Skip to main content

Microbial Risk Associated with Application of Biosolids in Agriculture

  • Reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

The present chapter aimed to highlight the pathogenic risk associated with the application of biosolids in agriculture. The main pathogens and their health importance as well as their ability to survive and be transmitted into humans through the food chain have been discussed. It has appeared that the direct utilization of biosolids in agriculture represents one of the main sources of human and animal infections due to the ability of most pathogens to survive in the environment. Therefore, the biosolids should be subjected to further treatment process in order to reduce the pathogen level to less than the health risk which lies in the elimination of these pathogens or minimize their ability to regrow in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Gheethi AA, Norli I, Lalung J, Azieda T, Ab. Kadir MO (2013) Reduction of faecal indicators and elimination of pathogens from sewage treated effluents by heat treatment. Caspian J Appl Sci Res 2(2):29–45

    Google Scholar 

  • Al-Gheethi AA, Abdul-Monem MO, Al-Zubeiry A, Al-Amery R, Efaq AN, Shamar A (2014) Effectiveness of selected wastewater treatment plants in Yemen for reduction of faecal indicators and pathogenic bacteria in secondary effluents and sludge. Water Pract Technol 9(3):293–306

    Article  Google Scholar 

  • Ashbolt NJ, Grabow WOK, Snozzi M (2001) Indicators of microbial water Association, Washington, DC

    Google Scholar 

  • Autheunisse J, Koene JIA (1987) Alteration of the aerobic and facultative anaerobic bacterial flora of the A/B purification process caused by limited oxygen supply. Water Res 21:129–131

    Article  Google Scholar 

  • Azman TM, Shaari J (2013) Wastewater production, treatment and use in Malaysia. 5th regional workshop ‘Safe use of wastewater in agriculture’, 5–7 March 2013, Bali, Indonesia

    Google Scholar 

  • Bagge E, Sahlström L, Albihn A (2005) The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res 39(20):4879–4886

    Article  CAS  Google Scholar 

  • Beuchat LR (1996) Pathogenic microorganisms associated with fresh produce. J Food Prot 59(2):204–216

    Article  Google Scholar 

  • Burtscher C, Wuertz S (2003) Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters. Appl Environ Microbiol 69(8):4618–4627

    Article  CAS  Google Scholar 

  • Cheremisinoff PN (1994) Sludge: management and disposal. Prentice Hall, New Jersey

    Google Scholar 

  • Cools D, Merckx R, Vlassak K, Verhaegen J (2001) Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl Soil Ecol 17(1):53–62

    Article  Google Scholar 

  • Dailloux M, Laurain C, Weber M, Hartemann PH (1999) Water and nontuberculous mycobacteria. Water Res 33(10):2219–2228

    Article  CAS  Google Scholar 

  • De Luca G, Zanetti F, Fateh-Moghadm P, Stampi S (1998) Occurrence of Listeria monocytogenes in sewage sludge. Zentralbl Hyg Umweltmed= Int J Hyg Environ Med 201(3):269–277

    Google Scholar 

  • Droffner ML, Brinton WF (1995) Survival of E. coli and Salmonella populations in aerobic thermophilic composts as measured with DNA gene probes. Zentralbl Hyg Umweltmed 197:387–397

    CAS  Google Scholar 

  • Dudley DJ, Guentzel MN, Ibarra MJ, Moore BE, Sagik BP (1980) Enumeration of potentially pathogenic bacteria from sewage sludge. Appl Environ Microbiol 39:118–126

    CAS  Google Scholar 

  • Dumontet S, Scopa A, Kerje S, Krovacek K (2001) The importance of pathogenic organisms in sewage and sewage sludge. J Air Waste Manag Assoc 51:848–860

    Article  CAS  Google Scholar 

  • Epstein E (2002) Health issues related to beneficial use of biosolids. In: 16th annual residuals and biosolids management conference of the water environment federation, Texas, p 9. March 2002

    Google Scholar 

  • Evans TD (2012) Biosolids in Europe. Proc Water Environ Fed 2:108–117

    Article  Google Scholar 

  • Gallay A, De Valk H, Cournot M, Ladeuil B, Hemery C, Castor C, Bon F, Megraud F, Le Cann P, Desenclos JC (2006) A large multi-pathogen waterborne community outbreak linked to fecal contamination of a groundwater system. Clin Microbiol Infect 12:561–570

    Article  CAS  Google Scholar 

  • Gerba CP, Smith JE (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34(1):42–48

    CAS  Google Scholar 

  • Grohmann A, Hässelbarth U, Schwerdtfeger W (2003) In: Grohmann A (ed) Die Trinkwasserverordnung: Einführung und Erläuterungen für Wasserversorgungsunternehmen und Ãœberwachungsunternehmen, 4th edn. Erich Schmidt Verlag GmbH & Co, Berlin. 2003

    Google Scholar 

  • Hamouda H, Abu-Shaaban N (2014) A path to sustainability: biogas recovery towards energy self sufficiency wastewater treatment plant. Health 6(6):1–8

    Google Scholar 

  • Harrison E, McBride MB, Bouldin DR (1999) Land application of sewage sludges: an appraisal of the U. S. regulations. Int J Environ Pollut 11(1):1–36

    Article  CAS  Google Scholar 

  • Hoeller C, Koschinsky S, Witthuhn D (1999) Isolation of Enterohemorrhagic Escherichia coli from municipal sewage. Lancet 353:2039

    Article  Google Scholar 

  • Holt MS, Waters J, Comber M (1995) AIS/CESIO environment surfactant monitoring program .SIDA sewage treatment pilot study on linear alkylbenzene sulphonate (LAS). Water Res 29:2063–2070

    Article  CAS  Google Scholar 

  • Huertasa E, Salgota M, Hollenderb J, Weberb S, Dottb W, Khan S, Schäferd A, Messaleme R, Bisf B, Aharonig A, Chikurel H (2008) Key objectives for water reuse concepts. Desalination 218(2008):120–131

    Article  Google Scholar 

  • Ibekwe AM, Grieve CM (2003) Detection and quantification of Escherichia coli O157: H7 in environmental samples by real-time PCR. J Appl Microbiol 94(3):421–431

    Article  CAS  Google Scholar 

  • Johansson M, Emmoth E, Salomonsson AC, Albihn A (2005) Potential risks when spreading anaerobic digestion residues on grass silage crops–survival of bacteria, moulds and viruses. Grass Forage Sci 60(2):175–185

    Article  CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic E. coli. Nat Rev Microbiol 2:123–140

    Article  CAS  Google Scholar 

  • Kappesser S, Rude E, Kutzner HJ (1989) Microbiological studies of selected bacterial cultures for aerobic treatment of waste water. Proc Dechema Biotechnol Conf 3B:855–858

    Google Scholar 

  • Kearney TE, Larkin MJ, Frost JP, Levett PN (1993) Survival of pathogenic bacteria during mesophilic anaerobic digestion of animal waste. J Appl Microbiol 75(3):215–219

    CAS  Google Scholar 

  • Kowal NE (1983) An overview of public health effects. In: Page AL, Gleason TL, Smith JE, Iskander IK, Sommers LE (eds) Utilization of municipal wastewater and sludge on land. University of California, Riverside, pp 329–394

    Google Scholar 

  • Larsen KL (1998) The effect of C: N ratio on bench-scale composting of pulp and paper biosolids

    Google Scholar 

  • Lucero-Ramirez B (2000) The effects of time and temperature on the fate of pathogens and indicator bacteria during municipal wastewater sludge-mesophilic anaerobic digestion, air-drying and composting, Ph. D. Thesis. University of Texas, Austin

    Google Scholar 

  • Ma J, Mark Ibekwe A, Crowley DE, Yang C-H (2014) Persistence of Escherichia coli O157 and non-O157 strains in agricultural soils. Sci Total Environ. 2014 490:822–829

    Article  CAS  Google Scholar 

  • Markosyan L, Vardanyan N, Paronyan AKH, Nikoghosyan VG, Delalio A (2002) Microflora and chemical characteristics of wastewater sludge. Biol J Armenia 54:31–41

    Google Scholar 

  • Martens W, Fink A, Phillip W, Weber W, Winter D, Böhm R (1998) Inactivation of viral and bacterial pathogens in large scale slurry treatment plants. Proc RAMIRAN 98(8):529–539

    Google Scholar 

  • Naganandhini S, John Kennedy Z, Uyttendaele M, Balachandar D (2015) Persistence of pathogenic and non-pathogenic Escherichia coli strains in various tropical agricultural soils of India. PLOS ONE. https://doi.org/10.1371/journal.pone.0130038. June 23, 2015

  • Pahren HR, Lucas JB, Ryan JA, Dotson GK (1979) Health risks associated with land application of municipal sludge. J Water Pollut Control Federatmn 51:2588–2601

    CAS  Google Scholar 

  • Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman A, …, Hermon-Taylor J (2005) Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the River Taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn’s disease cases in the city of Cardiff. Appl Environ Microbiol 71(4):2130–2139

    Article  CAS  Google Scholar 

  • Poffe R, Op de Beek E (1991) Enumeration of Aeromonas hydrophila from domestic wastewater treatment plants and surface waters. J Appl Bacteriol 71:366–370

    Article  CAS  Google Scholar 

  • Ramteke PW, Pathak SP, Gautam AR, Bhattacherjee JW (1993) Association of Aeromonas caviae with sewage sludge pollution. Environ Sci Eng 28:859–870

    Google Scholar 

  • Sahlstrom L, Aspan A, Bagge E, Danielsson-Tham ML, Albihn A (2004) Bacterial pathogen incidences in sludge from Swedish sewage treatment plants. Water Res 38:1989–1994

    Article  CAS  Google Scholar 

  • Stampi S, De Luca G, Varoli O, Zanetti F (1999) Occurrence, removal and seasonal variation of thermophilic campylobacters and Arcobacter in sewage sludge. Zentralbl Hyg Umweltmed 202(1):19–27

    Article  CAS  Google Scholar 

  • Stelzer W, Jacob J (1991) A study of Campylobacter in sewage, sewage sludge and in river water. Water Sci Technol 24(2):117–120

    Article  Google Scholar 

  • Straub TM, Pepper IL, Gerba CP (1993) Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev Environ Contam Toxicol 132:55–91

    Article  CAS  Google Scholar 

  • Strauch D (1991) Survival of pathogenic micro-organism and Parasities inexcreta, manure and sewage sludge. Rev Sci Techn Off Int Epiz 10:813–846

    Article  CAS  Google Scholar 

  • Strauch D (1998) Pathogenic micro-organisms in sludge. Anaerobic digestion and disinfection methods to make sludge usable as fertiliser. Eur Water Manag 2(2):12–26

    Google Scholar 

  • Strauss M (2002) Human waste (Excreta and Waste water) reuse. Water Sci 15

    Google Scholar 

  • Supakata N, Chunkao K (2011) Thickness of moist sludge piling from community wastewater treatment through the royal LERD technology for growing rice. J Agric Sci 3(3):93

    Google Scholar 

  • Taormina PJ, Beuchat LR, Slutsker L (1999) Infections associated with eating seed sprouts: an international concern. Emerg Infect Dis 5(5):626

    Article  CAS  Google Scholar 

  • Toze S (1997) Microbial pathogens in wastewater. Literature review for urban water systems multi-divisional research program, Technical report no 1/97. CSIRO, Australia

    Google Scholar 

  • U. S. EPA (1994) Standards for the use or disposal of sewage sludge. Environmental Protection Agency; 40 CFR Part 503. Fed Regist 58:9248–9415

    Google Scholar 

  • U. S. EPA (2002) Onsite wastewater treatment systems design manual, EPA/625/R-00/008, Washington, DC. February 2002

    Google Scholar 

  • U. S. EPA (2003) Control of pathogens and vector attraction in sewage sludge; 40 CFR Part 503. U.S. Environmental Protection Agency, Cincinnate

    Google Scholar 

  • U. S. EPA, (2007) Pathogens, pathogen indicators and indicators of fecal contamination. Airlie Center, Warrenton, Virginiam U.S. Environmental Protection Agency, Office of Water, Office of Research and Development. EPA 823-R-07-006

    Google Scholar 

  • Urdaci MC, Marchand M, Ageron E, Arcos JM, Sesma B, Grimont PA (1991) Vibrio navarrensis sp. nov., a species from sewage. Int J Syst Evol Microbiol 41(2):290–294

    CAS  Google Scholar 

  • Viswanathan P, Kaur R (2001) Prevalence and growth of pathogens on salad vegetables, fruits and sprouts. Int J Hyg Environ Health 203(3):205–213

    Article  CAS  Google Scholar 

  • Watkins J, Sleath KP (1981) Isolation and enumeration of Listeria monocytogenes from sewage, sewage sludge and river water. J Appl Microbiol 50(1):1–9

    CAS  Google Scholar 

  • Weis J, Seeliger H (1975) Incidence of Listeria monocytogenes in nature. Appl Microbiol 30(1):29–32

    CAS  Google Scholar 

  • Wen Q, Tutuka C, Keegan A, Jin B (2009) Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. J Environ Manag 90:1442–1447

    Article  CAS  Google Scholar 

  • WHO (1981) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical report series, vol 778. World Health Organization, Geneva

    Google Scholar 

  • Winfield M, Groisman E (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69(7):3687–3694

    Article  CAS  Google Scholar 

  • Zhang T, Wang H, Wu L, Lou J, Wu J, Brookes PC (2013) Survival of Escherichia coli O157: H7 in soils from Jiangsu Province, China. PLoS One 8(12):e81178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Al-Gheethi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Al-Gheethi, A., Noman, E.A., Mohamed, R., Abdullah, A.H., Amir Hashim, M. (2019). Microbial Risk Associated with Application of Biosolids in Agriculture. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73645-7_26

Download citation

Publish with us

Policies and ethics