Skip to main content

Bioprotection of Soybean Plants from Drought Stress by Application of Bacterial and Fungal Endophytes

  • Chapter
  • First Online:
Root Biology

Part of the book series: Soil Biology ((SOILBIOL,volume 52))

Abstract

Soybean [Glycine max (L.) Merrill] is counted as the most important legume oilseed crop worldwide known for its high protein (35–40%) and oil (18–20%) content. Global climatic changes with persistent droughts are a major challenge and limiting factor for sustaining the yields of soybean. Several adaptations and mitigation strategies are required to cope with drought stress. Conventional breeding approaches employed for evolving drought-tolerant lines although is a viable solution requires more time and is long-term approach. As an alternate strategy, the use of microbial endophytes (bacterial and fungal) could play a significant role in the alleviation of drought stress and confer tolerance to plants. These beneficial microorganisms colonize the rhizosphere/phyllosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and volatile compounds and inducing accumulation of osmolytes and antioxidants, upregulation or downregulation of stress-responsive genes, and alteration in root morphology thereby making plants tolerant to cope during drought stress. The term induced systemic tolerance (IST) was also discussed on how physical and chemical changes induced by endophyte in plants which result in enhanced tolerance to drought stresses. In the present chapter, we also elaborated the role of bacterial and fungal endophytes and underlying mechanisms involved in helping soybean plants to cope with drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Allen MF, Boosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Article  Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis. New Phytol 88:683–693

    Article  Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Annapurna K, Ramadoss D, Bose P, Vithal Kumar L (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max L.) Plant Soil 373:641–648. https://doi.org/10.1007/s11104-013-1825-7

    Article  CAS  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:5649–15654

    Article  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620

    Article  Google Scholar 

  • Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim AY, Kang SM, Lee IJ (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12:31–38

    Article  CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York, p 199

    Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances. Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Berard A, Ben Sassi M, Kaisermann A, Renault P (2015) Soil microbial community responses to heat wave components: drought and high temperature. Climate Res 66:243–264

    Article  Google Scholar 

  • Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ (2017) Endophytic Paecilomyces formosus LHL10 augments Glycine max L. Adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci 8:870. https://doi.org/10.3389/fpls.2017.00870

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392. https://doi.org/10.1146/annurev.phyto.44.070505.143359

    Article  CAS  PubMed  Google Scholar 

  • Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought from genes to whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y, Li H, Zhao C, Yang Y, Hou Y, Wang C, Li N (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102(17):8179–8184

    Article  CAS  PubMed  Google Scholar 

  • Close TJ (1996) Dehydrins emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  • Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470

    Article  CAS  PubMed  Google Scholar 

  • Cooper G (2009) The cell: a molecular approach. ASM Press, Washington, DC, p 544. ISBN: 978-0-87893-300-6

    Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological-control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448

    Article  CAS  Google Scholar 

  • Dalal JM, Kulkarni NS (2012) Isolation and identification of endophytic microorganisms of soybean (Glycine max (L.) Merril). Biomed Pharmacol J 5:2

    Google Scholar 

  • Dalal JM, Kulkarni NS (2014) Population variance and diversity of endophytic fungi in soybean (Glycine max (L) Merril). Res Rev J Bot Sci 3(4):33–39

    Google Scholar 

  • Daszkowska-Golec A (2016) The role of abscisic acid in drought stress: how aba helps plants to cope with drought stress. In: Hossain MA, Wani SH, Bhattachajee S, Burritt DJ, Tran LS (eds) Drought stress tolerance in plants, vol 2. Springer International Publishing, Cham, pp 123–151. https://doi.org/10.1007/978-3-319-32423-4_5

    Chapter  Google Scholar 

  • De Souza Leite T, Cnossen-Fassoni A, Pereira OL, Mizubuti ES, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51(1):56–69

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Wirth S, Behrendt U, Abd-Allah EF, Berg G (2016) Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Front Microbiol 7:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629

    Article  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl –stressed Trigonella foenum – graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fatima Z, Zia M, Chauhary MF (2006) Effect of Rhizobium and phosphorus on growth of soybean (Glycine max) and survival of Rhizobium and P solubilizing bacteria. Pak J Bul 38(2):459–464

    Google Scholar 

  • Fernandes EG, Pereira OL, da Silva CC, Bento CB, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92. https://doi.org/10.1016/j.micres.2015.05.010

    Article  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methe BA (2008) Complete genome sequence of the N2 fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frederick JR, Camp CR, Bauer PJ (2001) Drought-stress effects on branch and main stem seed yield and yield components of determinate soybean. Crop Sci 41:759–763

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gasser I, Cardinale M, Muller H, Heller S, Eberl L, Lindenkamp N, Kaddor C, Steinbuchel A, Berg G (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136

    Article  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, Freitas JR, Seib AM (1998) Diversity of root associated bacteria associated with field grown canola (Brassica napus L.) and wheat (Triticum aestivum L.) FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Gill SS, Gill R, Trivedi KD, Anjum AN, Sharma KK, Ansari MW, Ansari AA, Johri KA, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theoret Biol 190:62–68

    Article  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Grumberg BC, Urcelay C, Shroeder MA, Vargas-Gil S, Luna CM (2015) The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Fertil Soils 51:1–10

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Ahmad N, Tang DS, Kang SM, Na CI, Sohn EY, Hwang YH Shin DH, Lee BH, Kim JG, Lee IJ (2009) Cladosporium sphaerospermum as a new plant growth promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hendry GA (2005) Oxygen free radical process and seed longevity. Seed Sci J 3:141–147

    Google Scholar 

  • Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.) Omonrice 12:92–101

    Google Scholar 

  • Impullitti AE, Malvick DK (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnuts (Arachis hypogaea L.) Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  • Joshi OP, Bhatia VS (2003) Stress management in soybean. In: Singh H, Hegde DM (eds) Souvenir. National seminar on stress management in oilseeds for attaining self-reliance in vegetable oils. Indian Society of Oilseeds Research, Hyderabad, pp 13–25

    Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–45

    Article  CAS  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2013) Endophytic fungi: a source of gibberellins and crop resistance to abiotic stress. Crit Rev Biotechnol 35:62–74

    Article  PubMed  CAS  Google Scholar 

  • Kohler J, Caravaca F, Alguacil MM, Roldán A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716

    Article  CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Puhler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2 fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kwak MJ, Song JY, Kim SY, Jeong H, Kang SG, Kim BK, Kwon SK, Lee CH, Yu DS, Park SH, Kim JF (2012) Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J Bacteriol 194:4432–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy I, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza in Citrus jambhiri water relations. New Phytol 85:25–32

    Article  Google Scholar 

  • Li J, Wang E, Chen W, Chen W (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Chen BD (2013) Aquaporin genes GintAQPF1 and GintAQPF2 from glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030. https://doi.org/10.4161/psb.24030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane- 1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53:62–66

    Article  CAS  PubMed  Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant beneficial endophytic strain from giant hogweed. J Microb Biotechnol 4:523–532

    Article  CAS  Google Scholar 

  • Marquez LM, Redman RS, Rodriguez RJ, Roossinl MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380

    Article  CAS  PubMed  Google Scholar 

  • Mathimaran N, Sharma MP, Mohan Raju B, Bagyaraj DJ (2017) Mycosphere Essay 17 Arbuscular mycorrhizal symbiosis and drought tolerance in crop plants. Mycosphere 8(3):361–376

    Article  Google Scholar 

  • Meneses CHSG, Rouws LFM, Simoes-Araújo V, idal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Roy KW (1982) Mycoflora of soybean leaves, pods, and seeds. Can J Bot 60:2716–2723

    Article  Google Scholar 

  • Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Nair A, Abraham TK, Jaya DS (2008) Studies on the changes in lipid peroxidation and antioxidants in drought stress induced Cowpea (Vigna unguiculata L.) varieties. J Environ Biol 29:689–691

    CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nhu VTP, Diep CN (2017) Isolation and characterization of endophytic bacteria in soybean (Glycine max L. (Merrill)) cultivated on alluvial soil of Can Tho city, Vietnam. Int J Innov Eng Technol 8:202–221. https://doi.org/10.21172/ijiet.83.028

    Article  Google Scholar 

  • Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart MR, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49:705–711

    Article  Google Scholar 

  • Porcel R, Zamarreno AM, Garcia Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Rao NSS (1982) Phosphate solubilization by soil microorganisms. In: Rao NSS (ed) Advances in agricultural microbiology. Oxford and IBH Publishing, New Delhi, pp 295–305

    Google Scholar 

  • Rapparini F, Penuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21–42

    Chapter  Google Scholar 

  • Reid CPP (1979) Mycorrhizae and water stress. In: Reidacher A, Gagnaire-Michard G (eds) Root physiology and symbiosis. IUFRO Proc, Nancy, pp 392–408

    Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194

    Article  CAS  PubMed  Google Scholar 

  • Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Vianna MF, Scorsetti AC (2016) Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina. Rev Argent Microbiol 48:154–160

    PubMed  Google Scholar 

  • Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high resolution on line water content sensors. Plant and Soil 342:459–468

    Article  CAS  Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transports in soybean. Science 172:581–583

    Article  CAS  PubMed  Google Scholar 

  • Sahay N, Varma A (1999) Piriformospora indica, a new biological hardening tool for micropropagated plants. FEMS Lett 181:297–302

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sediyama T, Teixeira RC, Barros HB (2009) Origem, evoluçao e importancia economica. In: Sediyama T (ed) Tecnologias de produçao e usos da soja. Mecenas, Londrina, pp 1–5

    Google Scholar 

  • Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600. https://doi.org/10.3389/fmicb.2016.01600

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Yang H, Zhang T, Sun J, Lou K (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385

    Article  CAS  PubMed  Google Scholar 

  • Sieverding E (1981) Influence of soil water regimes in VA mycorrhiza: I. Effect on plant growth, water utilization and development of mycorrhiza. Z Acker Pflanzenbau 150:400–411

    Google Scholar 

  • Simpson D, Daft MJ (1990) Increasing between water stress and different mycorrhizal colonization inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186

    Article  Google Scholar 

  • Sionet N, Kramer PJ (1977) Effect of water stress during different stages of growth of soybean. Agron J 69:274–278

    Article  Google Scholar 

  • Smirnoff N, Cumbs QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbionts in leek plants with vesicular arbuscular mycorrhizas. New Phytol 92:75–87

    Article  Google Scholar 

  • Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Suman A, Verma P, Yadav AN (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New York, pp 117–143

    Chapter  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, vander Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinecure Associates, Sunderland

    Google Scholar 

  • Tenguria RK, Firodiya A (2013) Diversity of endophytic fungi in leaves of Glycine max (L.) merr. from central region of Madhya Pradesh. World J Pharm Pharm Sci 2(6):5928–5934

    Google Scholar 

  • Torres MJ, Perez Brandan C, Petroselli G, Erra-Balsells R, Audisio MC (2016) Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol Res 182:31–39

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Bakshi M, Binggan L, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Article  Google Scholar 

  • Vassileva M, Vassilev N, Azcon R (1998) Rock phosphate solubilization by Aspergillus niger on olive cake-based medium and its further application in a soil plant system. World J Microbiol Biotechnol 14:281–284

    Article  CAS  Google Scholar 

  • Wahid A, Close T (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Rasul E (2005) Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M (ed) Hand book of photosynthesis, vol 2E. CRC Press, Florida, pp 479–497

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  CAS  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski-Dye F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, Gonzalez V, Mavingui P, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci 105:7564–7569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Yu SH, Ryu CM (2009) Priming of defense-related genes confers root colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol J 25:303–440

    Article  Google Scholar 

  • Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:24–35

    Article  CAS  Google Scholar 

  • Zhao FL, Lai X (2017) Antagonistic endophytic bacteria associted with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol. https://doi.org/10.1016/j.bjm.2017.06.007

  • Zhang YZ, Chen WF, Li M, Sui XH, Liu H-C, Zhang XX, Chen WX (2012) Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 62:359–336

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Song F, Liu S (2011) Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J Food Agric Environ 9:583–587

    Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, ICAR–Indian Institute of Soybean Research, Indore, for providing necessary infrastructure, facilities, and funding from ICAR–extramural network subproject to MPS and fellowship to DC; senior author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chourasiya, D., Agnihotri, R., Prakash, A., Pal, K.K., Sharma, M.P. (2018). Bioprotection of Soybean Plants from Drought Stress by Application of Bacterial and Fungal Endophytes. In: Giri, B., Prasad, R., Varma, A. (eds) Root Biology. Soil Biology, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_11

Download citation

Publish with us

Policies and ethics