Skip to main content

Poly(ethylene glycol) and Co-polymer Based-Hydrogels for Craniofacial Bone Tissue Engineering

  • Chapter
  • First Online:
Book cover Orthopedic Biomaterials

Abstract

Metallic implant materials are widely used for clinical applications but still could not achieve satisfactory functionalities for specific biomedical applications. Surface functionalizations are of particular interest to improve their surface bioactivity and provide other biofunctionalities for biomedical applications. Because of the excellent biological functions of calcium phosphate ceramics (CaPs), CaP coatings have been proposed and developed onto the surface of metallic implants to achieve improved osteointegration, corrosion resistance and antibacterial properties. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates the surface functionalization with CaP coatings for metallic biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis FF. The origin of pegnology. Adv Drug Deliv Rev. 2002;54:457–8.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cushing MC, Anseth KS. Materials science. hydrogel cell cultures. Science. 2007;316:1133–4.

    Article  CAS  PubMed  Google Scholar 

  4. Mellott MB, Searcy K, Pishko MV. Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by Uv polymerization. Biomaterials. 2001;22:929–41.

    Article  CAS  PubMed  Google Scholar 

  5. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li J, Kao WJ. Synthesis of polyethylene glycol (Peg) derivatives and pegylated-peptide biopolymer conjugates. Biomacromolecules. 2003;4:1055–67.

    Article  CAS  PubMed  Google Scholar 

  7. Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ. Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun (Camb). 2006;(26):2774–6.

    Google Scholar 

  8. Elbert DL, Hubbell JA. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules. 2001;2:430–41.

    Article  CAS  PubMed  Google Scholar 

  9. Hao Y, Shih H, Munoz Z, Kemp A, Lin CC. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3d cell culture. Acta Biomater. 2014;10:104–14.

    Article  CAS  PubMed  Google Scholar 

  10. Ward JH, Peppas NA. Preparation of controlled release systems by free-radical uv polymerizations in the presence of a drug. J Control Release. 2001;71:183–92.

    Article  CAS  PubMed  Google Scholar 

  11. Metters A, Hubbell J. Network formation and degradation behavior of hydrogels formed by michael-type addition reactions. Biomacromolecules. 2005;6:290–301.

    Article  CAS  PubMed  Google Scholar 

  12. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  CAS  PubMed  Google Scholar 

  13. Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS. Bioactive hydrogels made from step-growth derived peg-peptide macromers. Biomaterials. 2010;31:3736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin CC. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Adv. 2015;5:39844–398583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawecki M, Labus W, Klama-Baryla A, Kitala D, Kraut M, Glik J, Misiuga M, Nowak M, Bielecki T, Kasperczyk A. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’ scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater. 2017. https://doi.org/10.1002/jbm.b.33865.

    Google Scholar 

  16. Leifer CA. Dendritic cells in host response to biologic scaffolds. Semin Immunol. 2017;29:33–40.

    Article  Google Scholar 

  17. Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7:E525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999;10:123–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lin TY, Bragg JC, Lin CC. Designing visible light-cured thiol-acrylate hydrogels for studying the hippo pathway activation in hepatocellular carcinoma cells. Macromol Biosci. 2016;16:496–507.

    Article  CAS  PubMed  Google Scholar 

  20. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13:405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baker BM, Chen CS. Deconstructing the third dimension: how 3d culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vo TN, Shah SR, Lu S, Tatara AM, Lee EJ, Roh TT, Tabata Y, Mikos AG. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials. 2016;83:1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Emmakah AM, Arman H, Bragg J, Greene T, Alvarez M, Childress P, Goebel WS, Kacena M, Lin CC, Chu TM. A fast-degrading thiol-acrylate based hydrogel for cranial regeneration. Biomed Mater. 2017;12(2):025011.

    Article  CAS  PubMed  Google Scholar 

  24. Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschlager M, Kenner L, Pfeiffer D, Krupitza G, Dolznig H. Comparison of cancer cells in 2d vs 3d culture reveals differences in Akt-Mtor-S6k signaling and drug responses. J Cell Sci. 2017;130:203–18.

    Article  CAS  PubMed  Google Scholar 

  25. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H. Comparison of 2d- and 3d-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33:1837–43.

    Article  CAS  PubMed  Google Scholar 

  26. Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev. 2016;116:1950–68.

    Article  CAS  PubMed  Google Scholar 

  27. Lin CC, Anseth KS. Peg hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631–43.

    Article  CAS  PubMed  Google Scholar 

  28. Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmuller H, Muller R, Weber FE, Hubbell JA. Recombinant protein-Co-Peg networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules. 2006;7:3019–29.

    Article  CAS  PubMed  Google Scholar 

  29. Van De Wetering P, Metters AT, Schoenmakers RG, Hubbell JA. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J Control Release. 2005;102:619–27.

    Article  PubMed  Google Scholar 

  30. Pelegri-O’day EM, Maynard HD. Controlled radical polymerization as an enabling approach for the next generation of protein-polymer conjugates. Acc Chem Res. 2016;49:1777–85.

    Article  PubMed  Google Scholar 

  31. Hao Y, Lin CC. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture. J Biomed Mater Res A. 2014;102:3813–27.

    Article  PubMed  Google Scholar 

  32. Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN. Degradable hydrogels derived from Peg-diacrylamide for hepatic tissue engineering. J Biomed Mater Res A. 2015;103:3331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watson BM, Vo TN, Tatara AM, Shah SR, Scott DW, Engel PS, Mikos AG. Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering. Biomaterials. 2015;67:286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingavle GC, Gehrke SH, Detamore MS. The bioactivity of agarose-pegda interpenetrating network hydrogels with covalently immobilized rgd peptides and physically entrapped aggrecan. Biomaterials. 2014;35:3558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res. 1998;39:266–76.

    Article  CAS  PubMed  Google Scholar 

  36. Gould ST, Darling NJ, Anseth KS. Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater. 2012;8(9):3201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jennifer L, West JAH. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules. 1999;32:241–4.

    Article  Google Scholar 

  39. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA. Cell-demanded release of Vegf from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003;17:2260–2.

    Article  CAS  PubMed  Google Scholar 

  40. Petrovic V, Zivkovic P, Petrovic D, Stefanovic V. Craniofacial bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:E1–9.

    Article  PubMed  Google Scholar 

  41. Emmakah AM, Arman HE, Bragg JC, Greene T, Alvarez MB, Childress PJ, Goebel WS, Kacena MA, Lin CC, Chu TM. A fast-degrading thiol-acrylate based hydrogel for cranial regeneration. Biomed Mater. 2017;12(2):025011. https://doi.org/10.1088/1748-605X/aa5f3e.

    Article  CAS  PubMed  Google Scholar 

  42. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–8.

    Article  CAS  PubMed  Google Scholar 

  43. Mazzoccoli JP, Feke DL, Baskaran H, Pintauro PN. Mechanical and cell viability properties of crosslinked low and high molecular weight poly(ethylene glycol) diacrylate blends. J Biomed Mater Res A. 2010;93:558–66.

    PubMed  PubMed Central  Google Scholar 

  44. Singh SP, Schwartz MP, Lee JY, Fairbanks BD, Anseth KS. A peptide functionalized poly(ethylene glycol) (Peg) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater Sci. 2014;2:1024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B, Tarnok A. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol. 2014;5:218.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Herford AS. The use of recombinant human bone morphogenetic protein-2 (Rhbmp-2) in maxillofacial trauma. Chin J Traumatol. 2017;20:1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. Bmp signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6:32–52.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nie X, Luukko K, Kettunen P. Bmp signalling in craniofacial development. Int J Dev Biol. 2006;50:511–21.

    Article  CAS  PubMed  Google Scholar 

  49. Scarfi S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells. 2016;8(1):12.

    Article  Google Scholar 

  50. Emmakah A. Photoencapsulation of Bmp2 in visible light-cured thiol-acrylate hydrogel for craniofacial bone tissue engineering (Chapter 4). In: Biodegradable visible light-cured thiol-acrylate hydrogels for craniofacial bone tissue engineering (Ph.D. Thesis). Ann Arbor: ProQuest; 2017.

    Google Scholar 

  51. Aydin S, Kucukyuruk B, Abuzayed B, Aydin S, Sanus GZ. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract. 2011;2:162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brommeland T, Rydning På N, Pripp AH, Helseth E. Cranioplasty complications and risk factors associated with bone flap resorption. Scand J Trauma Resusc Emerg Med. 2015;23:75.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miller CP, Chiodo CP. Autologous bone graft in foot and ankle surgery. Foot Ankle Clin. 2016;21:825–37.

    Article  PubMed  Google Scholar 

  54. Malhotra A, Pelletier M, Oliver R, Christou C, Walsh WR. Platelet-rich plasma and bone defect healing. Tissue Eng A. 2014;20(19–20):2614–33.

    Article  CAS  Google Scholar 

  55. Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM. Cranial bone defects: current and future strategies. Neurosurg Focus. 2010;29:E8.

    Article  PubMed  Google Scholar 

  56. Abt P, Shaked A. The allograft immune response. Graft. 2003;6:71–9.

    Article  CAS  Google Scholar 

  57. Klimczak A, Siemionow M. Immune responses in transplantation: application to composite tissue allograft. Semin Plast Surg. 2007;21:226–33.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Emmakah A. Biodegradable thiol-acrylate hydrogel shows promise as a cell carrier for stromal-cell-assisted cranial regeneration (Chapter 5). In: Biodegradable visible light-cured thiol-acrylate hydrogels for craniofacial bone tissue engineering (Ph.D. Thesis). Ann Arbor: ProQuest; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbi M. Aghali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aghali, A.M. (2017). Poly(ethylene glycol) and Co-polymer Based-Hydrogels for Craniofacial Bone Tissue Engineering. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_9

Download citation

Publish with us

Policies and ethics