Skip to main content

Polarons in Conjugated Polymers

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 52))

Abstract

Conjugated polymers and polymer blends are key components in the development of organic electronics and (photo-) electrocatalysis. In particular, the possibility to produce organic but highly conducting films make these compounds very attractive. Therefore, enormous effort was put in the understanding and improvement of the electrical conductivity of polymer films. Conjugated polymers in their pristine form are mostly insulating or rarely semiconducting. The alternating single and double bonds in each \(\pi \)-conjugated polymer chain give rise to the formation of a band gap; the HOMO-LUMO gap. Semiconducting or conducting properties are obtained for example by optical, chemical, or electrochemical doping. The doping can be permanent as in the case of the polymer blends like PEDOT:PSS or short term. In both cases, the injected charge carriers commonly self-localize due to the strong electron-phonon interaction which yields in the formation of new quasi-particles called polarons. As a result, characteristic sub-band gap excitations emerge in optical measurements which extend from UV to the medium infrared spectral range. Optical methods in general, and spectroscopic ellipsometry in particular, are thus apparent characterization methods in scientific investigations as well as candidates to solve in-line monitoring and control issues. In the following section, we will briefly review the basic concepts of polymer “doping”, the formation of polarons and the origin of sub-band gap excitations. In a survey of methods we will shortly discuss ATR-FTIR and transmission/reflection spectroscopy results. A specific attention will be drawn on the in-situ spectroelectrochemical characterization, since electrochemical doping provides control on the doping level and allows e.g. a quantification of exchanged charges. In-situ ellipsometry could be used to monitor respective changes in the polymer optoelectronic properties. We will not aim for an overview about known types of conducting polymers in general or state of the art developments in organic electronics. The focus is a discussion of the physics of UV-VIS-MIR polaronic and electronic excitations as well as state-of-the-art ellipsometric characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Handbook of Conducting Polymers, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, vol. I–II, 3rd edn. ed. by T.A. Skotheim, J.R. Reynolds (CRC Press, Boca Raton, London, New York, 2006)

    Google Scholar 

  2. J.L. Brédas, G.B. Street, B. Thémans, J.M. André, J. Chem. Phys. 83, 1323 (1985)

    Article  ADS  Google Scholar 

  3. E. Bundgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007)

    Article  Google Scholar 

  4. D.T. Haar, Collected Papers of L.D. Landau (Gordon and Breach, Science Publishers, New York, London, Paris, 1965)

    Google Scholar 

  5. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  6. J.T. Devreese, J. Phys. Condens. Matter 19, 26 (2006)

    Google Scholar 

  7. J.T. Devreese, A.S. Alexandrov, Rep. Prog. Phys. 72, 066501 (2009)

    Article  ADS  Google Scholar 

  8. Polarons in Advanced Materials, ed. by A.S. Alexandrov (Springer, Dordrecht, 2007)

    Google Scholar 

  9. D. Emin, Polarons (Cambridge University Press, Cambridge, New York, Melbourne, 2013)

    Google Scholar 

  10. J.L. Brédas, G.B. Street, Acc. Chem. Res. 18, 309 (1985)

    Article  Google Scholar 

  11. A.J. Heeger, N.S. Sariciftci, E.B. Namdas, Semiconducting and Metallic Polymers (Oxford University Press, Oxford and New York, 2010)

    Google Scholar 

  12. S.-I. Kuroda, Int. J. Mod. Phys. B 9, 221 (1995)

    Article  ADS  Google Scholar 

  13. F.M. Peeters, J.T. Devreese, Phys. Rev. B 36, 4442 (1987)

    Article  ADS  Google Scholar 

  14. D. Beljonne et al., Adv. Funct. Mater. 11, 229 (2001)

    Article  Google Scholar 

  15. S.N. Klimin, J. Tempere, J.T. Devreese, Phys. Rev. B 94, 1 (2016)

    Article  Google Scholar 

  16. J.L. Brédas, R.R. Chance, R. Silbey, Phys. Rev. B 26, 5843 (1982)

    Article  ADS  Google Scholar 

  17. D. Bertho, C. Jouanin, Phys. Rev. B 35, 626 (1987)

    Article  ADS  Google Scholar 

  18. A.A. Bakulin et al., Science (80-. ) 335, 1340 (2012)

    Article  ADS  Google Scholar 

  19. R. Österbacka, C. An, X.M. Jiang, Z. Vardeny, Science (80-. ) 287, 839 (2000)

    Google Scholar 

  20. O. Bubnova, X. Crispin, Energy Environ. Sci. 5, 9345 (2012)

    Article  Google Scholar 

  21. C.M. Pochas, F.C. Spano, J. Chem. Phys. 140, 244902 (2014)

    Article  ADS  Google Scholar 

  22. S. Stafström et al., Phys. Rev. Lett. 59, 1464 (1987)

    Article  ADS  Google Scholar 

  23. D.J. Thouless, Phys. Rev. Lett. 39, 1167 (1977)

    Article  ADS  Google Scholar 

  24. B.I. Shklovskii, A.L. Efros, in Electronic Properties of Doped Semiconductors, vol. 45, Springer Series in Solid-State Sciences, ed. by M. Cardona (Springer, Berlin, Heidelberg, 1984)

    Chapter  Google Scholar 

  25. P.R. Somani, S. Radhakrishnan, Mater. Chem. Phys. 77, 117 (2002)

    Article  Google Scholar 

  26. H. Shirakawa et al., J. Chem. Soc. Chem. Commun. 578 (1977)

    Google Scholar 

  27. A.J. Heeger, Angew. Chemie 40, 2591 (2001)

    Article  Google Scholar 

  28. J. Gasiorowski et al., J. Phys. Chem. C 117, 2584 (2013)

    Article  Google Scholar 

  29. Y. Taguchi et al., J. Am. Chem. Soc. 128, 3313 (2006)

    Article  Google Scholar 

  30. R. Ludwig, Angew. Chemie 115, 3580 (2003)

    Article  Google Scholar 

  31. C. Cobet et al., Submitt. to Adv. Mater. Interfaces (2017)

    Google Scholar 

  32. U. Zhokhavets, G. Gobsch, H. Hoppe, N.S. Sariciftci, Thin Solid Films 451–452, 69 (2004)

    Article  Google Scholar 

  33. U. Zhokhavets et al., Chem. Phys. Lett. 418, 347 (2006)

    Article  ADS  Google Scholar 

  34. M. Campoy-Quiles, P.G. Etchegoin, D.D.C. Bradley, Phys. Rev. B 72, 045209 (2005)

    Article  ADS  Google Scholar 

  35. T. Tsumuraya, J.-H. Song, A. Freeman, Phys. Rev. B 86, 075114 (2012)

    Article  ADS  Google Scholar 

  36. E. Lioudakis, A. Othonos, I. Alexandrou, Y. Hayashi, Appl. Phys. Lett. 91, 111117 (2007)

    Article  ADS  Google Scholar 

  37. Y. Kim et al., Nat. Mater. 5, 197 (2006)

    Article  ADS  Google Scholar 

  38. P.G. Karagiannidis et al., Mater. Chem. Phys. 129, 1207 (2011)

    Article  Google Scholar 

  39. Z. Vardeny et al., Phys. Rev. Lett. 56, 671 (1986)

    Article  ADS  Google Scholar 

  40. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  41. J. Gasiorowski et al., J. Phys. Chem. C 118, 16919 (2014)

    Article  Google Scholar 

  42. C. Enengl et al., ChemPhysChem 17, 3836 (2016)

    Article  Google Scholar 

  43. Y. Furukawa, J. Phys. Chem. 100, 15644 (1996)

    Article  Google Scholar 

  44. J. Gasiorowski, Dissertation, Johannes Kepler University Linz (2013)

    Google Scholar 

  45. Handbook of Optical Constants of Solids, vol. 111, ed. by E.D. Palik (Academic Press, San Diego, Chestnut Hill, 1998)

    Google Scholar 

  46. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, Berlin, Heidelberg, New York, 1996)

    Book  Google Scholar 

  47. E. Ehrenfreund, Z. Vardeny, O. Brafman, B. Horovitz, Phys. Rev. B 36, 1535 (1987)

    Article  ADS  Google Scholar 

  48. A. Girlando, A. Painelli, Z.G. Soos, J. Chem. Phys. 98, 7459 (1993)

    Article  ADS  Google Scholar 

  49. J. Gasiorowski, A.I. Mardare, N.S. Sariciftci, A.W. Hassel, J. Electroanal. Chem. 691, 77 (2013)

    Article  Google Scholar 

  50. N.S. Sariciftci et al., J. Chem. Phys. 96, 7164 (1992)

    Article  ADS  Google Scholar 

  51. A.K. Agrawal, S.A. Jenekhe, Chem. Mater. 8, 579 (1996)

    Article  Google Scholar 

  52. H. Neugebauer et al., J. Chem. Phys. 110, 12108 (1999)

    Article  ADS  Google Scholar 

  53. C. Kvarnström et al., Synth. Met. 101, 66 (1999)

    Article  Google Scholar 

  54. A.W. Hassel, K. Fushimi, M. Seo, Electrochem. Commun. 1, 180 (1999)

    Article  Google Scholar 

  55. T. Erb et al., Adv. Funct. Mater. 15, 1193 (2005)

    Article  Google Scholar 

  56. H.G. Tompkins, A User ’s Guide to Ellipsometry (Academic Press Inc, San Diego, 1993)

    Google Scholar 

  57. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing Company, Amsterdam, New York, Oxford, 1987)

    Google Scholar 

  58. P. Yeh, Optical Waves in Layered Media (Wiley, New Yorke, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1988)

    Google Scholar 

  59. M.V. Klein, T.E. Furtak, Optik (Springer, Berlin, Heidelberg, 1988)

    Book  Google Scholar 

  60. M. Schubert, Phys. Rev. B 53, 4265 (1996)

    Article  ADS  Google Scholar 

  61. H. Tompkins, E.A. Irene, Handbook of Ellipsometry (Springer, Heidelberg, 2005)

    Book  Google Scholar 

  62. C. Cobet et al., Sci. Rep. 6, 35096 (2016)

    Article  ADS  Google Scholar 

  63. S. Panero, S. Passerini, B. Scrosati, Mol. Cryst. Liq. Cryst. 229, 97 (1993)

    Article  Google Scholar 

  64. P. Kar, Doping Conjugated Polymers (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  65. B. Horovitz, Solid State Commun. 88, 983 (1993)

    Article  ADS  Google Scholar 

  66. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors (Springer, Berlin, Heidelberg, 1996)

    Book  Google Scholar 

  67. D. Jérome, H.J. Schulz, Adv. Phys. 31, 299 (2006)

    Article  ADS  Google Scholar 

  68. C. Cobet, E. Speiser, in Defin. Anal. Opt. Prop. Mater. Nanoscale A Collect. Thoughts, Opin. Ideas Data that Have Matur. Over Years Exploit. Ellipsom. a Range Characterisation Needs, ed. by M. Losurdo (Ges. für Mikro- und Nanoelektronik, Wien, 2010)

    Google Scholar 

  69. D.K. Campbell, A.R. Bishop, K. Fesser, Phys. Rev. B 26, 6862 (1982)

    Article  ADS  Google Scholar 

  70. S.E. Shaheen et al., Appl. Phys. Lett. 78, 841 (2001)

    Article  ADS  Google Scholar 

  71. H. Hoppe, N.S. Sariciftci, D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002)

    Article  Google Scholar 

  72. J. Gasiorowski et al., J. Phys. Chem. C 117, 22010 (2013)

    Article  Google Scholar 

  73. C. Duan, F. Huang, Y. Cao, J. Mater. Chem. 22, 10416 (2012)

    Article  Google Scholar 

  74. H.-Y. Chen et al., Nat. Photonics 3, 649 (2009)

    Article  ADS  Google Scholar 

  75. J. Hou et al., J. Am. Chem. Soc. 131, 15586 (2009)

    Article  Google Scholar 

  76. J. Gasiorowski, A.I. Mardare, N.S. Sariciftci, A.W. Hassel, Electrochim. Acta 113, 834 (2013)

    Article  Google Scholar 

  77. K.G. Jespersen et al., J. Chem. Phys. 121, 12613 (2004)

    Article  ADS  Google Scholar 

  78. J.L. Brédas, J.C. Scott, K. Yakushi, G.B. Street, Phys. Rev. B 30, 1023 (1984)

    Article  ADS  Google Scholar 

  79. M.J. Nowak, S.D.D.V. Rughooputh, S. Hotta, A.J. Heeger, Macromolecules 20, 965 (1987)

    Article  ADS  Google Scholar 

  80. N.J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967)

    Google Scholar 

  81. M. Milosevic, in Internal Reflection and ATR Spectroscopy, vol. 176, Chemical Analysis, ed. by M.E. Vitha (Wiley, Hoboken, New Jersey, 2012)

    Book  Google Scholar 

  82. M. Poksinski, H. Arwin, Proteins Solid-Liquid Interfaces, Principles and Practice (Springer, Berlin, Heidelberg, 2006), pp. 105–118

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kurt Hingerl, Niyazi S. Sariciftci, Helmut Neugebauer, and Reghu Menon for their valuable comments and enlightening discussions. Furthermore, we acknowledge manifold contributions of Achim W. Hassel, Günther Knör, Jan Philipp Kollender, Andrei I. Mardare, Kerstin Oppelt, Thomas Plach, Stefanie Schlager, Matthew S. White, Karin Wiesauer, and Cigdem Yumusak for the results presented here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Cobet or Jacek Gasiorowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cobet, C., Gasiorowski, J., Farka, D., Stadler, P. (2018). Polarons in Conjugated Polymers. In: Hinrichs, K., Eichhorn, KJ. (eds) Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75895-4_16

Download citation

Publish with us

Policies and ethics