

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/124697

Sempere Luna, JM. (2018). Families of languages encoded by SN P systems. Lecture Notes
in Computer Science. 10725:262-269. https://doi.org/10.1007/978-3-319-73359-3_17

https://doi.org/10.1007/978-3-319-73359-3_17

Springer-Verlag

Families of languages encoded by SN P systems

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València,

jsempere@dsic.upv.es

Abstract. In this work, we propose the study of SN P systems as clas-
sical information encoders. By taking the spike train of an SN P system
as a (binary) source of information, we can obtain different languages ac-
cording to a previously defined encoding alphabet. We provide a charac-
terization of the language families generated by the SN P systems in this
way. This characterization depends on the way we define the encoding
scheme: bounded or not bounded and, in the first case, with one-to-one
or non injective encodings. Finally, we propose a network topology in
order to define a cascading encoder.

Keywords: SN P systems, formal languages, codes, word enumerations.

1 Introduction

Spiking Neural P systems (SN P systems) were proposed as a model that com-
bines some aspects of neural networks and some others from P systems. Basically,
they have been proposed as acceptor systems, language generators or (encoded)
word transducers. We focus our attention on the generative capacity of this
model. Typically, the language generated by the system is taken as the set of
binary words defined by the spike train that the system outputs. This approach
was first formulated in [5], and later developed in [1].

In this work, we consider a SN P system as a classical information source that
can generate encoded strings as outputs. The binary codes can be established in
an exogenous predefined way and, for a fixed encoding alphabet, the system gen-
erates a (possibly) infinite language. So, any SN P system can generate different
languages depending on the encoding that has been defined. We will overview
different situations within this approach: First, for a fixed integer value we will
distinguish between one-to-one and non-injective cases. Then, different encoding
schemes where the integer value tends to infinity will be overviewed and, finally,
a network topology that connect different SN P systems to produce a cascading
encoder will be proposed.

2 Basic concepts

We consider that the reader knows basic concepts and results from formal lan-
guage theory, otherwise we refer to [10]. In the same way, we consider that the

reader is familiar with the basic concepts and results about P systems and mem-
brane computing, otherwise we refer to [8] and [4].

In what follows, we provide some basic definitions related to Spiking Neural
P systems from [4].

Definition 1. A spiking neural P system (SN P system, for short) of degree
m ≥ 1 is defined by the tuple Π = (O, σ1, σ2, · · · , σm, syn, in, out) where

1. O = {a} is the singleton alphabet of spikes
2. σ1, σ2, · · · , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where

(a) ni ≥ 0 is the initial number of spikes contained in σi
(b) Ri is a finite set of rules of the following two forms

i. firing or spiking rules E/ac → a; d where E is a regular expression
over a, and c ≥ 1, d ≥ 0 are integer numbers. We will omit E
whenever it be equal to ac, and we will omit d if it is equal to 0.

ii. forgetting rules as → λ, for s ≥ 1, with the restriction that for
each spiking rule E/ac → a; d then as /∈ L(E) (L(E) is the regular
language defined by E)

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} with (i, i) /∈ syn, for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1 · · ·m} indicate the input and the output neurons of Π.

At neuron σi, the firing rules E/ac → a; d are applied as follows: if the neuron
contains k ≥ c spikes and ak ∈ E then c spikes are removed from σi and one
spike is delivered to all the neurons σj connected to σi with (i, j) ∈ syn. If d = 0
the spike is immediately emitted, otherwise it is emitted after d computation
steps (during these computation steps, the neuron is closed, so it cannot receive
spikes, it cannot apply the rules and, subsequently it cannot send new spikes).
At neuron σi, the forgetting rule as → λ is applied as follows: if the neuron σi
contains exactly s spikes and no firing rule can be applied then all the spikes of
the neuron are removed.

A configuration of the system at an instant t during a computation is defined
by the tuple (i1/t1, · · · , im/tm) that denotes the number of spikes that are at
every neuron together with the computation time needed to open the neuron.
The initial configuration of the SN P system is (n1/0, · · · , nm/0). A computation
of Π is a (finite or infinite) sequence of configurations such that: (a) the first
term of the sequence is the initial configuration of the system and each of the
remaining configurations are obtained from the previous one by applying rules
of the system in a maximally parallel manner with the restrictions previously
mentioned; and (b) if the sequence is finite (called halting computation) then
the last term of the sequence is a halting configuration, that is a configuration
where all neurons are open and no rule can be applied to it.

During a computation, the moments of time when a spike is emitted by the
output neuron will be marked by ’1’ while the other moments are marked by ’0’.
The binary sequence that is obtained in such a way during the computation is
called the spike train of the system. In the sequel, we will omit the input neuron,
and we will work with SN P systems as language generators.

The language generated by any SN P system depends on the interpretation
given to the spike train that it outputs. For any halting computation, we can
take the finite spike train as a string over the binary alphabet B = {0, 1}, or
we can take the intervals between output spikes with different approaches such
as those described in [9]. In what follows, we will consider the spike train as a
generator of binary strings.

For any SN P system Π, the language generated by Π as described before
will be denoted by L1(Π).

3 Languages encoded by SN P systems

Our approach to the languages generated by SN P systems is different from
the previously referred ones. Actually, the present research idea occurred in a
framework related to classical communication channels with encoded informa-
tion, where, for every SN P system, different languages can be associated to the
system depending on a parameter that fixes a time window to analyze the spike
train.

For any SN P system Π, we take the binary language L1(Π) and we encode
blocks of k digits, for all the positive integer values k, in such a way that lan-
guages Lk(Π) are obtained. Of course, we have to take care of the case when
the spike train is not of a length which is a multiple of the considered k. In this
case, we add symbols 0 so that the obtained binary string is of a length divisible
by k.

More formally, let B = {0, 1} be the binary alphabet, let k ≥ 1 be a natural
number, let Bk be the set of all strings from B whose length is k, and Vk be
an alphabet. In general, any alphabet can be considered but we will associate a
different symbol for every word in Bk. Consider a mapping ϕk : Bk −→ Vk. For
each string w ∈ B∗ we consider the string kw = w0t, where t = min{n ≥ 0 |
|w0n| is a multiple of k}.

The string kw can be written in the form kw = x1x2 . . . xs, such that |xj | = k
for all j = 1, 2, . . . , s. Then, ϕk can be extended to (Bk)∗ in the natural way:
ϕk(y1y2 . . . yt) = ϕk(y1)ϕk(y2) . . . ϕk(yt) for all yi ∈ Bk, 1 ≤ i ≤ t, t ≥ 0. We can
see the encoding approach that we have just described in Fig.1.

Thus, for an SN P system Π and an encoding ϕk as above, we can define the
language

Lϕk
(Π) = {ϕk(kw) | w ∈ L1(Π)}.

In what follows, we write Lk(Π) instead of Lϕk
(Π). The language Lk(Π)

depends on the encoding ϕk, hence a family of languages can be associated with
Π by varying k and the mapping ϕk. Observe, that the language L1(Π), as
defined at the end of section 2, is a particular case of Lk(Π) when k = 1, given
that ϕ1 can be trivially defined as the identity mapping. We define the family
of languages F (Π) = {Lk(Π)|k ≥ 1}.

Already at this very general level there appear several research issues. In
what follows, we consider two classes of mappings ϕk and investigate the closure
properties of the corresponding families of languages generated by SN P systems.

Fig. 1. SN P systems as language encoders: The case of intervals of lenght k.

3.1 The one-to-one case

A natural possibility is to order in a precise way, e.g., lexicographically, the
strings in Bk, and to associate with each of them a distinct symbol from an
alphabet Vk with 2k elements, that is, assuming that ϕk is injective.

We can establish the following properties depending on whether L1(Π) is
finite or not.

Property 1. Let Π be an SN P system. Then, if L1(Π) is finite the so are each
Lk(Π) for k > 1.

From the Property 1, we can deduce that if L1(Π) is finite, then the family
F (Π) is finite, up to a renaming of symbols of alphabets Vk.

Property 2. Let Π be an SN P system. Then, if L1(Π) is infinite, then so are
each Lk(Π) for k > 1.

If L1(Π) is infinite, then F (Π) can be an infinite family, because the alphabet
of Lk+1(Π) might be larger than the alphabet of Lk(Π). This is the case, for
instance, for the SN P system Π generating L1(Π) = {1n01m | n,m ≥ 1} (which
is an infinite regular language).

The fact that the encoding is one-to-one is rather restrictive: the passing
from the binary language L1(Π) to a given Lk(Π) can be done by means of
a sequential transducer (a gsm, in the usual terminology, [10]). Conversely, the
passage from Lk(Π) to L1(Π) is done by an one-to-one (non-erasing) morphism,
which implies that the converse passage is done by an inverse morphism. This
observation can be formally formulated as follows.

Proposition 1. If L1(Π) ∈ FL, where FL is a family of languages closed under
gsm mappings or under inverse morphisms, then Lk(Π) ∈ FL, for all k ≥ 1. If
FL is closed under non-erasing morphisms and Lk(Π) ∈ FL, then also L1(Π) ∈
FL.

Families as FL above are REG,LIN,CF in the Chomsky hierarchy, hence
if L1(Π) is regular, linear or context-free, then so are all languages Lk(Π), and
conversely.

This means that each family F (Π) contains only languages of the same type
in the Chomsky hierarchy (for instance, it is not possible to have a context-free
non-regular language Lk(Π) together with a regular language Lj(Π), for some
k 6= j.

3.2 The non-injective case

The previous type-preserving Proposition 1 does not hold in the case of using
encodings which are not one-to-one.

Here is an example: Consider Π such that L1(Π) = {1n01n | n ≥ 1} (SN
P systems are universal, [5], hence any language can be taken as the starting
language). Of course, L1(Π) is context-free non-regular.

Consider the encoding ϕk : Bk −→ {a, b} defined by ϕk(w) = a if |w|0 ≤ 1,
and ϕk(w) = b if |w|0 ≥ 2. We get

Lk(Π) = a+ ∪ a∗b, for k ≥ 4,

L3(Π) = a+ ∪ (aa)+b, and L2(Π) = aa+.
Clearly, the languages Lk(Π), k ≥ 2, are regular, in spite of the fact that

L1(Π) is (context-free) non-regular.
The properties of the encoding is crucial for the properties of the obtained

language families (this is true also in other frameworks, see, e.g., [3] and its
references), hence this issue deserves further research efforts.

4 The unbounded case

In the previous section, an encoding of the languages based on blocks of length
k has been considered. Now, we consider the limit case, when every string from
L1(Π) encodes a different string while k tends to ∞.

Formally, we consider an alphabet Σ = {a0, a1, · · · , ap}, and the ordered set
of strings Σ∗ = {w0, w1, · · ·wi, · · · }. We define the encoding ϕint : B∗ −→ Σ∗

such that for every binary string x, ϕint(x) = wint(x) where int(x) is the integer
value of x by taking x as a binary number. The encoding scheme over the SN P
system is shown at Fig.2.

For a given alphabet Σ and an application ϕint : B∗ −→ Σ∗, we can define
the encoded language of any SN P system, as we have described before, as follows

L∞(Π) = {w ∈ Σ∗ | ∃x ∈ L1(Π) such that w = zint(x)}

Observe, that Σ∗ must be ordered within a precise enumeration of all its
words. In this case, the enumeration of the strings in Σ∗ (actually, its order) is
decisive to preserve the language class from L1(Π) to L∞(Π).

Fig. 2. SN P systems as language encoders: The unbounded case.

For example, let us take L1(Π) = {(01)n | n ≥ 0} that is a regular language
that can be generated by an SN P system given that they have been proved to
be universal.

Let Σ = {a, b} and the languages L1 = {anbn | n ≥ 0} and L2 = Σ∗−L1. We
consider that L1 = {x1, x2, x3, · · · } and L2 = {y1, y2, y3, · · · } are lexicographi-
cally ordered.

We can define the following enumeration over Σ∗ = {z1, z2, · · · , zi, · · · },
where

1. If i mod 2 = 0 then zi = y i
2
∈ L2 (even indexes)

2. If i mod 2 = 1 then zi = xd i
2 e
∈ L1 (odd indexes)

Observe that every string x ∈ L1(Π) = {(01)n : n ≥ 0} encodes an odd
integer number given that the binary string ends with ’1’. Hence, L∞(Π) is an
infinite subset of L1 given that, for every string x in L1(Π), the string zint(x)
occupies an odd position and, subsequently, it belongs to L1. Hence. L1(Π) is
regular while L∞ is not.

5 Networks of SN P systems as cascading encoders

Finally, we propose a new way of encoding languages by composing a finite
number of SN P systems. In this case we propose a topology based on SN P
systems with a tissue-like configuration within a bus connection. Our proposal
is shown in Fig.3.

We have a finite set of n SN P systems defined in the usual way. We connect
them in the following way: every time that the SN P system i halts, its spike
train encodes an integer value ki that is the parameter to encode the language
in the SN P system i + 1. Hence, a network of SN P systems can be viewed
as a cascading encoder for languages. If we connect the SN P systems in a bus
topology then, for the iterated case, the last system is connected to the first one.

This opens a new framework which is related to previous works on DNA
computing and formal languages [6, 7], where iterated transductions were proved
to characterize the entire class of recursively enumerable languages.

Fig. 3. A network of SN P systems generates a family of languages.

6 Final comments and future research

The idea of associating a family of languages with a given P system is rather
natural. We have illustrated it here with the case of SN P systems, but the same
strategy can be applied for any type of P systems producing a language (such
that cell-like P systems with external output, SN P systems generating trace
languages [2], etc.).

A more systematic study of this idea is of interest, starting with relevant
examples, continuing with “standard” formal language theory questions, and
ending with possible applications of this approach (as languages generated by
the same P system are “genetically” related, maybe in this way one can capture
biological connections/dependencies or other types of relationships).

More precisely, we enumerate the following questions related to our proposal:

1. We have described a way to encode languages within SN P systems. Now,
the reverse problem arises i.e., to decode languages from the spike train.
Here, from a spike train we should obtain the set of binary spike trains
that encode it. This issue should be studied in order to complete a classical
communication framework.

2. With respect to the encoding properties, we have overviewed only the as-
pects related to the (non)injective property. Different properties from code
theory should produce new results that connect formal language theory, SN
P systems and communications systems.

3. The last issue that we have proposed opens different problems related to it.
If a network of SN P systems is proposed then we should study the effects
of the network topology and the number of SN P systems over the families
of languages. In this sense, the number of SN P system could be considered
a descriptional complexity measure.

These aspects and new ones will be reported in future works.

Acknowledgements

Part of this work appeared as Families of Languages Associated with SN P
Systems: Preliminary Ideas, Open Problems. Gh. Păun, J.M. Sempere. Bul-
letin of the Membrane Computing Society, Issue 2, December 2016, pp. 161-164.
http://membranecomputing.net/IMCSBulletin/. The author is indebted to Gh.
Păun for his original contribution to this work.

References

1. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez. On string lan-
guages generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4
(2007), pp. 141-162.

2. H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages gener-
ated by spiking neural P systems, Eighth International Workshop on Descriptional
Complexity of Formal Systems (DCFS 2006), June 21-23, 2006, Las Cruces, New
Mexico, USA, pp. 94–105.

3. E. Csuhaj-Varjú, G. Vaszil: On counter machines versus dP automata. Membrane
Computing. 14th Intern. Conf., CMC 2013, Chişinău, August 2013 (A. Alhazov et
al., eds.), LNCS 8340, Springer, (2014), pp. 138–150.

4. O.H. Ibarra, A. Leporati, A. Păun, S. Woodworth: Spiking neural P Systems,
in The Oxford Handbook of Membrane Computing (Gh. Păun, G. Rozenberg, A.
Salomaa, eds.), Oxford University Press, 2010.

5. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta In-
formaticae, 71, 2-3 (2006), pp. 279–308.

6. V. Manca: On the generative power of iterated transduction. In Words, Semigroups,
& Transductions (M. Ito, Gh. Păun, S. Yu, eds.), pp. 315-327. World Scientific,
2001.

7. V. Manca, C. Mart́ın-Vide, Gh. Păun: New computing paradigms suggested by
DNA computing: computing by carving. BioSystems, 52 (1999), pp. 47-54.

8. Gh. Păun. Membrane Computing. An Introduction, Springer, 2002.
9. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg. Spike trains in spiking neural P

systems. International Journal of Foundations of Computer Science, 17, 4 (2006),
pp. 975-1002.

10. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 vols., Springer-
Verlag, 1997.

