Skip to main content

Nanomaterials/Nanocomposites for Osteochondral Tissue

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Abstract

For many years, the avascular nature of cartilage tissue has posed a clinical challenge for replacement, repair, and reconstruction of damaged cartilage within the human body. Injuries to cartilage and osteochondral tissues can be due to osteoarthritis, sports, aggressive cancers, and repetitive stresses and inflammation on wearing tissue. Due to its limited capacity for regeneration or repair, there is a need for suitable material systems which can recapitulate the function of the native osteochondral tissue physically, mechanically, histologically, and biologically. Tissue engineering (TE) approaches take advantage of principles of biomedical engineering, clinical medicine, and cell biology to formulate, functionalize, and apply biomaterial scaffolds to aid in the regeneration and repair of tissues. Nanomaterial science has introduced new methods for improving and fortifying TE scaffolds, and lies on the forefront of cutting-edge TE strategies. These nanomaterials enable unique properties directly correlated to their sub-micron dimensionality including structural and cellular advantages. Examples include electrospun nanofibers and emulsion nanoparticles which provide nanoscale features for biomaterials, more closely replicating the 3D extracellular matrix, providing better cell adhesion, integration, interaction, and signaling. This chapter aims to provide a detailed overview of osteochondral regeneration and repair using TE strategies with a focus on nanomaterials and nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu H, Liu H (2016) Nanocomposites for musculoskeletal tissue regeneration (Woodhead Publishing Series in Biomaterials). Elsevier Science & Technology, p. 406

    Google Scholar 

  2. Roshan J, Cato LT (2014) Musculoskeletal regenerative engineering: biomaterials, structures, and small molecules. Hindawi Publishing Corporation. p. 12

    Google Scholar 

  3. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80

    Article  CAS  Google Scholar 

  4. Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Therap Adv Musculoskeletal Dis 4:269–285

    Article  CAS  Google Scholar 

  5. Gloria A, De Santis R, Ambrosio L (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8:57–67

    CAS  PubMed  Google Scholar 

  6. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of Chondrogenesis. J Cell Biochem 97:11

    Article  Google Scholar 

  7. Carter DR, BeauprÈ GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ. The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427, pp. 69–77, 2004

    Article  Google Scholar 

  8. Cheung H-Y, Lau K-T, Lu T-P, Hui D (2006) A critical review on polymer-based bio-engineered materials for scaffold development. 38: 291–300

    Google Scholar 

  9. Wood AM, Brock TM, Heil K, Holmes R, Weusten A (2013) A review on the management of hip and knee osteoarthritis. Int J Chronic Dis. 2013(845015): 10

    Google Scholar 

  10. Castro NJ, Patel R, Zhang LG (2015) Design of a novel 3D printed bioactive nanocomposite scaffold for improved osteochondral regeneration. Cell Mol Bioeng 8(3):416–432

    Article  CAS  Google Scholar 

  11. Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther. 2016; 7(1): 56

    Google Scholar 

  12. Duarte Campos DF, Drescher W, Rath B, Tingart M, Fischer H (Jul 2012) Supporting biomaterials for articular cartilage repair. Cartilage 3(3):205–221

    Article  Google Scholar 

  13. Chen WC, Yao CL, Wei YH, Chu IM (2011) Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology 63(1):13–23

    Article  Google Scholar 

  14. Steinwachs M (2009) New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy 25(2):208–211

    Article  Google Scholar 

  15. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5(6):1956–1965

    Article  CAS  Google Scholar 

  16. Hao T et al (2010) The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthr Cartil 18(2):257–265

    Article  CAS  Google Scholar 

  17. Manfredini M, Zerbinati F, Gildone A, Faccini R (2007) Autologous chondrocyte implantation: a comparison between an open periosteal-covered and an arthroscopic matrix-guided technique. Acta Orthop Belg 73(2):207–218

    PubMed  Google Scholar 

  18. Kim MK, Choi SW, Kim SR, Oh IS, Won MH (2010) autologous chondrocyte implantation in the knee using fibrin. Knee Surg Sports Traumatol Arthrosc 18(4):528–534

    Article  Google Scholar 

  19. Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (Aug 2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925

    Article  CAS  Google Scholar 

  20. Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Engl. 11(9–10):1297–1231

    Article  CAS  Google Scholar 

  21. Uematsu K et al (Jul 2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26(20):4273–4279

    Article  CAS  Google Scholar 

  22. Zwingmann J, Mehlhorn AT, Südkamp N, Stark B, Dauner M, Schmal H (Sep 2007) Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng 13(9):2335–2343

    Article  CAS  Google Scholar 

  23. Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bulletin 32(4):354–358

    Article  CAS  Google Scholar 

  24. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bulletin 32(4):314–322

    Article  CAS  Google Scholar 

  25. Pan Y, Xiong D, Gao F (2008) Viscoelastic behavior of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel biocomposites as an articular cartilage. J Mater Sci Mater Med 19(5):1963–1969

    Article  CAS  Google Scholar 

  26. Balasundaram G, Storey DM, Webster TJ (2014) Novel nano-rough polymers for cartilage tissue engineering. Int J Nanomedicine 9:1845–1853

    PubMed  PubMed Central  Google Scholar 

  27. Lia W-J et al (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):10

    Google Scholar 

  28. Francioli SE et al (2007) Tissue Engine 13:7

    Google Scholar 

  29. Rosa RG, Joazeiro PP, Bianco J, Kunz M, Weber JF, Waldman SD (2014) Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs. PLoS One 9:e105170

    Article  Google Scholar 

  30. Schurman DJ, Smith RL (2004) Osteoarthritis: current treatment and future prospects for surgical, medical, and biologic intervention. PHD Clin Orthop Relat Res. 247:6

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge funding support from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (award number: R01EB020640), the Connecticut Regenerative Medicine Research Fund (grant Number: 15-RMB-UCHC-08) in support of this work. Ohan S. Manoukian acknowledges the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1747453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangamesh G. Kumbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manoukian, O.S., Dieck, C., Milne, T., Dealy, C.N., Rudraiah, S., Kumbar, S.G. (2018). Nanomaterials/Nanocomposites for Osteochondral Tissue. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-319-76711-6_4

Download citation

Publish with us

Policies and ethics