Skip to main content

The Use of Photo-Activatable Materials for the Study of Cell Biomechanics and Mechanobiology

  • Chapter
  • First Online:
Polymer and Photonic Materials Towards Biomedical Breakthroughs

Abstract

In biomechanical and mechanobiological applications, the ability of photo-activatable materials to change properties in response to a light (photo) stimulus offers key potential advantages over other activatable materials. Not only can photo-activatable materials be used in close contact or proximity to cells and tissues without the cells or tissues being affected by the photostimulus, but photo-activatable materials also offer a level of spatiotemporal control unavailable with many other forms of smart material triggering, such as ambient heating or hydration. This chapter will give an overview of photo-activatable materials that have been developed to study cell biomechanics and mechanobiology and discuss future potential applications for these promising materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D.-H. Kim, P.K. Wong, J. Park, A. Levchenko, Y. Sun, Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11, 203–233 (2009)

    Article  Google Scholar 

  2. J. Wolff, Das Gesetz Der Transformation Der Knochen (A. Hirschwald, Berlin, 1891)

    Google Scholar 

  3. J.M. Mitchison, M.M. Swann, The mechanical properties of the cell surface. J. Exp. Biol. 32, 734–750 (1954)

    Google Scholar 

  4. R.M. Hochmuth, Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)

    Article  Google Scholar 

  5. K.L. Sung, M.K. Kwan, F. Maldonado, W.H. Akeson, Adhesion strength of human ligament fibroblasts. J. Biomech. Eng. 116, 237–242 (1994)

    Article  Google Scholar 

  6. M. Radmacher, Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16, 47–57 (1997)

    Article  Google Scholar 

  7. H. Haga et al., Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253–258 (2000)

    Article  Google Scholar 

  8. Y.J. Kim et al., A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces. J. Biomater. Sci. Polym. Ed. 14, 1311–1321 (2003)

    Article  Google Scholar 

  9. O. Thoumine, P. Kocian, A. Kottelat, J. Meister, Short-term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29, 398–408 (2000)

    Article  Google Scholar 

  10. R.L.Y. Sah et al., Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636 (1989)

    Article  Google Scholar 

  11. S. Noria et al., Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am. J. Pathol. 164, 1211–1223 (2004)

    Article  Google Scholar 

  12. R. Yoshida et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374, 240–242 (1995)

    Article  Google Scholar 

  13. S. Dai, P. Ravi, K.C. Tam, pH-responsive polymers: synthesis, properties and applications. Soft Matter 4, 435 (2008)

    Article  Google Scholar 

  14. X. Yin, A.S. Hoffman, P.S. Stayton, Poly( N-isopropylacrylamide- co -propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7, 1381–1385 (2006)

    Article  Google Scholar 

  15. Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility. Nature 355, 242–244 (1992)

    Article  Google Scholar 

  16. S. Tasoglu et al., Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 5, 4702 (2014)

    Article  Google Scholar 

  17. B. Yang, W.M. Huang, C. Li, L. Li, Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer (Guildf). 47, 1348–1356 (2006)

    Article  Google Scholar 

  18. H. Yamaguchi et al., Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 3, 603 (2012)

    Article  Google Scholar 

  19. A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)

    Article  Google Scholar 

  20. A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemcial properties. Science 324, 59–63 (2009)

    Article  Google Scholar 

  21. J. Nakanishi et al., Photoactivation of a substrate for cell adhesion under standard fluorescence microscopes. J. Am. Chem. Soc. 126, 16314–16315 (2004)

    Article  Google Scholar 

  22. A.M. Kloxin, M.W. Tibbitt, A.M. Kasko, J.A. Fairbairn, K.S. Anseth, Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater. 22, 61–66 (2010)

    Article  Google Scholar 

  23. S.J. Bryant, C.R. Nuttleman, K.S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000)

    Article  Google Scholar 

  24. Biomaterials Science: An Introduction to Materials and Medicine. (Elsevier Academic Press, New York, 2004)

    Google Scholar 

  25. K. Han, W.-N. Yin, J.-X. Fan, F.-Y. Cao, X.-Z. Zhang, Photo-activatable substrates for site-specific differentiation of stem cells. ACS Appl. Mater. Interfaces 7, 23679–23684 (2015)

    Article  Google Scholar 

  26. Y.-H. Gong et al., Photoresponsive ‘smart template’ via host-guest interaction for reversible cell adhesion. Macromolecules 44, 7499–7502 (2011)

    Article  Google Scholar 

  27. D. Liu, Y. Xie, H. Shao, X. Jiang, Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew. Chem. Int. Ed. 48, 4406–4408 (2009)

    Article  Google Scholar 

  28. I. Tomatsu, K. Peng, A. Kros, Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)

    Article  Google Scholar 

  29. G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008)

    Article  Google Scholar 

  30. M.T. Frey, Y. Wang, A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter 5, 1918–1924 (2009)

    Article  Google Scholar 

  31. A.M. Rosales, K.M. Mabry, E.M. Nehls, K.S. Anseth, Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)

    Article  Google Scholar 

  32. M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)

    Article  Google Scholar 

  33. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)

    Article  Google Scholar 

  34. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543 (2007)

    Article  Google Scholar 

  35. P.T. Mather, X. Luo, I.A. Rousseau, Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)

    Article  Google Scholar 

  36. A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)

    Article  Google Scholar 

  37. W. Small IV, P. Singhal, T.S. Wilson, D.J. Maitland, Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 20, 3356–3366 (2010)

    Article  Google Scholar 

  38. K.A. Davis, X. Luo, P.T. Mather, J.H. Henderson, Shape memory polymers for active cell culture. J. Vis. Exp. (2011). https://doi.org/10.3791/2903

  39. R.M. Baker, J.H. Henderson, P.T. Mather, Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J. Mater. Chem. B 1, 4916–4920 (2013)

    Article  Google Scholar 

  40. L.F. Tseng, P.T. Mather, J.H. Henderson, Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 9, 8790–8801 (2013)

    Article  Google Scholar 

  41. H. Lv, J. Leng, Y. Liu, S. Du, Shape-memory polymer in response to solution. Adv. Eng. Mater. 10, 592–595 (2008)

    Article  Google Scholar 

  42. H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)

    Article  Google Scholar 

  43. N.G. Sahoo, Y.C. Jung, J.W. Cho, Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater. Manuf. Process. 22, 419–423 (2007)

    Article  Google Scholar 

  44. D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)

    Article  Google Scholar 

  45. W. Small IV, T.S. Wilson, W.J. Benett, J.M. Loge, D.J. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)

    Article  Google Scholar 

  46. Q. Shou, K. Uto, M. Iwanaga, M. Ebara, T. Aoyagi, Near-infrared light-responsive shape-memory poly(ε-caprolactone) films that actuate in physiological temperature range. Polym. J. 46, 492–498 (2014)

    Article  Google Scholar 

  47. Y. Yu, T. Ikeda, Photodeformable polymers: A new kind of promising smart material for micro- and nano-applications. Macromol. Chem. Phys. 206, 1705–1708 (2005)

    Article  Google Scholar 

  48. A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Dev. 7, 357–379 (2010)

    Article  Google Scholar 

  49. K.A. Davis, K.A. Burke, P.T. Mather, J.H. Henderson, Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32, 2285–2293 (2011)

    Article  Google Scholar 

  50. R.M. Baker, L.F. Tseng, M.T. Iannolo, M.E. Oest, J.H. Henderson, Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study. Biomaterials 76, 388–398 (2016)

    Article  Google Scholar 

  51. X. Xu et al., Shape memory RGD-containing networks: Synthesis, characterization, and application in cell culture. Macromol. Symp. 309–310, 162–172 (2011)

    Article  Google Scholar 

  52. P. Yang, R.M. Baker, J.H. Henderson, P.T. Mather, In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter 9, 4705–4714 (2013)

    Article  Google Scholar 

  53. R.M. Baker, M.E. Brasch, M.L. Manning, J.H. Henderson, Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density. J. R. Soc. Interface 11, 20140386 (2014)

    Article  Google Scholar 

  54. M. Ebara et al., Focus on the interlude between topographic transition and cell response on shape-memory surfaces. Polym. (United Kingdom) 55, 5961–5968 (2014)

    Google Scholar 

  55. T. Gong et al., The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 3, 1608–1619 (2014)

    Article  Google Scholar 

  56. P.Y. Mengsteab et al., Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 86, 1–10 (2016)

    Article  Google Scholar 

  57. S.A. Turner, J. Zhou, S.S. Sheiko, V.S. Ashby, Switchable micropatterned surface topographies mediated by reversible shape memory. ACS Appl. Mater. Interfaces 6, 8017–8021 (2014)

    Article  Google Scholar 

  58. D.M. Le, M.A. Tycon, C.J. Fecko, V.S. Ashby, Near-infrared activation of semi-crystalline shape memory polymer nanocomposites. J. Appl. Polym. Sci. 130, 4551–4557 (2013)

    Google Scholar 

  59. Q. Shou, K. Uto, W.-C. Lin, T. Aoyagi, M. Ebara, Near-infrared-irradiation-induced remote activation of surface shape-memory to direct cell orientations. Macromol. Chem. Phys. 215, 2473–2481 (2014)

    Article  Google Scholar 

  60. C.A. Goubko, S. Majumdar, A. Basak, X. Cao, Hydrogel cell patterning incorporating photocaged RGDS peptides. Biomed. Microdev. 12, 555–568 (2010)

    Article  Google Scholar 

  61. J. Nakanishi et al., Spatiotemporal control of cell adhesion on a self-assembled monolayer having a photocleavable protecting group. Anal. Chim. Acta 578, 100–104 (2006)

    Article  Google Scholar 

  62. J. Nakanishi et al., Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. J. Am. Chem. Soc. 129, 6694–6695 (2007)

    Article  Google Scholar 

  63. J. Nakanishi, H. Nakayama, K. Yamaguchi, A.J. Garcia, Y. Horiike, Dynamic culture substrate that captures a specific extracellular matrix protein in response to light. Sci. Technol. Adv. Mater. 12, 44608 (2011)

    Article  Google Scholar 

  64. Y. Kikuchi et al., Grafting poly(ethylene glycol) to a glass surface via a photocleavable linker for light-induced cell micropatterning and cell proliferation control. Chem. Lett. 37, 1062–1063 (2008)

    Article  Google Scholar 

  65. Y. Kikuchi et al., Arraying heterotypic single cells on photoactivatable cell-culturing substrates. Langmuir 24, 13084–13095 (2008)

    Article  Google Scholar 

  66. S. Kaneko et al., Photocontrol of cell adhesion on amino-bearing surfaces by reversible conjugation of poly(ethylene glycol) via a photocleavable linker. Phys. Chem. Chem. Phys. 13, 4051–4059 (2011)

    Article  Google Scholar 

  67. M. Kamimura et al., Facile preparation of a photoactivatable surface on a 96-well plate: A versatile and multiplex cell migration assay platform. Phys. Chem. Chem. Phys. 17, 14159–14167 (2015)

    Article  Google Scholar 

  68. S. Petersen et al., Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. 47, 3192–3195 (2008)

    Article  Google Scholar 

  69. J. Nakanishi et al., Precise patterning of photoactivatable glass coverslip for fluorescence observation of shape-controlled cells. Supramol. Chem. 22, 396–405 (2010)

    Article  Google Scholar 

  70. Y. Shimizu, H. Boehm, K. Yamaguchi, J.P. Spatz, J. Nakanishi, A photoactivatable nanopatterned substrate for analyzing collective cell migration with precisely tuned cell-extracellular matrix ligand interactions. PLoS One 9(3), e91875 (2014). https://doi.org/10.1371/journal.pone.0091875

    Article  Google Scholar 

  71. Y. Ohmuro-Matsuyama, Y. Tatsu, Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew. Chem. Int. Ed. 47, 7527–7529 (2008)

    Article  Google Scholar 

  72. M.D. Pierschbacher, E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)

    Article  Google Scholar 

  73. G.S. Nowakowski et al., A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22, 1030–1038 (2004)

    Article  Google Scholar 

  74. F.-Y. Cao, W.-N. Yin, J.-X. Fan, R.-X. Zhuo, X.-Z. Zhang, A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 3, 345–351 (2015)

    Article  Google Scholar 

  75. M.W. Tibbitt, A.M. Kloxin, K.U. Dyamenahalli, K.S. Anseth, Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter 6, 5100 (2010)

    Article  Google Scholar 

  76. B. Wildt, D. Wirtz, P.C. Searson, Programmed subcellular release for studying the dynamics of cell detachment. Nat. Methods 6, 211–213 (2009)

    Article  Google Scholar 

  77. A.J. Ridley et al., Cell migration: Integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  Google Scholar 

  78. P. Friedl, B. Weigelin, Interstitial leukocyte migration and immune function. Nat. Immunol. 9, 960–969 (2008)

    Article  Google Scholar 

  79. P.L. Ryan, R.A. Foty, J. Kohn, M.S. Steinberg, Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc. Natl. Acad. Sci. 98, 4323–4327 (2001)

    Article  Google Scholar 

  80. J. Bourget, M. Guillemette, T. Veres, F.A. Auger, L. Germain, Alignment of cells and extracellular matrix within tissue-engineered substitutes. Adv. Biomater. Sci. Biomed. Appl. Ref., 365–390 (2013). https://doi.org/10.5772/54142

  81. C.M. Kirschner, D.L. Alge, S.T. Gould, K.S. Anseth, Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv. Healthc. Mater. 3, 649–657 (2014)

    Article  Google Scholar 

  82. F. Guilak et al., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009)

    Article  Google Scholar 

  83. S. Tavella et al., Regulated expression of fibronectin, laminin and related integrin receptors during the early chondrocyte differentiation. J. Cell Sci. 110, 2261–2270 (1997)

    Google Scholar 

  84. A.M. Kloxin, J.A. Benton, K.S. Anseth, In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31, 1–8 (2010)

    Article  Google Scholar 

  85. H. Wang, S.M. Haeger, A.M. Kloxin, L.A. Leinwand, K.S. Anseth, Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One 7 (2012)

    Google Scholar 

  86. C. Yang, M.W. Tibbitt, L. Basta, K.S. Anseth, Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014)

    Article  Google Scholar 

  87. S. Dupont et al., Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011)

    Article  Google Scholar 

  88. G. Halder, S. Dupont, S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Publ. Gr. 13, 591–600 (2012)

    Google Scholar 

  89. M.J. Salierno, A.J. Garcia, A. Del Campo, Photo-activatable surfaces for cell migration assays. Adv. Funct. Mater. 23, 5974–5980 (2013)

    Article  Google Scholar 

  90. R.M. Pope, E.S. Fry, Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurement. Appl. Opt. 36, 8710–8723 (1997)

    Article  Google Scholar 

  91. H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pede, M.E., Henderson, J.H. (2018). The Use of Photo-Activatable Materials for the Study of Cell Biomechanics and Mechanobiology. In: Van Hoorick, J., Ottevaere, H., Thienpont, H., Dubruel, P., Van Vlierberghe, S. (eds) Polymer and Photonic Materials Towards Biomedical Breakthroughs. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-75801-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75801-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75800-8

  • Online ISBN: 978-3-319-75801-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics