79004-6

  • Online ISBN: 978-3-319-79005-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics