Skip to main content

Ascorbate Oxidase in Plant Growth, Development, and Stress Tolerance

  • Chapter
  • First Online:
Ascorbic Acid in Plant Growth, Development and Stress Tolerance

Abstract

Ascorbate oxidase (AO) is a member of the multi-copper oxidase family of enzymes and converts ascorbate to monodehydroascorbate at the same time as reducing oxygen to water. The enzyme is present in the apoplastic space of plant cells and seems to be particularly highly expressed in roots and fruits of the Cucurbitaceae family. Cell expansion and division seem to be affected by AO activity and at the whole-plant level resource allocation and yield. The enzyme is suggested to play a role in signaling between the external environment and the cell, and AO gene expression responds to wounding, plant hormones, and stress. The enzyme appears to function in plant growth and development and multiple links have been found with tolerance to abiotic and biotic stress, mostly through the use of transgenic plants. This chapter will discuss the roles of AO in plant growth, development, and stress tolerance that current research has highlighted and will also examine further roles the enzyme could play at a cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airianah OB, Vreeburg RA, Fry SC (2016) Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method. Ann Bot 117:441–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Altmann F (1998) Structures of the N-linked carbohydrate of ascorbic acid oxidase from zucchini. Glycoconj J 15:79–82

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni O, De Gara L, Tommasi F, Liso R (1992) Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol 99:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asard H, Barbaro R, Trost P, Berczi A (2013) Cytochromes b561: ascorbate-mediated trans-membrane electron transport. Antioxid Redox Signal 19:1026–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attridge TH (1974) Phytochrome-mediated synthesis of ascorbic acid oxidase in mustard cotyledons. Biochim Biophys Acta 362:258–265

    Article  CAS  PubMed  Google Scholar 

  • Avigliano L, Vecchini P, Sirianni P, Marcozzi G, Marchesini A, Mondovi B (1983) A reinvestigation on the quaternary structure of ascorbate oxidase from Cucurbita pepo medullosa. Mol Cell Biochem 56:107–112

    Article  CAS  PubMed  Google Scholar 

  • Badawi Y, Shi H (2017) Relative contribution of prolyl hydroxylase-dependent and -independent degradation of HIF-1alpha by proteasomal pathways in cerebral ischemia. Front Neurosci 11:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Balestrini R, Ott T, Guther M, Bonfante P, Udvardi MK, De Tullio MC (2012) Ascorbate oxidase: the unexpected involvement of a ‘wasteful enzyme’ in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. Plant Physiol Biochem 59:71–79

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Jaros A, Yip L, Tran L, Kanellis AK, Constabel CP (2008) Evaluating ascorbate oxidase as a plant defense against leaf-chewing insects using transgenic poplar. J Chem Ecol 34:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Bashandy T, Meyer Y, Reichheld JP (2011) Redox regulation of auxin signaling and plant development in Arabidopsis. Plant Signal Behav 6:117–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batth R, Singh K, Kumari S, Mustafiz A (2017) Transcript profiling reveals the presence of abiotic stress and developmental stage specific ascorbate oxidase genes in plants. Front Plant Sci 8:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderon-Villalobos LI, Tan X, Zheng N, Estelle M (2010) Auxin perception—structural insights. Cold Spring Harb Perspect Biol 2:a005546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caputo E, Ceglie V, Lippolis M, La Rocca N, De Tullio MC (2010) Identification of a NaCl-induced ascorbate oxidase activity in Chaetomorpha linum suggests a novel mechanism of adaptation to increased salinity. Environ Exp Bot 69:63–67

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citterio S, Sgorbati G, Scippa S, Sparvoli E (1994) Ascorbic acid effect on the onset of cell proliferation in pea root. Physiol Plant 92:601–607

    Article  CAS  Google Scholar 

  • Cordoba F, Gonzalez-Reyes JA (1994) Ascorbate and plant cell growth. J Bioenerg Biomembr 26:399–405

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea G, Bouwstra JB, Kamerling JP, Vliegenthart JFG (1988) Primary structure of the xylose-containing N-linked carbohydrate moiety from ascorbic acid oxidase of Cucurbita pepo medullosa. Glycoconj J 5:151–157

    Article  Google Scholar 

  • D’Andrea G, Maccarrone M, Oratore A, Avigliano L, Messerschmidt A (1989) Kinetic features of ascorbic acid oxidase after partial deglycation. Biochem J 264:601–604

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Andrea G, Salucci ML, Pitari G, Avigliano L (1993) Exhaustive removal of N-glycans from ascorbate oxidase: effect on the enzymatic activity and immunoreactivity. Glycobiology 3:563–565

    Article  PubMed  Google Scholar 

  • Dawson CR, Strothkamp KG, Krul KG (1975) Ascorbate oxidase and related copper proteins. Ann N Y Acad Sci 258:209–220

    Article  CAS  PubMed  Google Scholar 

  • Dayan J, Dawson CR (1976) Substrate specificity of ascorbate oxidase. Biochem Biophys Res Commun 73:451–458

    Article  CAS  PubMed  Google Scholar 

  • de Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Article  PubMed  Google Scholar 

  • De Tullio MC, Liso R, Arrigoni O (2004) Ascorbic acid oxidase: an enzyme in search of a role. Biol Plant 48:161–166

    Article  Google Scholar 

  • De Tullio MC, Ciraci S, Liso R, Arrigoni O (2007) Ascorbic acid oxidase is dynamically regulated by light and oxygen. A tool for oxygen management in plants? J Plant Physiol 164:39–46

    Article  PubMed  CAS  Google Scholar 

  • De Tullio MC, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:e23213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dewhirst RA, Clarkson GJJ, Rothwell SD, Fry SC (2017) Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves. Food Chem 233:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Venere A, Nicolai E, Rosato N, Rossi A, Finazzi Agro A, Mei G (2011) Characterization of monomeric substates of ascorbate oxidase. FEBS J 278:1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Diallinas G, Pateraki I, Sanmartin M, Scossa A, Stilianou E, Panopoulos NJ, Kanellis AK (1997) Melon ascorbate oxidase: cloning of a multigene family, induction during fruit development and repression by wounding. Plant Mol Biol 34:759–770

    Article  CAS  PubMed  Google Scholar 

  • Dormann P, Benning C (1998) The role of UDP-glucose epimerase in carbohydrate metabolism of Arabidopsis. Plant J 13:641–652

    Article  CAS  PubMed  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  PubMed  Google Scholar 

  • Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961

    Article  CAS  PubMed  Google Scholar 

  • Edelman J, Hall MA (1965) Enzyme formation in higher-plant tissues. Development of invertase and ascorbate-oxidase activities in mature storage tissue of Helianthus Tuberosus L. Biochem J 95:403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esaka M, Uchida M, Fukui H, Kubota K, Suzuki K (1988) Marked increase in ascorbate oxidase protein in pumpkin callus by adding copper. Plant Physiol 88:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esaka M, Hattori T, Fujisawa K, Sakajo S, Asahi T (1990) Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. Eur J Biochem 191:537–541

    Article  CAS  PubMed  Google Scholar 

  • Esaka M, Fujisawa K, Goto M, Kisu Y (1992) Regulation of ascorbate oxidase expression in pumpkin by auxin and copper. Plant Physiol 100:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farver O, Pecht I (1992) Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase. Proc Natl Acad Sci U S A 89:8283–8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farver O, Wherland S, Pecht I (1994) Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen. J Biol Chem 269:22933–22936

    CAS  PubMed  Google Scholar 

  • Felton GW, Summers CB (1993) Potential role of ascorbate oxidase as a plant defense protein against insect herbivory. J Chem Ecol 19:1553–1568

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Kanellis AK (2013) Altered apoplastic ascorbate redox state in tobacco plants via ascorbate oxidase overexpression results in delayed dark-induced senescence in detached leaves. Plant Physiol Biochem 73:154–160

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot 57:3933–3943

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Frary A et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332(Pt 2):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Garchery C et al (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pineda E, Castro-Mercado E, Lozoya-Gloria E (2004) Gene expression and enzyme activity of pepper (Capsicum annuum L.) ascorbate oxidase during elicitor and wounding stress. Plant Sci 166:237–243

    Article  CAS  Google Scholar 

  • Gaspard S, Monzani E, Casella L, Gullotti M, Maritano S, Marchesini A (1997) Inhibition of ascorbate oxidase by phenolic compounds. Enzymatic and spectroscopic studies. Biochemistry 36:4852–4859

    Article  CAS  PubMed  Google Scholar 

  • Gerwin B, Burstein SR, Westley J (1974) Ascorbate oxidase. Inhibition, activation, and pH effects. J Biol Chem 249:2005–2008

    CAS  PubMed  Google Scholar 

  • González-Reyes JA, Alcaín FJ, Caler JA, Serrano A, Córdoba F, Navas P (1995) Stimulation of onion root elongation by ascorbate and ascorbate free radical in Allium cepa L. Protoplasma 184:31–35

    Article  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–87

    Article  CAS  PubMed  Google Scholar 

  • Guo S et al (2017) Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. BMC Genomics 18:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi R, Morohashi Y (1993) Phytochrome control of the development of ascorbate oxidase activity in mustard (Sinapis alba L.) cotyledons. Plant Physiol 102:1237–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo A, Gonzalez-Reyes JA, Navas P (1989) Ascorbate free radical enhances vacuolization in onion root meristems. Plant Cell Environ 12:455–460

    Article  CAS  Google Scholar 

  • Hirose J et al (1994) Characterization of ascorbate oxidase from Acremonium sp. HI-25. J Biochem 115:811–813

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1994) The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiol 104:1455–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horemans N, Foyer CH, Potters G, Asard H (2000) Ascorbate function and associated transport systems in plants. Plant Physiol Biochem 38:531–540

    Article  CAS  Google Scholar 

  • Ioannidi E et al (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkonen A, Dewhirst RA, Mackay CL, Fry SC (2017) Metabolites of 2,3-diketogulonate delay peroxidase action and induce non-enzymic H2O2 generation: potential roles in the plant cell wall. Arch Biochem Biophys 620:12–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinska B et al (2017) The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance. Plant Cell Environ http://doi: 10.1111/pce.12960

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    Article  CAS  Google Scholar 

  • Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YR, Yu SW, Lee SR, Hwang YY, Kang SO (1996) A heme-containing ascorbate oxidase from Pleurotus ostreatus. J Biol Chem 271:3105–3111

    Article  CAS  PubMed  Google Scholar 

  • Kisu Y, Harada Y, Goto M, Esaka M (1997) Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin. Plant Cell Physiol 38:631–637

    Article  CAS  PubMed  Google Scholar 

  • Kisu Y, Ono T, Shimofurutani N, Suzuki M, Esaka M (1998) Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant Cell Physiol 39:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Kumar S, Singh L, Hallan V (2016) Movement protein of cucumber mosaic virus associates with apoplastic ascorbate oxidase. PLoS One 11:e0163320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ladenstein R, Marchesini A, Palmieri S (1979) Preliminary crystallographic study of ascorbic acid oxidase from green zucchini squash. FEBS Lett 107:407–408

    Article  CAS  PubMed  Google Scholar 

  • Leong SY, Oey I (2014) Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes). Food Chem 146:538–547

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2016) Molecular characterization and expression pattern of tobacco (Nicotiana tabacum) ascorbate oxidase gene. Biotechnol Biotechnol Equip 30:1059–1064

    CAS  Google Scholar 

  • Li R, Xin S, Tao C, Jin X, Li H (2017) Cotton ascorbate oxidase promotes cell growth in cultured tobacco bright yellow-2 cells through generation of apoplast oxidation. Int J Mol Sci 18:1346

    Article  PubMed Central  Google Scholar 

  • Lin LS, Varner JE (1991) Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.) Plant Physiol 96:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984) Relationship between ascorbic acid and cell division. Exp Cell Res 150:314–320

    Article  CAS  PubMed  Google Scholar 

  • Liso R, Innocenti AM, Bitonti MB, Arrigoni O (1988) Ascorbic acid-induced progression of quiescent centre cells from G1 to S phase. New Phytol 110:469–471

    Article  CAS  Google Scholar 

  • Liso R et al (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, D’Andrea G, Salucci ML, Avigliano L, Finazzi-Agrò A (1993) Temperature, pH and UV irradiation effects on ascorbate oxidase. Phytochemistry 32:795–798

    Article  CAS  Google Scholar 

  • Marchesini A, Capelletti P, Canonica L, Danieli B, Tollari S (1977) Evidence about the catecholoxidase activity of the enzyme ascorbate oxidase extracted from Cucurbita pepo medullosa. Biochim Biophys Acta 484:290–300

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y (1990) Auxin-induced cell elongation and cell wall changes. Bot Mag 103:345

    Article  CAS  Google Scholar 

  • Messerschmidt A (1997) Multi-copper oxidases. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  • Messerschmidt A et al (1988) Preliminary X-ray crystal structure and partial cDNA-sequence of ascorbate oxidase from zucchini. Prog Clin Biol Res 274:285–288

    CAS  PubMed  Google Scholar 

  • Messerschmidt A et al (1989) X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol 206:513–529

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A et al (1992) Refined crystal structure of ascorbate oxidase at 1.9 a resolution. J Mol Biol 224:179–205

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A, Luecke H, Huber R (1993) X-ray structures and mechanistic implications of three functional derivatives of ascorbate oxidase from zucchini. Reduced, peroxide and azide forms. J Mol Biol 230:997–1014

    Article  CAS  PubMed  Google Scholar 

  • Mirica LM, Klinman JP (2008) The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase. Proc Natl Acad Sci U S A 105:1814–1819

    Google Scholar 

  • Muller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura K, Kawabata T, Yura K, Go N (2003) Novel types of two-domain multi-copper oxidases: possible missing links in the evolution. FEBS Lett 553:239–244

    Article  CAS  PubMed  Google Scholar 

  • Nakata PA (2012) Plant calcium oxalate crystal formation, function, and its impact on human health. Front Biol 7:254–266

    Article  CAS  Google Scholar 

  • Nanasato Y, Akashi K, Yokota A (2005) Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions. Plant Cell Physiol 46:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiol 127:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbury HJ, Smith H (1981) Immunochemical evidence for phytochrome regulation of the specific activity of ascorbate oxidase in mustard seedlings. Eur J Biochem 117:575–580

    Article  CAS  PubMed  Google Scholar 

  • Newcomb EH (1951) Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc Soc Exp Biol Med 76:504–509

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa J, Okada N, Shinmyo A, Takano M (1989) Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression. Proc Natl Acad Sci U S A 86:1239–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41–49

    Article  CAS  PubMed  Google Scholar 

  • Parsons HT, Yasmin T, Fry SC (2011) Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J 440:375–383

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C et al (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmartin M, Drogoudi PA, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  PubMed  Google Scholar 

  • Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885

    Article  CAS  PubMed  Google Scholar 

  • Santagostini L et al (2004) Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies. Int J Biochem Cell Biol 36:881–892

    Article  CAS  PubMed  Google Scholar 

  • Savini I, D’Alessio S, Giartosio A, Morpurgo L, Avigliano L (1990) The role of copper in the stability of ascorbate oxidase towards denaturing agents. Eur J Biochem 190:491–495

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    Article  CAS  PubMed  Google Scholar 

  • Seifert GJ, Barber C, Wells B, Dolan L, Roberts K (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr Biol 12:1840–1845

    Article  CAS  PubMed  Google Scholar 

  • Sharova EI, Medvedev SS (2017) Redox reactions in apoplast of growing cells. Russ J Plant Physiol 64:1–14

    Article  CAS  Google Scholar 

  • Stevens R, Munos S, Causse M, Bendahmane A, Lefebvre V (2007) Characterisation of major genes and QTLs by a candidate gene approach. In: Morot-Gaudry J-F, Lea P, Briat J-F (eds) Functional plant genomics. Science, Enfield, pp 571–593

    Google Scholar 

  • Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A (2010) Exploring the impact of wounding and jasmonates on ascorbate metabolism. Plant Physiol Biochem 48:337–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarka A et al (2002) Ascorbyl free radical and dehydroascorbate formation in rat liver endoplasmic reticulum. J Bioenerg Biomembr 34:317–323

    Article  CAS  PubMed  Google Scholar 

  • Szent-Györgyi A (1931) On the function of hexuronic acid in the respiration of the cabbage leaf. J Biol Chem 90:385–393

    Google Scholar 

  • Tognetti VB, Muhlenbock P, Van Breusegem F (2012) Stress homeostasis—the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  CAS  PubMed  Google Scholar 

  • Tommasi F, De Gara L, Liso R, Arrigoni O (1990) The Ascorbic Acid System in Cuscuta reflexa Roxb. J Plant Physiol 135:766–768

    Article  CAS  Google Scholar 

  • Truffault V, Gest N, Garchery C, Florian A, Fernie AR, Gautier H, Stevens RG (2016) Reduction of MDHAR activity in cherry tomato suppresses growth and yield and MDHAR activity is correlated with sugar levels under high light. Plant Cell Environ 39:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Truffault V, Fry SC, Stevens RG, Gautier H (2017) Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate. Plant J 89:996–1008

    Article  CAS  PubMed  Google Scholar 

  • Velasquez SM et al (2015) Complex regulation of prolyl-4-hydroxylases impacts root hair expansion. Mol Plant 8:734–746

    Article  CAS  PubMed  Google Scholar 

  • Vlad F, Spano T, Vlad D, Daher FB, Ouelhadj A, Fragkostefanakis S, Kalaitzis P (2007) Involvement of Arabidopsis prolyl 4 hydroxylases in hypoxia, anoxia and mechanical wounding. Plant Signal Behav 2:368–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin S, Tao C, Li H (2016) Cloning and functional analysis of the promoter of an ascorbate oxidase gene from Gossypium hirsutum. PLoS One 11:e0161695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto A et al (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki I, Piette LH (1961) Mechanism of free radical formation and disappearance during the ascorbic acid oxidase and peroxidase reactions. Biochim Biophys Acta 50:62–69

    Article  CAS  PubMed  Google Scholar 

  • Yu L et al (2010) Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot 61:1625–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li H, Shu W, Ye Z (2011) Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Report 29:638–645

    Article  CAS  Google Scholar 

  • Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevens, R., Truffault, V., Baldet, P., Gautier, H. (2017). Ascorbate Oxidase in Plant Growth, Development, and Stress Tolerance. In: Hossain, M., Munné-Bosch, S., Burritt, D., Diaz-Vivancos, P., Fujita, M., Lorence, A. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7_11

Download citation

Publish with us

Policies and ethics