Skip to main content

An Effective Production of Bacterial Biosurfactant in the Bioreactor

  • Conference paper
  • First Online:
Book cover Practical Aspects of Chemical Engineering

Abstract

In the last decades, interest in natural, environmentally friendly, surfactants has still grown. However, effective production of biosurfactant of bacterial origin is a complex process. In the following study the practical aspects of bioreactor production of valuable products are discussed. The various problems connected with optimal microorganism selection, bioreactor work parameters as well as product isolation are presented. Moreover, a case study regarding the effective production of bacterial biosurfactant for environmental purposes is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohyd Polym 97(2):253–261

    Article  CAS  Google Scholar 

  • Bezza FA, Beukes M, Chirwa EMN (2015) Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochem 50(11):1911–1922

    Article  CAS  Google Scholar 

  • Britton LN (1998) Surfactants and the environment. J Surf Det 1:109–117

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Bioreaktory. In: Ratledge C, Kristiansen B (eds) Podstawy biotechnologii. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Cserháti T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28(5):337–348

    Article  Google Scholar 

  • Delvigne F, Lecomte J-P (2010) Foam formation and control in bioreactors. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology. Wiley, New York

    Google Scholar 

  • Dobslaw D, Engesser KH (2012) Degradation of 2-chlorotoluene by Rhodococcus sp. OCT 10. Appl Microbiol Biotechnol 93(5):2205–2214

    Article  CAS  Google Scholar 

  • Fakruddin M (2012) Biosurfactant: production and application. J Petrol Environ Biotechnol 3:124

    Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    Article  CAS  Google Scholar 

  • Gogoi D, Bhagowati P, Gogoi P et al (2016) Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv 6(74):70669–70681

    Article  CAS  Google Scholar 

  • Gumienna M, Czarnecki Z (2010) Rola mikroorganizmów w syntezie związków powierzchniowo czynnych. Nauka Przyroda Technologie 4:1–14

    Google Scholar 

  • Guzik U, Greń I, Wojcieszyńska D et al (2009) Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz J Microbiol 40(2):91–285

    Google Scholar 

  • Harms P, Kostov Y, Rao G (2002) Bioprocess monitoring. Curr Opin Biotechnol 13:124–127

    Article  CAS  Google Scholar 

  • Hines M, Holmes C, Schad R (2010) Simple strategies to improve bioprocess pure culture processing. Pharm Eng 10(3):1–6

    Google Scholar 

  • Jamal P, Nawawi WMFW, Nawawi W et al (2012) Optimum medium components for biosurfactant production by Klebsiella pneumoniae WMF02 utilizing sludge palm oil as a substrate. Aust J Basic Appl Sci 6(1):100–108

    CAS  Google Scholar 

  • Kaczorek E, Smulek W, Zgoła-Grześkowiak A et al (2015) Effect of Glucopon 215 on cell surface properties of Pseudomonas stutzeri and diesel oil biodegradation. Int Biodeter Biodegrad 104:129–135

    Article  CAS  Google Scholar 

  • Kaloorazi NA, Choobari MFS (2013) Biosurfactants: properties and applications. J Biol Today’s World 2:235–241

    Google Scholar 

  • Kossen NWF (1994) Scale-up. In: Galindo E, Ramirez OT (eds) Advances in bioprocess engineering. Kluwer Academic, Dordecht

    Google Scholar 

  • Kronemberger FA, Santa Anna LM, Fernandes AC et al (2008) Oxygen-controlled biosurfactant production in a bench scale bioreactor. Appl Biochem Biotechnol 147(1–3):33–45

    Article  CAS  Google Scholar 

  • Krzyczkowska J, Białecka-Florjańczyk E (2012) Biotechnologiczna synteza związków powierzchniowo czynnych i przykłady ich praktycznego zastosowania. Żywność. Technologia. Jakość 4:5–23

    Google Scholar 

  • Luna D, Posadillo A, Caballero V et al (2012) New biofuel integrating glycerol into its composition through the use of covalent immobilized pig pancreatic lipase. Int J Mol Sci 13(8):10091–10112

    Article  CAS  Google Scholar 

  • Maier RM (2009) Bacterial growth. In: Pepper IL, Gerba CP, Gentry T, Maier RM (eds) Environmental microbiology, 2nd edn. Elsevier Inc., London

    Google Scholar 

  • Metcalf & Eddy, Inc. (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Mirro R, Voll K (2009) Which impeller is right for your cell line? BioProcess Int 7(1):52–57

    Google Scholar 

  • Mouafi FE, Abo Elsoud MM, Moharam ME (2016) Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol Rep (Amst) 9:31–37

    Article  Google Scholar 

  • Moya Ramírez I, Altmajer Vaz D, Banat IM et al (2016) Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour Technol 205:1–6

    Article  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Poll 133:183–198

    Article  CAS  Google Scholar 

  • Mulligan CN, Sharma SK, Mudhoo A (2014) Biosurfactants. Research trends and applications. CRC Press, Taylor and Francis Group, London

    Google Scholar 

  • Noorman HJ (2013) Wymiana masy. In: Ratledge C, Kristiansen B (eds) Podstawy biotechnologii. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Noparat P, Maneerat S, Saimmai A (2014) Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3. World J Microbiol Biotechnol 30(3):865–877

    Article  CAS  Google Scholar 

  • Okutucu B, Dınçer A, Habib Ö et al (2007) Comparison of five methods for determination of total plasma protein concentration. J Biochem Biophysic Meth 70(5):709–711

    Article  CAS  Google Scholar 

  • Ottens M, Wesselingh JA, van der Wielen LAM (2013) Procesy wydzielania i oczyszczania. In: Ratledge C, Kristiansen B (eds) Podstawy biotechnologii. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Reis RS, Pacheco GJ, Pereira AG et al (2013) Biosurfactants: production and applications, biodegradation. In: Chamy R (ed) Life of Science. InTech, Rijeka

    Google Scholar 

  • Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena, 4th edn. Wiley, New Jersey, Hoboken

    Book  Google Scholar 

  • Sharma D, Saharan BS, Sahu RK (2011) A review on biosurfactants: Fermentation, current developments and perspectives. Genetic Eng Biotechnol J 2011:1–14

    Google Scholar 

  • Śliwka E, Kołwzan B, Grabas K et al (2009) Influence of rhamnolipids from Pseudomonas PS-17 on coal tar and petroleum residue biodegradation. Environ Prot Eng 35(1):139–150

    Google Scholar 

  • Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Petrol Environ Biotechnol S-1(1):1–6

    Google Scholar 

  • Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397

    Article  CAS  Google Scholar 

  • Vecino X, Bustos G, Devesa-Rey R et al (2015) Salt-free aqueous extraction of a cell-bound biosurfactant: a kinetic study. J Surf Det 18(2):267–274

    Article  CAS  Google Scholar 

  • Wei YH, Cheng CL, Chien CC et al (2008) Enhanced di-rhamnolipid production with an indigenous isolate Pseudomonas aeruginosa J16. Process Biochem 43(7):769–774

    Article  CAS  Google Scholar 

  • Ziv N, Brandt NJ, Gresham D (2013) The use of chemostats in microbial systems biology. J Vis Exp 80:50168

    Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM et al (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge for financial support from the National Centre of Science (Poland) awarded by the decision number DEC-2015/19/N/NZ9/02423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kaczorek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smułek, W., Zdarta, A., Kaczorek, E. (2018). An Effective Production of Bacterial Biosurfactant in the Bioreactor. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_28

Download citation

Publish with us

Policies and ethics