Skip to main content

Targeting Aquaporins for Conferring Salinity Tolerance in Crops

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 1

Abstract

Salinity is one of the well-known abiotic stresses which affects crop productivity through imposing ion imbalance and disrupting the metabolic pathways. Soil salinity is dramatically increasing throughout the world because of climate change, rise in sea levels, excessive irrigation, and natural leaching process. To overcome this problem, many approaches were reported including selection of natural salt-tolerant variety, breeding program, and genetic-engineered plants. Membrane intrinsic proteins (MIPs; also called aquaporins) are membrane channel proteins initially discovered as water channels, but their roles in the transport of small neutral solutes, metal ions, and gasses are now well established. Based on homology and subcellular localization, plant MIPs are divided into four major subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs). Besides these four subfamilies, some unique subfamilies were reported such as GlpF-like intrinsic proteins (GIPs), hybrid intrinsic proteins (HIPs), and the uncategorized X intrinsic proteins (XIPs). In plants, MIPs are involved in diverse physiological roles such as seed germination; fruit ripening; leaf, petal, and stomata movement; phloem loading and unloading; reproduction; and stress response. However, a large number of studies have suggested the involvement of MIPs in various abiotic stresses, including drought, salt, and cold stress. PIPs and TIPs have shown differential regulation pattern in roots and shoots of Arabidopsis, barley, and maizeĀ in salinity stress. Moreover, overexpression studies of various PIPs and TIPs in plant suggest their possible role in salt tolerance. Transcriptome analyses of citrus under salt stress showed that in addition to PIPs and TIPs, most of the NIPs, XIPs, and SIPs were differentially regulated in root tissues. In the present chapter, we discussed roles of plant aquaporins in salinity stress and exploitating the same for genetic engineering approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GIPs:

GlpF-like intrinsic proteins

HIPs:

Hybrid intrinsic proteins

McMipA and McMipC:

Mesembryanthemum crystallinum MIP-related genes

MIPs:

Membrane intrinsic proteins

NIPs:

NOD26-like intrinsic proteins

PIPs:

Plasma membrane intrinsic proteins

SIPs:

Small basic intrinsic proteins

TIPs:

Tonoplast intrinsic proteins

XIPs:

Uncategorized X intrinsic proteins

References

  • Abdelkader AF, El-khawas S, El-Din El-Sherif NA, Hassanein RA, Emam MA, Hassan RE (2012) Expression of aquaporin gene (OsPIP1-3) in salt-stressed rice (Oryza sativa L.) plants pre-treated with the neurotransmitter (dopamine). Plant Omics 5(6):532

    CASĀ  Google ScholarĀ 

  • Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4(1):9

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15(2):439ā€“447

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Alexandersson E, Fraysse L, Sjƶvall-Larsen S, Gustavsson S, Fellert M, Karlsson M et al (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59(3):469ā€“484

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ampah-Korsah H, Anderberg HI, Engfors A, Kirscht A, Norden K, Kjellstrom S, Kjellbom P, Johanson U (2016) The aquaporin splice variant NbXIP1; 1Ī± is permeable to boric acid and is phosphorylated in the N-terminal domain. Front Plant Sci 7

    Google ScholarĀ 

  • Ampah-Korsah H, Sonntag Y, Engfors A, Kirscht A, Kjellbom P, Johanson U (2017) Single amino acid substitutions in the selectivity filter render NbXIP1;1Ī± aquaporin water permeable. BMC Plant Biol 17(1):61

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162(4):2028ā€“2041

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66(2):306ā€“317

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots, molecular and cellular features of aquaporin expression. Plant Physiol 139(2):790ā€“805

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Byrt CS, Zhao M, Kourghi M, Bose J, Henderson SW, Qiu J, Gilliham M, Schultz C, Schwarz M, Ramesh SA, Yool A (2017) Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant Cell Environ 40:802ā€“815

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a Water Channel from Escherichia coli. J Biol Chem 270(49):29063ā€“29066

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carbrey JM, Bonhivers M, Boeke JD, Agre P (2001) Aquaporins in Saccharomyces: characterization of a second functional water channel protein. PNAS 98(3):1000ā€“1005

    Google ScholarĀ 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11(2):215ā€“221

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Chang W, Liu X, Zhu J, Fan W, Zhang Z (2016) An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. Plant Cell Rep 35(2):385ā€“395

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122(4):1025ā€“1034

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125(3):1206ā€“1215

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133ā€“139

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cohen D, Bogeat-Triboulot MB, Vialet-Chabrand S, Merret R, Courty PE, Moretti S, Bizet F, Guilliot A, Hummel I (2013) Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy? PLoS One 8(2):e55506

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cramer GR, ErgĆ¼l A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct integr Genomic 7(2):111ā€“134

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Danielson Jƅ, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8(1):45

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Deshmukh RK, Nguyen HT, Belanger RR (2017) Aquaporins: dynamic role and regulation. Frontiers in Plant Sci 8:1420

    ArticleĀ  Google ScholarĀ 

  • Deshmukh RK, Sonah H, BĆ©langer RR (2016) Plant Aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7

    Google ScholarĀ 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, GuĆ©rin V, Carpentier G, Sonah H, LabbĆ© C, Isenring P, Belzile FJ, BĆ©langer RR (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83(3):489ā€“500

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ermawati N, Liang YS, Cha JY, Shin D, Jung MH, Lee JJ, Lee BH, Han CD, Lee KH, Son D (2009) A new TIP homolog, ShTIP, from Salicornia shows a different involvement in salt stress compared to that of TIP from Arabidopsis. Biol plantarum 53(2):271ā€“277

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct integr genomic 7(4):263

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fortin MG, Morrison NA, Verma DP (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15(2):813ā€“824

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51(5):767ā€“775

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gattolin S, Sorieul M, Hunter PR, Khonsari RH, Frigerio L (2009) In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots. BMC Plant Biol 9(1):133

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gillespie J, Rogers SW, Deery M, Dupree P, Rogers JC (2005) A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. Plant J 41(3):429ā€“441

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Groszmann M, Osborn HL, Evans JR (2017) Carbon dioxide and water transport through plant aquaporins. Plant Cell Environ 40(6):938ā€“961

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9(1):134

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16(3):277ā€“286

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011) Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant Cell Physiol 52(4):663ā€“675

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS One 10(6):e0128025

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hu W, Hou X, Huang C, Yan Y, Tie W, Ding Z, Wei Y, Liu J, Miao H, Lu Z, Li M (2015) Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana. Int J Mol Sci 16(8):19728ā€“19751

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579(25):5814ā€“5820

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Iyer NJ, Tang Y, Mahalingam R (2013) Physiological., biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ 36(3):706ā€“720

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713ā€“725

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC (1998) Ī“-Tonoplast intrinsic protein defines unique plant vacuole functions. PNAS 95(22):12995ā€“12999

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11(10):1867ā€“1882

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19(4):456ā€“461

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjƶvall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358ā€“1369

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS (2017) Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica Rapa. BMC Plant Biol 17(1):23

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123(1):111ā€“124

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kozono D, Ding X, Iwasaki I, Meng X, Kamagata Y, Agre P, Kitagawa Y (2003) Functional expression and characterization of an archaeal aquaporin AqpM from Methanothermobacter marburgensis. J Biol Chem 278(12):10649ā€“10656

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6(1):27

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li DD, Wu YJ, Ruan XM, Li B, Zhu L, Wang H, Li XB (2009) Expressions of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Rep 28(2):291ā€“300

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165(18):1879ā€“1888

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li J, Cai W (2015) A ginseng PgTIP1 gene whose protein biological activity related to ser 128 residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. Plant Sci 234:74ā€“85

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li J, Yu G, Sun X, Liu Y, Liu J, Zhang X, Jia C, Pan H (2015) AcPIP2, a plasma membrane intrinsic protein from halophyte Atriplex Canescens, enhances plant growth rate and abiotic stress tolerance when overexpressed in Arabidopsis Thaliana. Plant Cell Rep 34(8):1401ā€“1415

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ligaba A, Katsuhara M, Shibasaka M, Djira G (2011) Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare). C R Biol 334(2):127ā€“139

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu Q, Umeda M, Uchimiya H (1994) Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Mol Biol 26(6):2003ā€“2007

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F, Sakr S, Label P, Julien JL, Gousset-Dupont A, Venisse JS (2012) Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63(5):2217ā€“2230

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Luu D-T, MartiniĆØre A, Sorieul M, Runions J, Maurel C (2012) Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. Plant J 69(5):894ā€“905

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maeshima M, Ishikawa F (2008) ER membrane aquaporins in plants. PflĆ¼gers Arch-EJP 456(4):709ā€“716

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martins CD, Pedrosa AM, Du D, GonƧalves LP, Yu Q, GmitterJr FG, Costa MG (2015) Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.) PLoS One 10(9):e0138786

    ArticleĀ  Google ScholarĀ 

  • Martins CP, Neves DM, Cidade LC, Mendes AF, Silva DC, Almeida AA, Coelho-Filho MA, Gesteira AS, Soares-Filho WS, Costa MG (2017) Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions. Planta 245(5):951ā€“963

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95(4):1321ā€“1358

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595ā€“624

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Menon TG, Soniya EV (2014) Isolation and characterization of salt-induced genes from Rhizophora apiculata Blume, a true mangrove by suppression subtractive hybridization. Curr Sci 107(4):650ā€“655

    CASĀ  Google ScholarĀ 

  • Mitra BN, Yoshino R, Morio T, Yokoyama M, Maeda M, Urushihara H, Tanaka Y (2000) Loss of a member of the aquaporin gene family, aqpA affects spore dormancy in Dictyostelium. Gene 251(2):131ā€“139

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443ā€“462

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mohammadkhani N, Heidari R, Abbaspour N, Rahmani F (2012) Growth responses and aquaporin expression in grape genotypes under salinity. Iran J Plant Physiol 2:497ā€“507

    Google ScholarĀ 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6(1)

    Google ScholarĀ 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651ā€“681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37(6):389ā€“397

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85(4):563ā€“572

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) BMC Plant Biol 10(1):142

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pawłowicz I, Rapacz M, Perlikowski D, Gondek K, Kosmala A (2017) Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 4:1ā€“5

    Google ScholarĀ 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226(3):729ā€“740

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C (2016) Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Mol Biol 92(6):731ā€“744

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Poxleitner M, Rogers SW, Lacey Samuels A, Browse J, Rogers JC (2006) A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J 47(6):917ā€“933

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849ā€“1866

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Qian Z-J, Song J-J, Chaumont F, Ye Q (2015) Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant Cell Environ 38(3):461ā€“473

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161(4):1783ā€“1794

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Reddy PS, Rao TS, Sharma KK, Vadez V (2015) Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.) Plant Gene 1:18ā€“28

    ArticleĀ  CASĀ  Google ScholarĀ 

  • RougĆ© P, Barre A (2008) A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants. Biochem Biophys Res Commun 367(1):60ā€“66

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568ā€“1577

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Secchi F, Pagliarani C, Zwieniecki MA (2017) The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ 40(6):858ā€“871

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36(12):1065ā€“1078

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2015) Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Mol Biol 88(1ā€“2):41ā€“52

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11(8):942ā€“952

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Srivastava AK, Penna S, Nguyen DV, Tran LS (2016) Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 36(3):389ā€“398

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43(10):1229ā€“1237

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sun H, Li L, Lou Y, Zhao H, Yang Y, Wang S, Gao Z (2017) The bamboo aquaporin gene PeTIP4;1ā€“1 confers drought and salinity tolerance in transgenic Arabidopsis. Plant Cell Rep 36(4):597ā€“609

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tao P, Zhong X, Li B, Wang W, Yue Z, Lei J, Guo W, Huang X (2014) Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Gen Genomics 289(6):1131ā€“1145

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ueda M, Tsutsumi N, Fujimoto M (2016) Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochem Biophys Res Commun 474(4):742ā€“746

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Venkatesh J, Yu JW, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem 73:392ā€“404

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vera-Estrella R (2004) Novel regulation of Aquaporins during osmotic stress. Plant Physiol 135(4):2318ā€“2329

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(8):1165ā€“1175

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D et al (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168(11):1241ā€“1248

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang L-L, Chen A-P, Zhong N-Q, Liu N, Wu X-M, Wang F, Yang C-L, Romero MF, Xia G-X (2014) The Thellungiella salsuginea tonoplast aquaporin TsTIP1;2 functions in protection against multiple abiotic stresses. Plant Cell Physiol 55(1):148ā€“161

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wudick MM, Luu DT, Tournaire-Roux C, Sakamoto W, Maurel C (2014) Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction. Plant Physiol 164(4):1697ā€“1706

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xin S, Yu G, Sun L, Qiang X, Xu N, Cheng X (2014) Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins. J Plant Res 127(6):695ā€“708

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, Xu B, Jin Z (2014) A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14(1):59

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7(8):1129ā€“1142

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yool AJ, Stamer WD, Regan JW (1996) Forskolin stimulation of water and cation permeability in aquaporin1 water channels. Science 30:1216ā€“1218

    ArticleĀ  Google ScholarĀ 

  • Yu GH, Zhang X, Ma HX (2015) Changes in the physiological parameters of -transformed wheat plants under salt stress. Int J Genomics 2015:1ā€“6

    ArticleĀ  Google ScholarĀ 

  • Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA, Trethowan RM (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.) PLoS One 8(2):e56312

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang DY, Kumar M, Xu L, Wan Q, Huang YH, Xu ZL, He XL, Ma JB, Pandey GK, Shao HB (2017a) Genome-wide identification of major intrinsic proteins in Glycine soja and characterization of GmTIP2;1 function under salt and water stress. Sci Rep 7

    Google ScholarĀ 

  • Zhang D, Huang Y, Kumar M, Wan Q, Xu Z, Shao H, Pandey GK (2017b) Heterologous expression of GmSIP1;3 from soybean in tobacco showed and growth retardation and tolerance to hydrogen peroxide. Plant Sci 263:210ā€“218

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhao YY, Yan F, Hu LP, Zhou XT, Zou ZR, Cui LR (2015) Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress. Genet Mol Res 14(2):6401ā€“6412

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhou L, Wang C, Liu R, Han Q, Vandeleur RK, Du J, Tyerman S, Shou H (2014) Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance. BMC Plant Biol 14(1):181

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhu C, Schraut D, Hartung W, SchƤffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56(421):2971ā€“2981

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

The work in KK lab was supported by financial assistance from Board of Research in Nuclear Sciences (37(1)/14/28/2016-BRNS/37248), India. AAS acknowledges the Senior Research Fellowship provided by University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K., Saddhe, A.A. (2018). Targeting Aquaporins for Conferring Salinity Tolerance in Crops. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_3

Download citation

Publish with us

Policies and ethics