Skip to main content

Abstract

This chapter is focused on the application of photonics in medicine, namely, in the systems designed to facilitate delivery of bioactive agents (drugs, photosensitizers). The introduction of the carrier into such systems allows to increase their efficiency, to reduce side-effects and to precisely control the dose, the place and time of delivery inside the patient’s body. Three main aspects of the problem are analysed in this chapter: (1) using light-sensitive probes to study pharmacokinetics of drugs; (2) the choice of the application route for the photosensitizers used in photodynamic therapy (PDT), including prodrugs, micelles, inorganic and hybrid nanoparticles and virus capsids; and (3) achieving targeted delivery and precise control over the release profiles by the application of the systems containing photoresponsive carriers. The basic mechanisms of the photophysical and photochemical processes involved are discussed, including PDT, photoinduced NO delivery and light-triggered release of drugs from liposomes, prodrugs and other specific systems. The most interesting examples are described, and the advantages and limitations of using various systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Dobosz, S. Strobel, K.G. Stubenrauch, et al., Noninvasive measurement of pharmacokinetics by near-infrared fluorescence imaging in the eye of mice. J. Biomed. Opt. 19(1), 016022 (2014)

    Article  Google Scholar 

  2. A.M. Laughney, E. Kim, M.M. Sprachman, et al., Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl. Med. 6(261), 261ra152 (2014)

    Article  Google Scholar 

  3. M.-H. Han, A.K. Friedman, Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology 62, 89–100 (2012)

    Article  Google Scholar 

  4. A.A. Grace, S.B. Floresco, Y. Goto, et al., Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007)

    Article  Google Scholar 

  5. J.L. Cao, H.E. Covington, A.K. Friedman, et al., Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J. Neurosci. 30, 16453–16458 (2010)

    Article  Google Scholar 

  6. C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces 16, 3–27 (1999)

    Article  Google Scholar 

  7. C.-Y. Chen, C.-K. Syu, H.C. Lin, A stimulated mixed micelle system for in vitro study on chemo-photodynamic therapy. Macromol. Biosci. 16, 188–197 (2016)

    Article  Google Scholar 

  8. H.F. Wang, H.Z. Jia, S.X. Cheng, et al., PEG-stabilized micellar system with positively charged polyester core for fast pH-responsive drug release. Pharm. Res. 29(6), 1582–1594 (2012)

    Article  Google Scholar 

  9. J. Rios-Doria, A. Carie, T. Costich, et al., A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs. J. Drug. Deliv., 951741 (2012)

    Google Scholar 

  10. F. Sun, Y. Wang, Y. Wei, et al., Thermo-triggered drug delivery from polymeric micelles of poly(N-isopropylacrylamide-co-acrylamide)-b-poly(n-butyl methacrylate) for tumor targeting. J. Bioact. Compat. Polym. 29(4), 301–317 (2014)

    Article  Google Scholar 

  11. D.H. Thompson, O.V. Gerasimov, J.J. Wheeler, et al., Triggerable plasmalogen liposomes: Improvement of system efficiency. Biochim. Biophys. Acta 1279, 25–34 (1996)

    Article  Google Scholar 

  12. Y. Li, K. Xiao, W. Zhuet, et al., Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliv. Rev. 66, 58–73 (2014)

    Article  Google Scholar 

  13. H. Yin, L. Liao, J. Fang, Enhanced permeability and retention (EPR) effect based tumor targeting: The concept, application and Prospect. JSM Clin. Oncol. Res. 2(1), 1010 (2014)

    Google Scholar 

  14. A.M. Master, M. Livingston, N.L. Oleinick, et al., Optimization of a Nanomedicine-based silicon Phthalocyanine 4 photodynamic therapy (pc 4-PDT) strategy for targeted treatment of EGFR-overexpressing cancers. Mol. Pharm. 9(8), 2331–2338 (2012)

    Article  Google Scholar 

  15. C. Conte, S. Maiolino, D.S. Pellosi, et al., Polymeric nanoparticles for cancer photodynamic therapy. Top. Curr. Chem. 370, 61–112 (2016)

    Article  Google Scholar 

  16. C.S. De Paula, A.C. Tedesco, F.L. Primoet, et al., Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: Photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur. J. Pharm. Sci. 49(3), 371–381 (2013)

    Article  Google Scholar 

  17. P. Nalawade, B. Aware, V.J. Kadam, et al., Layered double hydroxides: A review. J. Sci. Ind. Res. (India) 68, 267–272 (2009)

    Google Scholar 

  18. R.K. Kankala, Y. Kuthati, S.H.W. al, Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice. J. Colloid Interface Sci. 458, 217–228 (2015)

    Article  Google Scholar 

  19. K. Khorsandi, R. Hosseinzadeh, M. Fateh, Curcumin intercalated layered double hydroxide nanohybrid as a potential drug delivery system for effective photodynamic therapy in human breast cancer cells. RSC Adv. 5, 93987–93994 (2015)

    Article  Google Scholar 

  20. P.-R. Wei, Y. Kuthati, R.K. Kankala, et al., Synthesis and characterization of chitosan-coated near-infrared (NIR) layered double hydroxide-Indocyanine green Nanocomposites for potential applications in photodynamic therapy. Int. J. Mol. Sci. 16(9), 20943–20968 (2015)

    Article  Google Scholar 

  21. M. Merchan, T.S. Ouk, P. Kubat, et al., Photostability and photobactericidal properties of porphyrin-layered double hydroxide–polyurethane composite films. J. Mater. Chem. B 1, 2139–2146 (2013)

    Article  Google Scholar 

  22. X.-S. Li, M.-R. Ke, W. Huang, et al., A pH-responsive layered double hydroxide (LDH)–Phthalocyanine nanohybrid for efficient photodynamic therapy. Chemistry 21, 3310–3317 (2015)

    Article  Google Scholar 

  23. B.G. Trewyn, I.I. Slowing, S. Giri, et al., Synthesis and functionalization of a Mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 40, 846–853 (2007)

    Article  Google Scholar 

  24. M. Arduini, F. Mancin, P. Tecilla, et al., Self-organized fluorescent nanosensors for ratiometric Pb2Ă¾ detection. Langmuir 23, 8632–8636 (2007)

    Article  Google Scholar 

  25. I. Roy, T.Y. Ohulchanskyy, H.E. Pudavaret, et al., Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug−carrier system for photodynamic therapy. J. Am. Chem. Soc. 125, 7860–7865 (2003)

    Article  Google Scholar 

  26. F. Selvestrel, F. Moret, D. Segat, et al., Targeted delivery of photosensitizers: Efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale 5, 6106–6116 (2013)

    Article  Google Scholar 

  27. D.J. Evans, The bionanoscience of plant viruses: templates and synthons for new materials. J. Mater. Chem. 18, 3746–3754 (2008)

    Article  Google Scholar 

  28. Q. Zeng, S. Saha, L.A. Lee, et al., Chemoselective modification of turnip yellow mosaic virus by cu(I) catalyzed azide−alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding. Bioconjug. Chem. 22, 58–66 (2011)

    Article  Google Scholar 

  29. B.A. Cohen, M. Bergkvist, Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J. Photochem. Photobiol. B 121, 67–74 (2013)

    Article  Google Scholar 

  30. A.G. Havanessiean, C. Soundaramourty, D. El Khoury, et al., Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One 5, e15787 (2010)

    Article  Google Scholar 

  31. D. Gabriel, M.F. Zuluaga, N. Lange, On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochem. Photobiol. Sci. 10, 689–703 (2011)

    Article  Google Scholar 

  32. R. Weissleder, C.H. Tung, U. Mahmood, et al., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17(4), 375–378 (1999)

    Article  Google Scholar 

  33. E. Gounaris, C.H. Tung, C. Restaino, et al., Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3, e2916 (2008)

    Article  Google Scholar 

  34. M.R. Hamblin, J.L. Miller, I. Rizvi, et al., Pegylation of charged polymer-photosensitiser conjugates: effects on photodynamic efficacy. Br. J. Cancer 89, 937–943 (2003)

    Article  Google Scholar 

  35. Y. Choi, R. Weissleder, C.H. Tung, Selective antitumor effect of novel protease-mediated photodynamic agent. Cancer Res. 66, 7225–7229 (2006)

    Article  Google Scholar 

  36. B.C. Bae, K. Na, Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 31, 6325–6335 (2010)

    Article  Google Scholar 

  37. F. Caruso, M. Rossi, A. Benson, et al., Ruthenium–Arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. J. Med. Chem. 55, 1072–1081 (2012)

    Article  Google Scholar 

  38. D. Pucci, A. Crispini, B.S. Mendiguchía, et al., Improving the bioactivity of Zn(II)-curcumin based complexes. Dalton Trans. 42, 9679–9687 (2013)

    Article  Google Scholar 

  39. A.K. Renfrew, N.S. Bryce, T.W. Hambley, Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: A XANES and FLIM study. Chem. Sci. 4, 3731–3739 (2013)

    Article  Google Scholar 

  40. R. Pettinari, F. Marchetti, F. Condello, et al., Ruthenium(II)-Arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics 33, 3709−3715 (2014)

    Article  Google Scholar 

  41. T.K. Goswami, S. Gadadharb, B. Gole, et al., Photocytotoxicity of copper(II) complexes of curcumin and N-ferrocenylmethyl-l-amino acids. Eur. J. Med. Chem. 63, 800−810 (2013)

    Article  Google Scholar 

  42. A. Hussain, K. Somyajit, B. Banik, et al., Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III) complex formation. Dalton Trans. 42, 182−195 (2013)

    Article  Google Scholar 

  43. S. Banerjee, I. Pant, I. Khan, Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(IV) moiety. Dalton Trans. 44, 4108−4122 (2015)

    Article  Google Scholar 

  44. S. Banerjee, P. Prasad, I. Khan, et al., Mitochondria targeting photocytotoxic oxidovanadium (IV) complexes of curcumin and (acridinyl) dipyridophenazine in visible light. Anorg. Allg. Chem. 640, 1195−1204 (2014)

    Google Scholar 

  45. A.W. Carpenter, M.H. Schoenfisch, Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 41, 3742 (2012)

    Article  Google Scholar 

  46. L.K. Keefer, Nitric oxide (NO)- and Nitroxyl (HNO)-generating diazeniumdiolates (NONOates): emerging commercial opportunities. Curr. Top. Med. Chem. 5, 625–636 (2005)

    Article  Google Scholar 

  47. B. Heilman, P.K. Mascharak, Light-triggered nitric oxide delivery to malignant sites and infection. Phil. Trans. R. Soc. A 371, 20120368 (2013)

    Article  Google Scholar 

  48. B.J. Heilman, G.M. Halpenny, P.K. Mascharak, Synthesis, characterization, and light-controlled antibiotic application of a composite material derived from polyurethane and silica xerogel with embedded photoactive manganese nitrosyl. Biomed. Mater. Res. B 99B, 328–337 (2011)

    Article  Google Scholar 

  49. J. Xu, F. Zeng, H. Wu, et al., A mitochondrial-targeting and NO-based anticancer nanosystem with enhanced photo-controllability and low dark-toxicity. J. Mater. Chem. B 3, 4904–4912 (2015)

    Article  Google Scholar 

  50. B. Chandra, R. Subramaniam, S. Mallik, et al., Formulation of photocleavable liposomes and the mechanism of their content release. Org. Biomol. Chem. 4, 1730–1740 (2006)

    Article  Google Scholar 

  51. A. Pashkovskaya, E. Kotova, Y. Zorlu, et al., Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir 26, 5726–5733 (2010)

    Article  Google Scholar 

  52. Z.Y. Zhang, B.D. Smith, Synthesis and characterization of NVOC-DOPE, a caged photoactivatable derivative of Dioleoylphosphatidylethanolamine. Bioconjug. Chem. 10, 1150–1152 (1999)

    Article  Google Scholar 

  53. Morgan CG, , Bisby RH, Johnson SA et al (1995) Fast solute release from photosensitive liposomes: an alternative to ‘caged’ reagents for use in biological systems. FEBS Lett. 375:113–116

    Article  Google Scholar 

  54. B. Bondurant, D.F. O’Brien, Photoinduced destabilization of Sterically stabilized liposomes. J. Am. Chem. Soc. 120, 13541–13542 (1998)

    Article  Google Scholar 

  55. A. Yavlovich, A. Singh, S. Tarasov, et al., Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J. Therm. Anal. Calorim. 98, 97–104 (2009)

    Article  Google Scholar 

  56. B. Khoobehi, G.A. Peyman, N. Bhatt, et al., Laser-induced experimental vascular occlusion using liposome-encapsulated ADP. Lasers Surg. Med. 12, 609–614 (1992)

    Article  Google Scholar 

  57. S. Mordon, T. Desmettre, J.-M. Devoisselle, et al., Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system. Lasers Surg. Med. 20, 131–141 (1997)

    Article  Google Scholar 

  58. D.L. Van der Meullen, P. Misra, J. Michael, et al., Laser mediated release of dye from liposomes. Photochem. Photobiol. 56, 325–332 (1992)

    Article  Google Scholar 

  59. Z. Li, Y. Wan, A.G. Kutateladze, Dithiane-based photolabile amphiphiles: toward photolabile liposomes. Langmuir 19, 6381–6391 (2003)

    Article  Google Scholar 

  60. K. Kano, Y. Tanaka, T. Ogawa, et al., Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible Cis-trans isomerization of azobenzenes. Photochem. Photobiol. 34, 323–329 (1981)

    Article  Google Scholar 

  61. T. Sato, T. Phoeung, P.-A. Rousseau, et al., Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir 7, 2330–2335 (1991)

    Article  Google Scholar 

  62. Z.K. Cui, Y. Phoeung, P.A. Rousseau, et al., Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir 30, 10818–10825 (2014)

    Article  Google Scholar 

  63. R.F. Khairutdinov, J.K. Hurst, Photocontrol of ion permeation through bilayer membranes using an amphiphilic spiropyran. Langmuir 17, 6881−6886 (2001)

    Article  Google Scholar 

  64. R.F. Khairutdinov, K. Giertz, J.K. Hurst, et al., Photochromism of spirooxazines in homogeneous solution and phospholipid liposomes. J. Am. Chem. Soc. 120, 12707–12713 (1998)

    Article  Google Scholar 

  65. C. Pidgeon, C.A. Hunt, Light sensitive liposomes. Photochem. Photobiol. 37, 491–494 (1983)

    Article  Google Scholar 

  66. D.F. O'Brien, B. Armitage, A. Benedicto, et al., Polymerization of preformed self-organized assemblies. Acc. Chem. Res. 31, 861–868 (1998)

    Article  Google Scholar 

  67. A. Yavlovich, B. Smith, K. Gupta, et al., Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Mol. Membr. Biol. 27(7), 364–381 (2010)

    Article  Google Scholar 

  68. A. Yavlovich, A. Singh, R. Blumenthal, et al., A novel class of photo-triggerable liposomes containing DPPC:DC8,9PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta 1808, 117–126 (2011)

    Article  Google Scholar 

  69. S.J. Leung, M. Romanowski, Light-activated content release from liposomes. Theranostics 2(10), 1020–1036 (2012)

    Article  Google Scholar 

  70. W. Kuhn, B. Hargitay, A. Katchalsky, et al., Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165, 514–516 (1950)

    Article  Google Scholar 

  71. A. Suzuki, T. Tanaka, Phase transition in polymer gels induced by visible light. Nature 346, 345–347 (1990)

    Article  Google Scholar 

  72. A. Suzuki, T. Ishii, Y. Maruyama, Optical switching in polymer gels. J. Appl. Phys. 80(1), 131–136 (1996)

    Article  Google Scholar 

  73. S.K. Samanta, A. Pal, S. Bhattacharya, et al., Carbon nanotube reinforced supramolecular gels with electrically conducting, viscoelastic and near-infrared sensitive properties. J. Mater. Chem. 20, 6881–6890 (2010)

    Article  Google Scholar 

  74. A. Shiotani, T. Mori, T. Niidome, et al., Stable incorporation of gold Nanorods into N-Isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007)

    Article  Google Scholar 

  75. C.-H. Zhu, Y. Lu, J. Peng, et al., Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide Nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 22(19), 4017–4022 (2012)

    Article  Google Scholar 

  76. M. Wang, G. Abbineni, A. Clevenger, et al., Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine 7(6), 710–729 (2011)

    Article  Google Scholar 

  77. B. Yan, J.-C. Boyer, D. Habault, et al., Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134(40), 16558–16561 (2012)

    Article  Google Scholar 

  78. D.R. Griffin, A.M. Kasko, Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134(31), 13103–13107 (2012)

    Article  Google Scholar 

  79. Y. Wei, Y. Yan, D. Pei, et al., A photoactivated prodrug. Bioorg. Med. Chem. Lett. 8, 2419–2422 (1998)

    Article  Google Scholar 

  80. T. Joshi, V. Pierroz, C. Mari, et al., A bis (dipyridophenazine) (2-(2-pyridyl)pyrimidine-4-carboxylicacid) ruthenium(II) complex with anticancer action upon photodeprotection. Angew. Chem. Int. Ed. 53, 2960–2963 (2014)

    Article  Google Scholar 

  81. A.M.L. Hossion, M. Bio, G. Nkepang, et al., Visible light controlled release of anticancer drug through double activation of prodrug. ACS Med. Chem. Lett. 4(1), 124–127 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Karewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karewicz, A., Lachowicz, D., Pietraszek, A. (2018). Photonics in Drug Delivery. In: Van Hoorick, J., Ottevaere, H., Thienpont, H., Dubruel, P., Van Vlierberghe, S. (eds) Polymer and Photonic Materials Towards Biomedical Breakthroughs. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-75801-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75801-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75800-8

  • Online ISBN: 978-3-319-75801-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics