Skip to main content

Finite Element Models of the Knee Joint

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Geometry, material properties and loading and boundary conditions are important aspects in FEA modeling of the knee. Many assumptions and concessions must be made while considering these aspects, as well as the computational time. For example, it is very computationally expensive to model the cartilage or the menisci as poroelastic materials. Moreover, modeling the cartilage as three layers (superficial, middle and deep) is very difficult using 3D models, but can be easily accomplished using 2D models, and simulations can therefore be completely performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Rahman, E., & Hefzy, M. S. (1993). A two-dimensional dynamic anatomical model of the human knee joint. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, 115, 357.

    Google Scholar 

  • Abdel-Rahman, E. M., & Hefzy, M. S. (1998). Three-dimensional dynamic behaviour of the human knee joint under impact loading. Medical Engineering & Physics, 20(4), 276–290.

    Google Scholar 

  • Adams, C. R., et al. (2007). Effects of rotator cuff tears on muscle moment arms: A computational study. Journal of Biomechanics, 40(15), 3373–3380.

    Google Scholar 

  • Adouni, M., Shirazi-Adl, A., & Shirazi, R. (2012). Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses. Journal of Biomechanics, 45(12), 2149–2156.

    Google Scholar 

  • Agneskirchner, J. D., et al. (2004). Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: A biomechanical study in human cadaveric knees. Archives of Orthopaedic and Trauma Surgery, 124(9), 575–584.

    Google Scholar 

  • Ali, A. A., et al. (2016). Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee. Journal of Biomechanics, 49(2), 302–309.

    Google Scholar 

  • Anderson, D. D., Brown, T. D., & Radin, E. L. (1993). The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission. Clinical Orthopaedics and Related Research, 286, 298–307.

    Google Scholar 

  • Anderson, A. E., et al. (2005). Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. Journal of Biomechanical Engineering, 127(3), 364–373.

    Google Scholar 

  • Anderson, A. E., et al. (2008). Validation of finite element predictions of cartilage contact pressure in the human hip joint. Journal of Biomechanical Engineering, 130(5), 51008.

    Google Scholar 

  • Andriacchi, T. P., et al. (1983). Model studies of the stiffness characteristics of the human knee joint. Journal of Biomechanics, 16(1), 23–29.

    Google Scholar 

  • Armstrong, C. G., Lai, W. M., & Mow, V. C. (1984). An analysis of the unconfined compression of articular cartilage. Journal of Biomechanical Engineering, 106(2), 165–173.

    Google Scholar 

  • Armstrong, C. G., Mow, V. C., & Wirth, C. R. (1985). Biomechanics of impact-induced microdamage to articular cartilage: A possible genesis for chondromalacia patella. In AAOS Symposium on Sports Medicine: The Knee CV Mosby Co, St. Louis (pp. 70–84).

    Google Scholar 

  • Arnoux, P. J., et al. (2002). A visco-hyperelastic model with damage for the knee ligaments under dynamic constraints. Computer Methods in Biomechanics & Biomedical Engineering, 5(2), 167–174.

    MathSciNet  Google Scholar 

  • Aspden, R. M. (1985). A model for the function and failure of the meniscus. Engineering in Medicine, 14(3), 119–122.

    Google Scholar 

  • Ateshian, G. A., & Wang, H. (1995). A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Journal of Biomechanics, 28(11), 1341–1355.

    Google Scholar 

  • Ateshian, G. A., et al. (1994). An asymptotic solution for the contact of two biphasic cartilage layers. Journal of Biomechanics, 27(11), 1347–1360.

    Google Scholar 

  • Athanasiou, K. A., et al. (1991). Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. Journal of Orthopaedic Research, 9(3), 330–340.

    MathSciNet  Google Scholar 

  • Athanasiou, K. A., et al. (1995). Effects of excimer laser on healing of articular cartilage in rabbits. Journal of Orthopaedic Research, 13(4), 483–494.

    Google Scholar 

  • Atkinson, P. J., & Haut, R. C. (1995). Subfracture insult to the human cadaver patellofemoral joint produces occult injury. Journal of Orthopaedic Research, 13(6), 936–944.

    Google Scholar 

  • Atkinson, T. S., Haut, R. C., & Altiero, N. J. (1997). Fissuring of articular cartilage during blunt insult: An investigation of failure criteria. Transactions of Orthopaedic Research Society, 22, 824.

    Google Scholar 

  • Bach, B. R., et al. (1992). Force displacement characteristics of the posterior cruciate ligament. The American journal of sports medicine, 20(1), 67–72.

    Google Scholar 

  • Bachtar, F., Chen, X., & Hisada, T. (2006). Finite element contact analysis of the hip joint. Medical & Biological Engineering & Computing, 44(8), 643–651.

    Google Scholar 

  • Bartel, D. L., et al. (1977). Surgical repositioning of the medial collateral ligament. An anatomical and mechanical analysis. Journal of Bone and Joint Surgery. American Volume, 59(1), 107–116.

    Google Scholar 

  • Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Bei, Y., & Fregly, B. J. (2004). Multibody dynamic simulation of knee contact mechanics. Medical Engineering & Physics, 26(9), 777–789.

    Google Scholar 

  • Bei, Y., et al. (2004). The relationship between contact pressure, insert thickness, and mild wear in total knee replacements. Computer Modeling in Engineering and Sciences, 6, 145–152.

    Google Scholar 

  • Beillas, P., et al. (2004). A new method to investigate in vivo knee behavior using a finite element model of the lower limb. Journal of Biomechanics, 37(7), 1019–1030.

    Google Scholar 

  • Bendjaballah, M. Z., Shirazi-Adl, A., & Zukor, D. J. (1995). Biomechanics of the human knee joint in compression: Reconstruction, mesh generation and finite element analysis. The Knee, 2(2), 69–79.

    Google Scholar 

  • Bendjaballah, M. Z., Shirazi-Adl, A., & Zukor, D. J. (1997). Finite element analysis of human knee joint in varus-valgus. Clinical Biomechanics, 12(3), 139–148.

    Google Scholar 

  • Benli, S., et al. (2008). Evaluation of bone plate with low-stiffness material in terms of stress distribution. Journal of Biomechanics, 41(15), 3229–3235.

    Google Scholar 

  • Benvenuti, J. F. (1998). Modélisation tridimensionnelle du genou humain. Lausanne: Swiss Federal Institute of Technology.

    Google Scholar 

  • Benzakour, T., et al. (2010). High tibial osteotomy for medial osteoarthritis of the knee: 15 years follow-up. International orthopaedics, 34(2), 209–215.

    Google Scholar 

  • Besier, T. F., et al. (2005). A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Medicine and Science in Sports and Exercise, 37(11), 1924.

    Google Scholar 

  • Besnault, B. (1999). Modélisation par éléments finis du bassin humain en configuration de chocs automobiles. Ph.D. thesis, ENSAM, Paris.

    Google Scholar 

  • Beynnon, B., et al. (1996). A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, 118, 227–239.

    Google Scholar 

  • Bideau, N., et al. (2011). Développement d’un modèle ostéoarticulaire du genou humain pour une analyse dynamique du contact en grands déplacements. In 10e colloque national en calcul des structures (p. Clé-USB).

    Google Scholar 

  • Bischoff, J. E., et al. (2008). Advanced material modeling in a virtual biomechanical knee. In Abaqus Users’ Conference.

    Google Scholar 

  • Blankevoort, L., & Huiskes, R. (1991). Ligament-bone interaction in a three-dimensional model of the knee. Journal of Biomechanical Engineering, 113(3), 263–269.

    Google Scholar 

  • Blankevoort, L., & Huiskes, R. (1996a). A mechanism for rotation restraints in the knee joint. Journal of Orthopaedic Research, 14(4), 676–679.

    Google Scholar 

  • Blankevoort, L., & Huiskes, R. (1996b). Validation of a three-dimensional model of the knee. Journal of Biomechanics, 29(7), 955–961.

    Google Scholar 

  • Blankevoort, L., Huiskes, R. & De Lange, A. (1988). The envelope of passive knee joint motion. Journal of Biomechanics, 21(9), 705711–709720.

    Google Scholar 

  • Blankevoort, L., et al. (1991). Articular contact in a three-dimensional model of the knee. Journal of Biomechanics, 24(11), 1019–1031.

    Google Scholar 

  • Blecha, L. D., et al. (2005). How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 8(5), 307–313.

    Google Scholar 

  • Brantigan, O. C., & Voshell, A. F. (1941). The mechanics of the ligaments and menisci of the knee joint. Journal of Bone and Joint Surgery. American Volume, 23(1), 44–66.

    Google Scholar 

  • Brown, T. D., & DiGioia, A. M. (1984). A contact-coupled finite element analysis of the natural adult hip. Journal of Biomechanics, 17(6), 437–448.

    Google Scholar 

  • Brown, T. D., Digioia, A. M., & Mears, D. C. (1983). A contact coupled nonlinear finite element analysis of the hip joint. In Transactions of 29th Annual Meeting ORS (p. 66).

    Google Scholar 

  • Brown, T. D., & Ferguson, A. B. (1980). Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthopaedica Scandinavica, 51(1–6), 429–437.

    Google Scholar 

  • Büchler, P., et al. (2002). A finite element model of the shoulder: Application to the comparison of normal and osteoarthritic joints. Clinical Biomechanics, 17(9), 630–639.

    Google Scholar 

  • Butler, D. L., Kay, M. D., & Stouffer, D. C. (1986). Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. Journal of Biomechanics, 19(6), 425–432.

    Google Scholar 

  • Carter, D. R., & Wong, M. (2003). Modelling cartilage mechanobiology. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1437), 1461–1471.

    Google Scholar 

  • Chao, E. Y. S. (2003). Graphic-based musculoskeletal model for biomechanical analyses and animation. Medical Engineering & Physics, 25(3), 201–212.

    Google Scholar 

  • Clark, A. L., et al. (2003). In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint. Journal of Biomechanics, 36(4), 553–568.

    Google Scholar 

  • Cohen, Z. A., et al. (2001). Patellofemoral stresses during open and closed kinetic chain exercises An analysis using computer simulation. The American Journal of Sports Medicine, 29(4), 480–487.

    Google Scholar 

  • Cohen, Z. A., et al. (2003). Computer simulations of patellofemoral joint surgery patient-specific models for tuberosity transfer. The American Journal of Sports Medicine, 31(1), 87–98.

    Google Scholar 

  • Cowin, S. C. (2001). Bone mechanics handbook, CRC press.

    Google Scholar 

  • Crowninshield, R., Pope, M. H., & Johnson, R. J. (1976). An analytical model of the knee. Journal of Biomechanics, 9(6), 397–405.

    Google Scholar 

  • Dabiri, Y., & Li, L. P. (2013). Altered knee joint mechanics in simple compression associated with early cartilage degeneration. Computational and mathematical methods in medicine.

    MathSciNet  Google Scholar 

  • Dalstra, M., & Huiskes, R. (1995). Load transfer across the pelvic bone. Journal of Biomechanics, 28(6), 715–724.

    Google Scholar 

  • Dalstra, M., Huiskes, R., & Van Erning, L. (1995). Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering, 117(3), 272–278.

    Google Scholar 

  • Dalstra, M., et al. (1993). Mechanical and textural properties of pelvic trabecular bone. Journal of Biomechanics, 26(4–5), 523–535.

    Google Scholar 

  • Danylchuk, K. D., Finlay, J. B., & Krcek, J. P. (1978). Microstructural organization of human and bovine cruciate ligaments. Clinical Orthopaedics and Related Research, 131, 294–298.

    Google Scholar 

  • Dar, F. H., & Aspden, R. M. (2003). A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 217(5), 341–348.

    Google Scholar 

  • Debski, R. E., et al. (2005). Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. Journal of Shoulder and Elbow Surgery, 14(1), S24–S31.

    Google Scholar 

  • DeFrate, L. E., et al. (2004). In vivo tibiofemoral contact analysis using 3D MRI-based knee models. Journal of Biomechanics, 37(10), 1499–1504.

    Google Scholar 

  • Dhaher, Y. Y., Kwon, T.-H., & Barry, M. (2010). The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. Journal of Biomechanics, 43(16), 3118–3125.

    Google Scholar 

  • Donahue, T. L. H., et al. (2002). A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering, 124(3), 273–280.

    Google Scholar 

  • Donahue, T. L. H., et al. (2003). How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. Journal of Biomechanics, 36(1), 19–34.

    Google Scholar 

  • Donzelli, P., et al. (1997). Physiological joint incongruity significantly affects the load partitioning between the solid and fluid phases of articular cartilage. Transactions of the Orthopedic Research Society, 22, 82.

    Google Scholar 

  • Donzelli, P. S., et al. (1999). Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. Journal of Biomechanics, 32(10), 1037–1047.

    Google Scholar 

  • Drury, N. J., et al. (2010). The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function. Journal of Biomechanical Engineering, 132(12), 121003.

    Google Scholar 

  • Drury, N. J., et al. (2011). Finding consistent strain distributions in the glenohumeral capsule between two subjects: Implications for development of physical examinations. Journal of Biomechanics, 44(4), 607–613.

    Google Scholar 

  • Duchemin, L., et al. (2008). Prediction of mechanical properties of cortical bone by quantitative computed tomography. Medical Engineering & Physics, 30(3), 321–328.

    Google Scholar 

  • Duda, G. N., et al. (1998). Influence of muscle forces on femoral strain distribution. Journal of Biomechanics, 31(9), 841–846.

    Google Scholar 

  • Elias, J. J., et al. (2004). Evaluation of a computational model used to predict the patellofemoral contact pressure distribution. Journal of Biomechanics, 37(3), 295–302.

    MathSciNet  Google Scholar 

  • Ellis, B. J., et al. (2006). Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Journal of Orthopaedic Research, 24(4), 800–810.

    Google Scholar 

  • Ellis, B. J., et al. (2007). Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. Journal of Biomechanics, 40(3), 603–612.

    Google Scholar 

  • Erdemir, A., et al. (2006). An inverse finite-element model of heel-pad indentation. Journal of Biomechanics, 39(7), 1279–1286.

    Google Scholar 

  • Erdemir, A., et al. (2007). Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22(2), 131–154.

    Google Scholar 

  • Erdemir, A., et al. (2009). An elaborate data set characterizing the mechanical response of the foot. Journal of Biomechanical Engineering, 131(9), 94502.

    Google Scholar 

  • Essinger, J. R., et al. (1989). A mathematical model for the evaluation of the behaviour during flexion of condylar-type knee prostheses. Journal of Biomechanics, 22(11–12), 1229–1241.

    Google Scholar 

  • Fernandes, D. J. C. (2014). Finite element analysis of the ACL-deficient knee. Ph.D. thesis, IST, Universidade de Lisboa, Portugal.

    Google Scholar 

  • Fithian, D. C., Kelly, M. A., & Mow, V. C. (1990). Material properties and structure-function relationships in the menisci. Clinical Orthopaedics and Related Research, 252, 19–31.

    Google Scholar 

  • Fithian, D. C., et al. (1989). Human meniscus tensile properties: Regional variation and biochemical correlation. Transactions of the Orthopedic Research Society, 35, 205.

    Google Scholar 

  • FuJISAwA, Y., Masuhara, K., & Shiomi, S. (1979). The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. The Orthopedic Clinics of North America, 10(3), 585–608.

    Google Scholar 

  • Fung, Y.-C. (1993). Mechanical properties and active remodeling of blood vessels. In Biomechanics (pp. 321–391). Springer.

    MATH  Google Scholar 

  • Gardiner, J. C., & Weiss, J. A. (2003). Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research, 21(6), 1098–1106.

    Google Scholar 

  • Gardiner, J. C., Weiss, J. A., & Rosenberg, T. D. (2001). Strain in the human medial collateral ligament during valgus loading of the knee. Clinical Orthopaedics and Related Research, 391, 266–274.

    Google Scholar 

  • Garg, A., & Walker, P. S. (1990). Prediction of total knee motion using a three-dimensional computer-graphics model. Journal of Biomechanics, 23(1), 45–58.

    Google Scholar 

  • Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society, Interface, 3(6), 15–35.

    Google Scholar 

  • Gatti, C. J., et al. (2010). Development and validation of a finite element model of the superior glenoid labrum. Annals of Biomedical Engineering, 38(12), 3766–3776.

    Google Scholar 

  • Ghadiali, S. N., Banks, J., & Swarts, J. D. (2004). Finite element analysis of active Eustachian tube function. Journal of Applied Physiology, 97(2), 648–654.

    Google Scholar 

  • Ghadially, F. N., et al. (1978). Ultrastructure of rabbit semilunar cartilages. Journal of Anatomy, 125(Pt 3), 499.

    Google Scholar 

  • Gibson, M., et al. (1986). Analysis of the Müller anterolateral femorotibial ligament reconstruction using a computerized knee model. The American Journal of Sports Medicine, 14(5), 371–375.

    Google Scholar 

  • Girgis, F. G., Marshall, J. L., & Jem, A. R. S. A. M. (1975). The cruciate ligaments of the knee joint: Anatomical. functional and experimental analysis. Clinical Orthopaedics and Related Research, 106, 216–231.

    Google Scholar 

  • Goto, K., et al. (2002). Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. Journal of Orthopaedic Science, 7(2), 243–246.

    MathSciNet  Google Scholar 

  • Greis, P. E., et al. (2002). Meniscal injury: I. Basic science and evaluation. Journal of the American Academy of Orthopaedic Surgeons, 10(3), 168–176.

    Google Scholar 

  • Gu, K. B., & Li, L. P. (2011). A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci. Medical Engineering & Physics, 33(4), 497–503.

    Google Scholar 

  • Guess, T. M., et al. (2010). A subject specific multibody model of the knee with menisci. Medical Engineering & Physics, 32(5), 505–515.

    Google Scholar 

  • Halloran, J. P., et al. (2010). Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. Journal of Biomechanics, 43(14), 2810–2815.

    Google Scholar 

  • Halonen, K. S., et al. (2013). Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage—a 3D finite element study of stresses and strains in human knee joint. Journal of Biomechanics, 46(6), 1184–1192.

    Google Scholar 

  • Halonen, K. S., et al. (2014). Deformation of articular cartilage during static loading of a knee joint–experimental and finite element analysis. Journal of Biomechanics, 47(10), 2467–2474.

    Google Scholar 

  • Harris, M. D., et al. (2012). Finite element prediction of cartilage contact stresses in normal human hips. Journal of Orthopaedic Research, 30(7), 1133–1139.

    Google Scholar 

  • Haut, T. L., Hull, M. L., & Howell, S. M. (1997). A high accuracy three-dimensional coordinate digitizing system for reconstructing the geometry of diarthrodial joints. ASME-PUBLICATIONS-BED, 36, 17–18.

    Google Scholar 

  • Haut, R. C., Ide, T. M., & De Camp, C. E. (1995). Mechanical responses of the rabbit patello-femoral joint to blunt impact. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, 117, 402–408.

    Google Scholar 

  • Hayes, W. C., & Bouxsein, M. L. (1991). Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. Basic Orthopaedic Biomechanics, 2, 69–111.

    Google Scholar 

  • Hayes, W. C., & Mockros, L. F. (1971). Viscoelastic properties of human articular cartilage. Journal of Applied Physiology, 31(4), 562–568.

    Google Scholar 

  • Hayes, W. C., et al. (1972). A mathematical analysis for indentation tests of articular cartilage. Journal of Biomechanics, 5(5), 541–551.

    Google Scholar 

  • Hefzy, M. S., Grood, E. S., & Zoghi, M. (1987). An axisymmetric finite element model of the meniscus. In 1987 Advances in Bioengineering (pp. 51–52).

    Google Scholar 

  • Herzog, W. (2004). Effect of fluid boundary conditions on joint contact mechanics and applications to the modeling of osteoarthritic joints. Journal of Biomechanical Engineering, 126, 220.

    Google Scholar 

  • Herzog, W., et al. (1998). Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. Journal of Biomechanics, 31(12), 1137–1145.

    Google Scholar 

  • Hirokawa, S., & Tsuruno, R. (2000). Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. Journal of Biomechanics, 33(9), 1069–1077.

    Google Scholar 

  • Hodge, W. A., et al. (1986). Contact pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences, 83(9), 2879–2883.

    Google Scholar 

  • Holmes, M. H. (1986). Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. Journal of Biomechanical Engineering, 108(4), 372–381.

    Google Scholar 

  • Holzapfel, G. A. (2002). Nonlinear solid mechanics: A continuum approach for engineering science. Meccanica, 37(4), 489–490.

    Google Scholar 

  • Hsieh, H.-H., & Walker, P. S. (1976). Stabilizing mechanisms of the loaded and unloaded knee joint. Journal of Bone and Joint Surgery. American Volume, 58(1), 87–93.

    Google Scholar 

  • Izaham, R. M. A. R., et al. (2012). Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury, 43(6), 898–902.

    Google Scholar 

  • Johansson, T., Meier, P., & Blickhan, R. (2000). A finite-element model for the mechanical analysis of skeletal muscles. Journal of Theoretical Biology, 206(1), 131–149.

    Google Scholar 

  • Jolivet, E., Poméro, V., & Skalli, W. (2001). Finite element model of muscle. In International Symposium on Computer Methods in Biomechanics and Biomedical Engineering.

    Google Scholar 

  • Julkunen, P., et al. (2007). Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. Journal of Biomechanics, 40(8), 1862–1870.

    Google Scholar 

  • Kahle, W., et al. (1998). Système nerveux et organes des sens. Flammarion Médecine-Sciences, Paris.

    Google Scholar 

  • Kanamori, A., et al. (1998). The forces in the ACL and knee kinematics during the clinical “Pivot Shift” test. In Transactions of the Annual Meeting-Orthopaedic Research Society (p. 816). Orthopaedic research society.

    Google Scholar 

  • Katsamanis, F., & Raftopoulos, D. D. (1990). Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique. Journal of Biomechanics, 23(11), 1173–1184.

    Google Scholar 

  • Keer, L. M., Lewis, J. L., & Vithoontien, V. (1990). An analytical model of joint contact. Journal of Biomechanical Engineering, 112, 407.

    Google Scholar 

  • Kempson, G. E. (1979). Mechanical properties of articular cartilage. In M. A. R. Freeman (Ed.), Adult articular cartilage (pp. 313–414). Kent: Pitman medical.

    Google Scholar 

  • Kempson, G. E. (1980). The mechanical properties of articular cartilage. The Joints and Synovial Fluid, 2, 177–238.

    Google Scholar 

  • Kempson, G. E., et al. (1976). The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochimica et Biophysica Acta (BBA)-General Subjects, 428(3), 741–760.

    Google Scholar 

  • Kiapour, A. M., et al. (2014). The effect of ligament modeling technique on knee joint kinematics: A finite element study. Applied Mathematics, 4(5A), 91.

    Google Scholar 

  • Kluess, D., et al. (2009). A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Computer Methods and Programs in Biomedicine, 95(1), 23–30.

    Google Scholar 

  • Kohn, D., & Moreno, B. (1995). Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 11(1), 96–103.

    Google Scholar 

  • Korhonen, R. K., et al. (2003). Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. Journal of Biomechanics, 36(9), 1373–1379.

    Google Scholar 

  • Kurosawa, H., et al. (1985). Geometry and motion of the knee for implant and orthotic design. Journal of Biomechanics, 18(7), 487493–491499.

    Google Scholar 

  • Kusayama, T., et al. (1994). Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surgery, Sports Traumatology, Arthroscopy, 2(4), 234–237.

    Google Scholar 

  • Kwak, S. D., Blankevoort, L., & Ateshian, G. A. (2000). A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Computer Methods in Biomechanics and Biomedical Engineering, 3(1), 41–64.

    Google Scholar 

  • Laasanen, M. S., et al. (2003). Biomechanical properties of knee articular cartilage. Biorheology, 40(1, 2, 3), 133–140.

    Google Scholar 

  • Lechner, K., Hull, M. L., & Howell, S. M. (2000). Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? Journal of Orthopaedic Research, 18(6), 945–951.

    Google Scholar 

  • Lengsfeld, M., et al. (1998). Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Medical Engineering & Physics, 20(7), 515–522.

    Google Scholar 

  • LeRoux, M. A., & Setton, L. A. (2002). Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. Journal of Biomechanical Engineering, 124(3), 315–321.

    Google Scholar 

  • Li, L. P., Buschmann, M. D., & Shirazi-Adl, A. (2000). A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: Inhomogeneous response in unconfined compression. Journal of Biomechanics, 33(12), 1533–1541.

    Google Scholar 

  • Li, L., Cheung, J. T. M., & Herzog, W. (2009). Three-dimensional fibril-reinforced finite element model of articular cartilage. Medical & Biological Engineering & Computing, 47(6), 607.

    Google Scholar 

  • Li, L. P., & Herzog, W. (2004). The role of viscoelasticity of collagen fibers in articular cartilage: Theory and numerical formulation. Biorheology, 41(3–4), 181–194.

    Google Scholar 

  • Li, G., Lopez, O., & Rubash, H. (2001a). Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of Biomechanical Engineering, 123(4), 341–346.

    Google Scholar 

  • Li, G., Orlando, L., & Harry, H. (2001b). Variability of a three dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of Biomechanical Engineering-Transactions of the Asme, 123(4), 341–346.

    Google Scholar 

  • Li, G., Suggs, J., & Gill, T. (2002). The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: A three-dimensional computational simulation. Annals of Biomedical Engineering, 30(5), 713–720.

    Google Scholar 

  • Li, G., et al. (1998). Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: A porcine study. Journal of Orthopaedic Research, 16(1), 122–127.

    Google Scholar 

  • Li, G., et al. (1999a). A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering, 121(6), 657–662.

    Google Scholar 

  • Li, L. P., et al. (1999b). Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clinical Biomechanics, 14(9), 673–682.

    Google Scholar 

  • Li, G., et al. (2005a). In vivo articular cartilage contact kinematics of the knee an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. The American Journal of Sports Medicine, 33(1), 102–107.

    Google Scholar 

  • Li, L. P., et al. (2005b). The role of viscoelasticity of collagen fibers in articular cartilage: Axial tension versus compression. Medical Engineering & Physics, 27(1), 51–57.

    MathSciNet  Google Scholar 

  • Limbert, G., Middleton, J., & Taylor, M. (2004). Finite element analysis of the human ACL subjected to passive anterior tibial loads. Computer Methods in Biomechanics and Biomedical Engineering, 7(1), 1–8.

    Google Scholar 

  • Little, R. B., et al. (1986). A three-dimensional finite element analysis of the upper Tibia. Journal of Biomechanical Engineering, 108(2), 111–119.

    Google Scholar 

  • Łuczkiewicz, P., et al. (2016). The influence of articular cartilage thickness reduction on meniscus biomechanics. PLoS ONE, 11(12), e0167733.

    Google Scholar 

  • Luo, Z.-P., et al. (1998). Mechanical environment associated with rotator cuff tears. Journal of Shoulder and Elbow Surgery, 7(6), 616–620.

    Google Scholar 

  • Makris, E. A., Hadidi, P., & Athanasiou, K. A. (2011). The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 32(30), 7411–7431.

    Google Scholar 

  • Markolf, K. L., Mensch, J. S., & Amstutz, H. C. (1976). Stiffness and laxity of the knee–the contributions of the supporting structures. A quantitative in vitro study. Journal of Bone and Joint Surgery. American Volume, 58(5), 583–594.

    Google Scholar 

  • Markolf, K. L., Wascher, D. C., & Finerman, G. A. (1993). Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures. Journal of Bone and Joint Surgery. American Volume, 75(3), 387–394.

    Google Scholar 

  • Markolf, K. L., et al. (1981). The role of joint load in knee stability. Journal of Bone and Joint Surgery, 63(4), 570–585.

    Google Scholar 

  • Markolf, K. L., et al. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930–935.

    Google Scholar 

  • Martin, R. B., Burr, D. B., & Sharkey, N. A. (1998). Skeletal tissue mechanics. Springer.

    Google Scholar 

  • Mavčič, B., et al. (2000). Weight bearing area during gait in normal and dysplastic hips. Pflügers Archiv-European Journal of Physiology, 439(7), R213–R214.

    Google Scholar 

  • McDermott, I. D., Masouros, S. D., & Amis, A. A. (2008). Biomechanics of the menisci of the knee. Current Orthopaedics, 22(3), 193–201.

    Google Scholar 

  • McDermott, I. D., et al. (2004). An anatomical study of meniscal allograft sizing. Knee Surgery, Sports Traumatology, Arthroscopy, 12(2), 130–135.

    Google Scholar 

  • Meakin, J. R., et al. (2003). Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour. The Knee, 10(1), 33–41.

    Google Scholar 

  • Mesfar, W., & Shirazi-Adl, A. (2005). Biomechanics of the knee joint in flexion under various quadriceps forces. The Knee, 12(6), 424–434.

    Google Scholar 

  • Mina, C., et al. (2008). High tibial osteotomy for unloading osteochondral defects in the medial compartment of the knee. The American Journal of Sports Medicine, 36(5), 949–955.

    Google Scholar 

  • Miyoshi, S., et al. (2002a). Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model. Clinical Biomechanics, 17(7), 521–525.

    Google Scholar 

  • Miyoshi, S., et al. (2002b). Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model. Clinical biomechanics (Bristol, Avon), 17(7), 521–525. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12206943.

    Google Scholar 

  • Moglo, K. E., & Shirazi-Adl, A. (2003). Biomechanics of passive knee joint in drawer: Load transmission in intact and ACL-deficient joints. The Knee, 10(3), 265–276.

    Google Scholar 

  • Mommersteeg, T. J. A., et al. (1996). A global verification study of a quasi-static knee model with multi-bundle ligaments. Journal of Biomechanics, 29(12), 1659–1664.

    Google Scholar 

  • Mononen, M. E., et al. (2012). Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis. Journal of Biomechanics, 45(3), 579–587.

    Google Scholar 

  • Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582–592.

    MATH  Google Scholar 

  • Moore, S. M., et al. (2010). The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model. Annals of Biomedical Engineering, 38(1), 66–76.

    Google Scholar 

  • Mootanah, R., et al. (2014). Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Computer Methods in Biomechanics and Biomedical Engineering, 17(13), 1502–1517.

    Google Scholar 

  • Morimoto, Y., et al. (2009). Tibiofemoral joint contact area and pressure after single-and double-bundle anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 25(1), 62–69.

    Google Scholar 

  • Mow, V. C., & Guo, X. E. (2002). Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annual Review of Biomedical Engineering, 4(1), 175–209.

    Google Scholar 

  • Mow, V. C., Lai, W. M., & Holmes, M. H. (1982). Advanced theoretical and experimental techniques in cartilage research. In Biomechanics: Principles and applications (pp. 47–74). Springer.

    Google Scholar 

  • Nakajima, T., et al. (1994). Histologic and biomechanical characteristics of the supraspinatus tendon: Reference to rotator cuff tearing. Journal of Shoulder and Elbow Surgery, 3(2), 79–87.

    Google Scholar 

  • Namani, R., Simha, N. K., & Lewis, J. L. (2003). Nonlinear elastic parameters of articular cartilage. In Summer Bioengineering Conference, June (pp. 25–29).

    Google Scholar 

  • Netravali, N. A., et al. (2011). The effect of kinematic and kinetic changes on meniscal strains during gait. Journal of Biomechanical Engineering, 133(1), 11006.

    Google Scholar 

  • Newberry, W. N., Zukosky, D. K., & Haut, R. C. (1997). Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. Journal of Orthopaedic Research, 15(3), 450–455.

    Google Scholar 

  • O’Connor, J. J. (1993). Can muscle co-contraction protect knee ligaments after injury or repair? Bone & Joint Journal, 75(1), 41–48.

    Google Scholar 

  • Oloyede, A., Flachsmann, R., & Broom, N. D. (1992). The dramatic influence of loading velocity on the compressive response of articular cartilage. Connective Tissue Research, 27(4), 211–224.

    Google Scholar 

  • Oonishi, H., Isha, H., & Hasegawa, T. (1983). Mechanical analysis of the human pelvis and its application to the artificial hip joint—by means of the three dimensional finite element method. Journal of Biomechanics, 16(6), 427–444.

    Google Scholar 

  • Pandy, M. G., & Sasaki, K. (1998). A three-dimensional musculoskeletal model of the human knee joint. Part 2: analysis of ligament function. Computer Methods in Biomechanics and Bio Medical Engineering, 1(4), 265–283.

    Google Scholar 

  • Pandy, M. G., Sasaki, K., & Kim, S. (1997). A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction. Computer Methods in Biomechanics and Bio Medical Engineering, 1(2), 87–108.

    Google Scholar 

  • Peña, E., Calvo, B., et al. (2005a). Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clinical Biomechanics, 20(5), 498–507.

    Google Scholar 

  • Peña, E., Martinez, M. A., et al. (2005b). A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clinical Biomechanics, 20(6), 636–644.

    Google Scholar 

  • Peña, E., et al. (2006a). A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics, 39(9), 1686–1701.

    Google Scholar 

  • Peña, E., et al. (2006b). Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. Journal of Orthopaedic Research, 24(5), 1001–1010.

    Google Scholar 

  • Peña, E., et al. (2007). Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Computers in Biology and Medicine, 37(3), 376–387.

    Google Scholar 

  • Peña, E., et al. (2008). Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Computers in Biology and Medicine, 38(1), 69–81.

    Google Scholar 

  • Penrose, J. M. T., et al. (2002). Development of an accurate three-dimensional finite element knee model. Computer Methods in Biomechanics & Biomedical Engineering, 5(4), 291–300.

    Google Scholar 

  • Perie, D., & Hobatho, M. C. (1998). In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clinical Biomechanics, 13(6), 394–402.

    Google Scholar 

  • Piazza, S. J., & Delp, S. L. (2001). Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. Journal of Biomechanical Engineering, 123(6), 599–606.

    Google Scholar 

  • Pioletti, D. P., & Rakotomanana, L. R. (2000). Non-linear viscoelastic laws for soft biological tissues. European Journal of Mechanics A-Solids, 19 (LBO-ARTICLE-2000-002), 749–759.

    MATH  Google Scholar 

  • Pioletti, D. P., et al. (1998). Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. Journal of Biomechanics, 31(8), 753–757.

    Google Scholar 

  • Ramaniraka, N. A., Saunier, P., & Siegrist, O. (2005a). Effects of intra-articular and extra-articular procedures in anterior cruciate ligament (ACL) reconstruction. Computer Methods in Biomechanics and Biomedical Engineering, 8(S1), 231–232.

    Google Scholar 

  • Ramaniraka, N. A., Terrier, A., et al. (2005b). Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: A finite element analysis. Clinical Biomechanics, 20(4), 434–442.

    Google Scholar 

  • Ramaniraka, N. A., et al. (2007). Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: A finite element analysis. Clinical Biomechanics, 22(3), 336–343.

    Google Scholar 

  • Rapperport, D. J., Carter, D. R., & Schurman, D. J. (1985). Contact finite element stress analysis of the hip joint. Journal of Orthopaedic Research, 3(4), 435–446.

    Google Scholar 

  • Reilly, D. T., Burstein, A. H., & Frankel, V. H. (1974). The elastic modulus for bone. Journal of Biomechanics, 7(3), 271–275.

    Google Scholar 

  • Repo, R. U., & Finlay, J. B. (1977). Survival of articular cartilage after controlled impact. Journal of Bone and Joint Surgery. American Volume, 59(8), 1068–1076.

    Google Scholar 

  • Reuben, J. D., et al. (1986). Three-dimensional kinematics of normal and cruciate deficient knees—A dynamic in-vitro experiment. Transactions of the Orthopedic Research Society, 11, 385.

    Google Scholar 

  • Rho, J. Y., Ashman, R. B., & Turner, C. H. (1993). Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. Journal of Biomechanics, 26(2), 111–119.

    Google Scholar 

  • Rice, J. C., Cowin, S. C., & Bowman, J. A. (1988). On the dependence of the elasticity and strength of cancellous bone on apparent density. Journal of Biomechanics, 21(2), 155–168.

    Google Scholar 

  • Richard, F., Villars, M., & Thibaud, S. (2013). Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. Journal of the Mechanical Behavior of Biomedical Materials, 24, 41–52.

    Google Scholar 

  • Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241(835), 379–397.

    MathSciNet  MATH  Google Scholar 

  • Roth, V. (1977). Two problems in articular biomechanics: I. Finite element simulation for contact problems of articulations, II. Age dependent tensile properties. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York.

    Google Scholar 

  • Rovick, J., et al. (1986). The influence of the ACL on the motion of the knee. Sun Valley, Idaho: AOSSM.

    Google Scholar 

  • Rudy, T. W., et al. (1996). A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics, 29(10), 1357–1360.

    MathSciNet  Google Scholar 

  • Russell, M. E., et al. (2006). Cartilage contact pressure elevations in dysplastic hips: A chronic overload model. Journal of Orthopaedic Surgery and Research, 1(1), 1.

    Google Scholar 

  • Schreppers, G., Sauren, A., & Huson, A. (1990). A numerical model of the load transmission in the tibio-femoral contact area. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 204(1), 53–59.

    Google Scholar 

  • Schütz, U. H. W., et al. (2012). The Transeurope footrace project: Longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486 km transcontinental ultramarathon. BMC Medicine, 10(1), 78.

    Google Scholar 

  • Setton, L. A., Zhu, W., & Mow, V. C. (1993). The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. Journal of Biomechanics, 26(4), 581–592.

    Google Scholar 

  • Setton, L. A., et al. (1994). Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. Journal of Orthopaedic Research, 12(4), 451–463.

    Google Scholar 

  • Shaffer, B., et al. (2000). Preoperative sizing of meniscal allografts in meniscus transplantation. The American Journal of Sports Medicine, 28(4), 524–533.

    Google Scholar 

  • Shelburne, K. B., & Pandy, M. G. (1997). A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. Journal of Biomechanics, 30(2), 163–176.

    Google Scholar 

  • Shepherd, D. E., & Seedhom, B. B. (1999). The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology, 38(2), 124–132.

    Google Scholar 

  • Shirazi, R., & Shirazi-Adl, A. (2009a). Analysis of partial meniscectomy and ACL reconstruction in knee joint biomechanics under a combined loading. Clinical Biomechanics, 24(9), 755–761.

    Google Scholar 

  • Shirazi, R., & Shirazi-Adl, A. (2009b). Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. Journal of Biomechanics, 42(15), 2458–2465.

    Google Scholar 

  • Shirazi, R., Shirazi-Adl, A., & Hurtig, M. (2008). Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. Journal of Biomechanics, 41(16), 3340–3348.

    Google Scholar 

  • Shriram, D., et al. (2017). Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Scientific Reports, 7(1), 6011.

    Google Scholar 

  • Skaggs, D. L., Warden, W. H., & Mow, V. C. (1994). Radial tie fibers influence the tensile properties of the bovine medial meniscus. Journal of Orthopaedic Research, 12(2), 176–185.

    Google Scholar 

  • Song, Y., et al. (2004). A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of Biomechanics, 37(3), 383–390.

    Google Scholar 

  • Spilker, R. L., Donzelli, P. S., & Mow, V. C. (1992). A transversely isotropic biphasic finite element model of the meniscus. Journal of Biomechanics, 25(9), 1027–1045.

    Google Scholar 

  • Sweigart, M. A., et al. (2004). Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Annals of Biomedical Engineering, 32(11), 1569–1579.

    Google Scholar 

  • Terrier, A., et al. (2007). Effect of supraspinatus deficiency on humerus translation and glenohumeral contact force during abduction. Clinical Biomechanics, 22(6), 645–651.

    Google Scholar 

  • Thompson, R. C., et al. (1991). Osteoarthrotic changes after acute transarticular load. An animal model. Journal of Bone and Joint Surgery. American Volume, 73(7), 990–1001.

    Google Scholar 

  • Tissakht, M., & Ahmed, A. M. (1995). Tensile stress-strain characteristics of the human meniscal material. Journal of Biomechanics, 28(4), 411–422.

    Google Scholar 

  • Trad, Z., Barkaoui, A., & Chafra, M. (2017). A three dimensional finite element analysis of mechanical stresses in the human knee joint: Problem of cartilage destruction. In Journal of Biomimetics, Biomaterials and Biomedical Engineering (pp. 29–39). Trans Tech Publications.

    Google Scholar 

  • Trent, P. S., Walker, P. S., & Wolf, B. (1976). Ligament length patterns, strength, and rotational axes of the knee joint. Clinical Orthopaedics and Related Research, 117, 263–270.

    Google Scholar 

  • Turner, S. T., & Engin, A. E. (1993). Three-body segment dynamic model of the human knee. Journal Biomechanical Engineering, 115(4), 350–356.

    Google Scholar 

  • Un, K. (2001). An evaluation of three-dimensional diarthrodial joint contact using penetration data and the finite element method. Journal Biomechanical Engineering, 123(4), 333-340 (Mar 26, 2001) (8 pages) doi:https://doi.org/10.1115/1.1384876

    Article  Google Scholar 

  • Un, K., & Spilker, R. L. (2006). A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact: Part 1–Derivation of contact boundary conditions. Journal of Biomechanical Engineering, 128(1), 124–130.

    Google Scholar 

  • Vadher, S. P., et al. (2006). Finite element modeling following partial meniscectomy: Effect of various size of resection. In Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE (pp. 2098–2101). IEEE.

    Google Scholar 

  • Vaziri, A., et al. (2008). Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint. Annals of Biomedical Engineering, 36(8), 1335–1344.

    Google Scholar 

  • Vener, M. J., et al. (1992). Subchondral damage after acute transarticular loading: An in vitro model of joint injury. Journal of Orthopaedic Research, 10(6), 759–765.

    Google Scholar 

  • Viswanath, B., et al. (2007). Mechanical properties and anisotropy in hydroxyapatite single crystals. Scripta Materialia, 57(4), 361–364.

    Google Scholar 

  • von Eisenhart-Rothe, R., et al. (1997). Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens. Anatomy and Embryology, 195(3), 279–288.

    Google Scholar 

  • Walia, P., et al. (2013). Theoretical model of the effect of combined glenohumeral bone defects on anterior shoulder instability: A finite element approach. Journal of Orthopaedic Research, 31(4), 601–607.

    Google Scholar 

  • Walker, P. S., & Hajek, J. V. (1972). The load-bearing area in the knee joint. Journal of Biomechanics, 5(6), 581IN3585–584IN5589.

    Google Scholar 

  • Wan, C., Hao, Z., & Wen, S. (2013). The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: A finite element study. Journal of Biomechanical Engineering, 135(4), 41002.

    Google Scholar 

  • Wang, Y., Fan, Y., & Zhang, M. (2014). Comparison of stress on knee cartilage during kneeling and standing using finite element models. Medical Engineering & Physics, 36(4), 439–447.

    Google Scholar 

  • Wang, C., & Walker, P. S. (1974). Rotatory laxity of the human knee joint. Journal of Bone and Joint Surgery. American Volume, 56(1), 161–170.

    Google Scholar 

  • Wang, C.-J., Walker, P. S., & Wolf, B. (1973). The effects of flexion and rotation on the length patterns of the ligaments of the knee. Journal of Biomechanics, 6(6), 587IN1593–592IN4596.

    Google Scholar 

  • Wascher, D. C., et al. (1993). Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee. Journal of Bone and Joint Surgery. American Volume, 75(3), 377–386.

    Google Scholar 

  • Wei, H.-W., et al. (2005). The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Medical Engineering & Physics, 27(4), 295–304.

    Google Scholar 

  • Weiss, J. A., & Gardiner, J. C. (2001). Computational modeling of ligament mechanics. Critical ReviewsTM in Biomedical Engineering, 29(3).

    Google Scholar 

  • Weiss, J. A., Gardiner, J. C., & Bonifasi-Lista, C. (2002). Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. Journal of Biomechanics, 35(7), 943–950.

    Google Scholar 

  • Weiss, J. A., Maker, B. N., & Govindjee, S. (1996). Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135(1–2), 107–128.

    MATH  Google Scholar 

  • Weiss, J. A., Maker, B. N., & Schauer, D. A. (1995). Treatment of initial stress in hyperelastic finite element models of soft tissues. ASME-PUBLICATIONS-BED, 29, 105.

    Google Scholar 

  • Westermann, R. W., Wolf, B. R., & Elkins, J. M. (2013). Effect of ACL reconstruction graft size on simulated Lachman testing: A finite element analysis. The Iowa Orthopaedic Journal, 33, 70.

    Google Scholar 

  • Whipple, R., Wirth, C. R., & Mow, V. C. (1984). Mechanical properties of the meniscus. In 1984 Advances in Bioengineering (pp. 32–33).

    Google Scholar 

  • Wilson, W., et al. (2003). Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. Journal of Biomechanics, 36(6), 845–851.

    Google Scholar 

  • Wilson, W., et al. (2004). Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. Journal of Biomechanics, 37(3), 357–366.

    Google Scholar 

  • Wilson, W., et al. (2005). The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Medical Engineering & Physics, 27(10), 810–826.

    Google Scholar 

  • Wismans, J. A. C., et al. (1980). A three-dimensional mathematical model of the knee-joint. Journal of Biomechanics, 13(8), 677681–679685.

    Google Scholar 

  • Woo, S. L. Y., et al. (1998). Biomechanics of the ACL: Measurements of in situ force in the ACL and knee kinematics. The Knee, 5(4), 267–288.

    Google Scholar 

  • Woo, S. L. Y., et al. (1999). Biomechanics of knee ligaments. The American Journal of Sports Medicine, 27(4), 533–543.

    Google Scholar 

  • Wu, J. Z., & Herzog, W. (2000). Finite element simulation of location-and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Annals of Biomedical Engineering, 28(3), 318–330.

    Google Scholar 

  • Wu, J. Z., Herzog, W., & Epstein, M. (1997). Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. Journal of Biomechanics, 31(2), 165–169.

    Google Scholar 

  • Yagi, M., et al. (2002). Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. The American journal of sports medicine, 30(5), 660–666.

    Google Scholar 

  • Yamamoto, K., Hirokawa, S., & Kawada, T. (1998). Strain distribution in the ligament using photoelasticity. A direct application to the human ACL. Medical Engineering & Physics, 20(3), 161–168.

    Google Scholar 

  • Yang, K. H., & Radin, E. L. (1990). A dynamic finite element analysis of impulsive loading of the extension-splinted rabbit knee. Journal of Biomechanical Engineering, 112, 119.

    Google Scholar 

  • Yang, N. H., et al. (2010a). Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. Journal of Orthopaedic Research, 28(12), 1539–1547.

    Google Scholar 

  • Yang, N. H., et al. (2010b). Protocol for constructing subject-specific biomechanical models of knee joint. Computer Methods in Biomechanics and Biomedical Engineering, 13(5), 589–603.

    Google Scholar 

  • Yao, J., Funkenbusch, P. D., et al. (2006a). Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. Journal of Biomechanical Engineering, 128(3), 399–408.

    Google Scholar 

  • Yao, J., Snibbe, J., et al. (2006b). Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: A finite element analysis with image-based experimental validation. Journal of Biomechanical Engineering, 128(1), 135–141.

    Google Scholar 

  • Yucesoy, C. A., et al. (2002). Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model. Journal of Biomechanics, 35(9), 1253–1262.

    Google Scholar 

  • Zahnert, T., et al. (2000). Experimental investigations of the use of cartilage in tympanic membrane reconstruction. Otology & Neurotology, 21(3), 322–328.

    Google Scholar 

  • Zaki, M., Saad, F., & Al-Ebiary, M. N. (2002). Influence of Charnley hip neck-angle inclination on the stresses at stem/cement and bone/cement interfaces. Bio-Medical Materials and Engineering, 12(4), 411–421.

    Google Scholar 

  • Zavatsky, A. B., & O’Connor, J. J. (1993). Ligament forces at the knee during isometric quadriceps contractions. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 207(1), 7–18.

    Google Scholar 

  • Zhang, H., et al. (1999a). Magnetic resonance image based 3D poroelastic finite element model of tibio-menisco-femoral contact. In 23rd Proceedings of the American Society of Biomechanics (pp. 198–199).

    Google Scholar 

  • Zhang, H., et al. (1999b). Damage to rabbit femoral articular cartilage following direct impacts of uniform stresses: An in vitro study. Clinical Biomechanics, 14(8), 543–548.

    Google Scholar 

  • Zheng, K. (2014). The effect of high tibial osteotomy correction angle on cartilage and meniscus loading using finite element analysis. Ph.D. thesis, School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, Australia.

    Google Scholar 

  • Zheng, K. K., et al. (2014). Magnetic resonance imaging (MRI) based finite element modeling for analyzing the influence of material properties on menisci responses. In Applied Mechanics and Materials (pp. 305–309). Trans Tech Publications.

    Google Scholar 

  • Zhu, G.-D., et al. (2015). Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: The influence of tibial component coronal alignment. Chinese Medical Journal, 128(21), 2873.

    Google Scholar 

  • Zielinska, B., & Donahue, T. L. H. (2006). 3D finite element model of meniscectomy: Changes in joint contact behavior. Journal of Biomechanical Engineering, 128(1), 115–123.

    Google Scholar 

  • Zuppinger, H. (1904). Die aktive Flexion im unbelasteten Kniegelenk. Anatomische Hefte, 25(3), 701–764.

    Google Scholar 

  • Zysset, P. K., et al. (1999). Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics, 32(10), 1005–1012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manuel R. S. Tavares .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trad, Z., Barkaoui, A., Chafra, M., Tavares, J.M.R.S. (2018). Finite Element Models of the Knee Joint . In: FEM Analysis of the Human Knee Joint. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-74158-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74158-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74157-4

  • Online ISBN: 978-3-319-74158-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics