Skip to main content

Mitochondria in Liver Diseases

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria are not only the main energy source in the hepatocytes but also play a major role in the cell redox homeostasis and maintain normal liver function including signalling pathways and the metabolism of exogenous substances. These roles assign mitochondria a gateway function in protecting hepatocyte from injury since unbalanced mitochondrial function unequivocally affects cell survival by actively causing the onset and perpetuation of liver diseases. Abnormal mitochondrial function is reported to be involved in a variety of liver diseases including drug-induced liver injury, alcoholic liver disease, non-alcoholic fatty liver disease, viral hepatitis, primary and secondary cholestasis, hemochromatosis, and Wilson’s disease. These changes lead to the impairment of the electron transport chain and/or oxidative phosphorylation, which induces a decrease in oxidative degradation of many exogenous and endogenous substrates and ATP synthesis, and in general, reduces hepatocyte tolerance towards potentially damaging insults. Structural changes accompany functional impairment of mitochondria, resulting in swelling and formation of aggregates and inclusions within the mitochondrial matrix. In chronic liver diseases, adequate mitochondrial function is maintained by mitochondrial proliferation and/or by an increased activity of critical enzymes. The assessment of mitochondrial functions in vivo is a useful tool in patients with liver diseases for diagnostic and prognostic purposes in patients with liver diseases and for the evaluation of therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALD:

Alcoholic liver disease

AMA:

Antimitochondrial antibodies

ANG:

Angiotensin

ATP:

Adenosine triphosphate

BDL:

Bile duct ligation

ER:

Endoplasmic reticulum

Fe/S:

Iron-sulfur

GSH:

Glutathione

HFE:

Hemochromatosis gene

iNOs:

Inducible nitric oxide synthase

KGDH:

α-Ketoglutarate dehydrogenase

KICA:

α-Ketoisocaproic acid

LCFA:

Long chain fatty acids

MAM:

Mitochondria-associated membrane

MPT:

Mitochondrial permeability transition

mtDNA:

Mitochondrial DNA

NAFL:

Non-alcoholic fatty liver

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NO:

Nitric oxide

PBC:

Primary biliary cirrhosis

PDH:

Pyruvate dehydrogenase

PSH:

Protein sulfhydryls

PSSG:

Protein mixed disulfides

ROS:

Reactive oxygen species

SAME:

S-Adenosyl-L-methionine

SOD:

Superoxide dismutase

TG:

Triglycerides

WD:

Wilson’s disease

References

  • Abumrad NA, El-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268:17665–17668

    CAS  PubMed  Google Scholar 

  • Afonso MB, Rodrigues PM, Carvalho T, Caridade M, Borralho P, Cortez-Pinto H, Castro RE, Rodrigues CM (2015) Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond) 129:721–739

    Article  CAS  Google Scholar 

  • Afonso MB, Rodrigues PM, Simao AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J, Rodrigues CM (2016) Activation of necroptosis in human and experimental cholestasis. Cell Death Dis 7:e2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altomare E, Grattagliano I, Didonna D, Gentile A, Vendemiale G (1998) Gastric and intestinal ethanol toxicity in the rat. Effect on glutathione level and role of alcohol and acetaldehyde metabolisms. Ital J Gastroenterol Hepatol 30:82–90

    CAS  PubMed  Google Scholar 

  • Angulo P, Keach JC, Batts KP, Lindor KD (1999) Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 30:1356–1362

    Article  CAS  PubMed  Google Scholar 

  • Anstee QM, Day CP (2015) The genetics of nonalcoholic fatty liver disease: spotlight on PNPla3 and TM6SF2. Semin Liver Dis 35:270–290

    Article  CAS  PubMed  Google Scholar 

  • Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH (2009) Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 51:371–379

    Article  CAS  PubMed  Google Scholar 

  • Arnelle DR, Stamler JS (1995) NO+, NO., and NO− donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318:279–285

    Article  CAS  PubMed  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  CAS  PubMed  Google Scholar 

  • Bacon BR, Park CH, Brittenham GM, Tavill AS (1985) Hepatic mitochondrial oxidative metabolism in rats with chronic dietary iron overload. Hepatology 5:789–797

    Article  CAS  PubMed  Google Scholar 

  • Bacon BR, O’Neill R, Park CH (1986) Iron-induced peroxidative injury to isolated rat hepatic mitochondria. J Free Radic Biol Med 2:339–347

    Article  CAS  PubMed  Google Scholar 

  • Bacon BR, Britton RS, O’Neill R (1989) Effects of vitamin E deficiency on hepatic mitochondrial lipid peroxidation and oxidative metabolism in rats with chronic dietary iron overload. Hepatology 9:398–404

    Article  CAS  PubMed  Google Scholar 

  • Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, Page GP, Chhieng D, Jhala N, Landar A (2006) S-Adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver. Am J Physiol Gastrointest Liver Physiol 291:G857–G867

    Article  CAS  PubMed  Google Scholar 

  • Barbaro G, Di Lorenzo G, Asti A, Ribersani M, Belloni G, Grisorio B, Filice G, Barbarini G (1999) Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings. Am J Gastroenterol 94:2198–2205

    Article  CAS  PubMed  Google Scholar 

  • Barbaro G, Di Lorenzo G, Belloni G, Asti A, Pellicelli A, Barbarini G (2001) Hepatic iron storage and megamitochondria formation in patients with chronic hepatitis C related to the hepatitis C virus genotype. Dig Liver Dis 33:81–83

    Article  CAS  PubMed  Google Scholar 

  • Bates C (1990) Liberation of CO2 from [C] adipic acid and [C] octanoic acid by adult rats during riboflavin deficiency and its reversal. Br J Nutr 63:553–562

    Article  CAS  PubMed  Google Scholar 

  • Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42:44–52

    Article  PubMed  Google Scholar 

  • Belyaeva EA, Dymkowska D, Więckowski MR, Wojtczak L (2008) Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol Appl Pharmacol 231:34–42

    Article  CAS  PubMed  Google Scholar 

  • Berk PD, Verna EC (2016) Nonalcoholic fatty liver disease. Clin Liver Dis 20:245–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Berk PD, Wada H, Horio Y, Potter BJ, Sorrentino D, Zhou SL, Isola LM, Stump D, Kiang CL, Thung S (1990) Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci U S A 87:3484–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk PD, Zhou SL, Kiang CL, Stump D, Bradbury M, Isola LM (1997) Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem 272:8830–8835

    Article  CAS  PubMed  Google Scholar 

  • Berson A, De Beco V, Lettéron P, Robin MA, Moreau C, El Kahwaji J, Verthier N, Feldmann G, Fromenty B, Pessayre D (1998) Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology 114:764–774

    Article  CAS  PubMed  Google Scholar 

  • Bianchi G, Marchesini G, Vilstrup H, Fabbri A, De Mitri MS, Zoli M, Pisiél E (1991) Hepatic amino-nitrogen clearance to urea-nitrogen in control subjects and in patients with cirrhosis: a simplified method. Hepatology 13:460–466

    Article  CAS  PubMed  Google Scholar 

  • Bonfrate L, Wang DQ, Garruti G, Portincasa P (2014) Obesity and the risk and prognosis of gallstone disease and pancreatitis. Best Pract Res Clin Gastroenterol 28:623–635

    Article  CAS  PubMed  Google Scholar 

  • Bonfrate L, Grattagliano I, Palasciano G, Portincasa P (2015) Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol Rep (Oxf) 3:12–21

    Article  Google Scholar 

  • Boyapati RK, Tamborska A, Dorward DA, Ho GT (2017) Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 6:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury MW, Berk PD (2003) Cellular uptake of long chain free fatty acids: the structure and function of plasma membrane fatty acid binding protein. Adv Mol Cell Biol 33:47–80

    Article  CAS  Google Scholar 

  • Bradbury MW, Stump D, Guarnieri F, Berk PD (2011) Molecular modeling and functional confirmation of a predicted fatty acid binding site of mitochondrial aspartate aminotransferase. J Mol Biol 412:412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton RS, O’Neill R, Bacon BR (1990) Hepatic mitochondrial malondialdehyde metabolism in rats with chronic iron overload. Hepatology 11:93–97

    Article  CAS  PubMed  Google Scholar 

  • Britton RS, O’Neill R, Bacon BR (1991) Chronic dietary iron overload in rats results in impaired calcium sequestration by hepatic mitochondria and microsomes 1, 2, and 3. Gastroenterology 101:806–811

    Article  CAS  PubMed  Google Scholar 

  • Browning JD, Kumar KS, Saboorian MH, Thiele DL (2004) Ethnic differences in the prevalence of cryptogenic cirrhosis. Am J Gastroenterol 99:292–298

    Article  PubMed  Google Scholar 

  • Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA, Rinella ME (2015) Nonalcoholic fatty liver disease. Nat Rev Dis Primers 1:15080

    Article  PubMed  Google Scholar 

  • Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci P, Musso A, De Paolis P, Capussotti L, Salizzoni M (2002) Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123:134–140

    Article  PubMed  Google Scholar 

  • Burt AD, Mutton A, Day CP (1998) Diagnosis and interpretation of steatosis and steatohepatitis. SeminDiagnPathol 15:246–258

    CAS  Google Scholar 

  • Cahill A, Sykora P (2008) Alcoholic liver disease and the mitochondrial ribosome: methods of analysis. Methods Mol Biol 447:381–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calamita G, Portincasa P (2007) Present and future therapeutic strategies in non-alcoholic fatty liver disease. Expert Opin Ther Targets 11:1231–1249

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SH, Chang CY, Nakamoto RK, Krugner-Higby L (2004) Mitochondria in nonalcoholic fatty liver disease. Clin Liver Dis 8:595–617

    Article  PubMed  Google Scholar 

  • Campbell RV, Yang Y, Wang T, Rachamallu A, Li Y, Watowich SJ, Weinman SA (2009) Effects of hepatitis C core protein on mitochondrial electron transport and production of reactive oxygen species. Methods Enzymol 456:363–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreras MC, Converso DP, Lorenti AS, Barbich M, Levisman DM, Jaitovich A, Antico Arciuch VG, Galli S, Poderoso JJ (2004) Mitochondrial nitric oxide synthase drives redox signals for proliferation and quiescence in rat liver development. Hepatology 40:157–166

    Article  CAS  PubMed  Google Scholar 

  • Cazanave SC, Mott JL, Bronk SF, Werneburg NW, Fingas CD, Meng XW, Finnberg N, El-Deiry WS, Kaufmann SH, Gores GJ (2011) Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J Biol Chem 286:39336–39348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142:1592–1609

    Article  PubMed  Google Scholar 

  • Chang ES (1987) Ultrastructural morphogenesis of mitochondria in alcoholic liver. Pathol Int 37:213–224

    Article  CAS  Google Scholar 

  • Charlton M (2007) Noninvasive indices of fibrosis in NAFLD: starting to think about a three-hit (at least) phenomenon. Am J Gastroenterol 102:409–411

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Pearce LL, Peterson J, Stoyanovsky D, Billiar TR (2005) Glutathione depletion renders rat hepatocytes sensitive to nitric oxide donor–mediated toxicity. Hepatology 42:598–607

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Vigueira PA, Chambers KT, Hall AM, Mitra MS, Qi N, Mcdonald WG, Colca JR, Kletzien RF, Finck BN (2012) Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor γ-sparing thiazolidinedione. J Biol Chem 287:23537–23548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colca JR, Vanderlugt JT, Adams WJ, Shashlo A, Mcdonald WG, Liang J, Zhou R, Orloff DG (2013) Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther 93:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colca JR, Mcdonald WG, Mccommis KS, Finck BN (2017) Treating fatty liver disease by modulating mitochondrial pyruvate metabolism. Hepatol Commun 1:193–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman WB, Cunningham CC (1990) Effects of chronic ethanol consumption on the synthesis of polypeptides encoded by the hepatic mitochondrial genome. Biochim Biophys Acta 1019:142–150

    Article  CAS  PubMed  Google Scholar 

  • Corradini E, Ferrara F, Pietrangelo A (2004) Iron and the liver. Pediatr Endocrinol Rev 2:245–248

    PubMed  Google Scholar 

  • Cortez-Pinto H, Chatham J, Chacko V, Arnold C, Rashid A, Diehl AM (1999) Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 282:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Dagnelie PC, Menon DK, Cox IJ, Bell JD, Sargentoni J, Coutts GA, Urenjak J, Iles RA (1992) Effect of L-alanine infusion on 31P nuclear magnetic resonance spectra of normal human liver: towards biochemical pathology in vivo. Clin Sci 83:183–190

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Adachi T, Kitayama K, Bungyoku Y, Kitazawa S, Ishido S, Shoji I, Hotta H (2008) Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 82:10375–10385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Digel M, Ehehalt R, Stremmel W, Fullekrug J (2009) Acyl-CoA synthetases: fatty acid uptake and metabolic channeling. Mol Cell Biochem 326:23–28

    Article  CAS  PubMed  Google Scholar 

  • Diogo CV, Grattagliano I, Oliveira PJ, Bonfrate L, Portincasa P (2011) Re-wiring the circuit: mitochondria as a pharmacological target in liver disease. Curr Med Chem 18:5448–5465

    Article  CAS  PubMed  Google Scholar 

  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour JF, Stoupis C, Lazeyras F, Vock P, Terrier F, Reichen J (1992) Alterations in hepatic fructose metabolism in cirrhotic patients demonstrated by dynamic 31phosphorus spectroscopy. Hepatology 15:835–842

    Article  CAS  PubMed  Google Scholar 

  • Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51:679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Bradbury MW, Berk PD (2003) Leptin and insulin modulate nutrient partitioning and weight loss in ob/ob mice through regulation of long-chain fatty acid uptake by adipocytes. J Nutr 133:2707–2715

    Article  CAS  PubMed  Google Scholar 

  • Farrell GC, Wong VW, Chitturi S (2013) NAFLD in Asia—as common and important as in the West. Nat Rev Gastroenterol Hepatol 10:307–318

    Article  CAS  PubMed  Google Scholar 

  • Feldmann G, Haouzi D, Moreau A, Durand-Schneider AM, Bringuier A, Berson A, Mansouri A, Fau D, Pessayre D (2000) Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice. Hepatology 31:674–683

    Article  CAS  PubMed  Google Scholar 

  • Feoktistova M, Leverkus M (2015) Programmed necrosis and necroptosis signalling. FEBS J 282:19–31

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Checa J, García-Ruiz C, Ookhtens M, Kaplowitz N (1991) Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J Clin Investig 87:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Checa JC, Kaplowitz N, García-Ruiz C, Colell A (1998) Mitochondrial glutathione: importance and transport. Semin Liver Dis 18:389–401

    Article  PubMed  Google Scholar 

  • Feuchtinger M, Christ S, Preuss B, Dengjel J, Duman S, Stevanovic S, Klein R (2009) Detection of novel non-M2-related antimitochondrial antibodies in patients with anti-M2 negative primary biliary cirrhosis. Gut 58:983–989

    Article  CAS  PubMed  Google Scholar 

  • Fielding CM, Angulo P (2014) Hepatic steatosis and steatohepatitis: are they really two distinct entities? Curr Hepatol Rep 13:151–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini G, Capaccioli S, Zecchi Orlandini S (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–49

    Article  CAS  PubMed  Google Scholar 

  • Francque SM, Verrijken A, Mertens I, Hubens G, Van Marck E, Pelckmans P, Michielsen P, Van Gaal L (2012) Noninvasive assessment of nonalcoholic fatty liver disease in obese or overweight patients. Clin Gastroenterol Hepatol 10:1162–8; quiz e87

    Article  PubMed  Google Scholar 

  • Fromenty B, Pessayre D (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 67:101–154

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, Shlomchik MJ, Coffman RL, Candia A, Mehal WZ (2016) Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 126:859–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Ruiz C, Fernandez-Checa JC (2006) Mitochondrial glutathione: hepatocellular survival–death switch. J Gastroenterol Hepatol 21:S3–S6

    Article  CAS  PubMed  Google Scholar 

  • García-Ruiz I, Rodríguez-Juan C, Díaz-Sanjuan T, Del Hoyo P, Colina F, Muñoz-Yagüe T, Solís-Herruzo JA (2006) Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology 44:581–591

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ruiz I, Solis-Munoz P, Fernandez-Moreira D, Munoz-Yague T, Solis-Herruzo JA (2015) In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. Dis Model Mech 8:183–191

    Article  PubMed  CAS  Google Scholar 

  • Gatley SJ, Sherratt H (1977) The synthesis of hippurate from benzoate and glycine by rat liver mitochondria. Submitochondrial localization and kinetics. Biochem J 166:39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautheron J, Vucur M, Reisinger F, Cardenas DV, Roderburg C, Koppe C, Kreggenwinkel K, Schneider AT, Bartneck M, Neumann UP (2014) A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med 6:1062–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge F, Lobdell H IV, Zhou S, Hu C, Berk PD (2010a) Digital analysis of hepatic sections in mice accurately quantitates triglycerides and selected properties of lipid droplets. Exp Biol Med 235:1282–1286

    Article  CAS  Google Scholar 

  • Ge F, Zhou S, Hu C, Lobdell H, Berk PD (2010b) Insulin-and leptin-regulated fatty acid uptake plays a key causal role in hepatic steatosis in mice with intact leptin signaling but not in ob/ob or db/db mice. Am J Physiol Gastrointest Liver Physiol 299:G855–G866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge F, Hu C, Hyodo E, Arai K, Zhou S, Lobdell H IV, Walewski JL, Homma S, Berk PD (2011) Cardiomyocyte triglyceride accumulation and reduced ventricular function in mice with obesity reflect increased long chain fatty acid uptake and de novo fatty acid synthesis. J Obes. https://doi.org/10.1155/2012/205648

  • Ge F, Walewski JL, Torghabeh MH, Lobdell HT, Hu C, Zhou S, Dakin G, Pomp A, Bessler M, Schrope B, Ude-Welcome A, Inabnet WB, Feng T, Carras-Terzian E, Anglade D, Ebel FE, Berk PD (2016) Facilitated long chain fatty acid uptake by adipocytes remains upregulated relative to BMI for more than a year after major bariatric surgical weight loss. Obesity (Silver Spring) 24:113–122

    Article  CAS  Google Scholar 

  • Grattagliano I, Vendemiale G, Lauterburg BH (1999) Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester. J Surg Res 86:2–8

    Article  CAS  PubMed  Google Scholar 

  • Grattagliano I, Vendemiale G, Caraceni P, Domenicali M, Nardo B, Cavallari A, Trevisani F, Bernardi M, Altomare E (2000) Starvation impairs antioxidant defense in fatty livers of rats fed a choline-deficient diet. J Nutr 130:2131–2136

    Article  CAS  PubMed  Google Scholar 

  • Grattagliano I, Caraceni P, Portincasa P, Domenicali M, Palmieri VO, Trevisani F, Bernardi M, Palasciano G (2003) Adaptation of subcellular glutathione detoxification system to stress conditions in choline-deficient diet induced rat fatty liver. Cell BiolToxicol 19:355–366

    CAS  Google Scholar 

  • Grattagliano I, Portincasa P, Cocco T, Moschetta A, Di Paola M, Palmieri VO, Palasciano G (2004a) Effect of dietary restriction and N-acetylcysteine supplementation on intestinal mucosa and liver mitochondrial redox status and function in aged rats. ExpGerontol 39:1323–1332

    CAS  Google Scholar 

  • Grattagliano I, Russmann S, Palmieri VO, Juni P, Bihl F, Portincasa P, Palasciano G, Lauterburg BH (2004b) Low membrane protein sulfhydrils but not G6PD deficiency predict ribavirin-induced hemolysis in hepatitis C. Hepatology 39:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Grattagliano I, Portincasa P, Palmieri VO, Palasciano G (2007) Mutual changes of thioredoxin and nitrosothiols during biliary cirrhosis: results from humans and cholestatic rats. Hepatology 45:331–339

    Article  CAS  PubMed  Google Scholar 

  • Grattagliano I, Caraceni P, Calamita G, Ferri D, Gargano I, Palasciano G, Portincasa P (2008) Severe liver steatosis correlates with nitrosative and oxidative stress in rats. Eur J Clin Investig 38:523–530

    Article  CAS  Google Scholar 

  • Grattagliano I, Russmann S, Diogo C, Bonfrate L, Oliveira PJ, Wang DQ, Portincasa P (2011) Mitochondria in chronic liver disease. CurrDrug Targets 12:879–893

    Article  CAS  Google Scholar 

  • Grattagliano I, Diogo CV, Mastrodonato M, De Bari O, Persichella M, Wang DQ, Liquori A, Ferri D, Carratu MR, Oliveira PJ, Portincasa P (2013) A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World J Gastroenterol 19:3007–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenway F (2015) Physiological adaptations to weight loss and factors favouring weight regain. Int J Obes 39:1188–1196

    Article  CAS  Google Scholar 

  • Gu M, Cooper J, Butler P, Walker A, Mistry P, Dooley J, Schapira A (2000) Oxidative-phosphorylation defects in liver of patients with Wilson’s disease. Lancet 356:469–474

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri F, Nicoletti C, Adorisio E, Caraccio G, Leonetti P, Zanotti F, Cantatore P (2000) Correlation between decreased expression of mitochondrial F0F1-ATP synthase and low regenerating capability of the liver after partial hepatectomy in hypothyroid rats. J Bioenerg Biomembr 32:183–191

    Article  CAS  PubMed  Google Scholar 

  • Hall PD, Plummer JL, Ilsley AH, Cousins MJ (1991) Hepatic fibrosis and cirrhosis after chronic administration of alcohol and “low-dose” carbon tetrachloride vapor in the rat. Hepatology 13:815–819

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi E, Takamura T, Sakurai M, Mizukoshi E, Zen Y, Takeshita Y, Kurita S, Arai K, Yamashita T, Sasaki M, Nakanuma Y, Kaneko S (2010) Histological course of nonalcoholic fatty liver disease in Japanese patients: tight glycemic control, rather than weight reduction, ameliorates liver fibrosis. Diabetes Care 33:284–286

    Article  CAS  PubMed  Google Scholar 

  • Hamberg O, Nielsen K, Vilstrup H (1992) Effects of an increase in protein intake on hepatic efficacy for urea synthesis in healthy subjects and in patients with cirrhosis. J Hepatol 14:237–243

    Article  CAS  PubMed  Google Scholar 

  • Han D, Johnson HS, Rao MP, Martin G, Sancheti H, Silkwood KH, Decker CW, Nguyen KT, Casian JG, Cadenas E, Kaplowitz N (2017) Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic Biol Med 102:100–110

    Article  CAS  PubMed  Google Scholar 

  • Haouzi D, Lekéhal M, Moreau A, Moulis C, Feldmann G, Robin MA, Lettéron P, Fau D, Pessayre D (2000) Cytochrome P450-generated reactive metabolites cause mitochondrial permeability transition, caspase activation, and apoptosis in rat hepatocytes. Hepatology 32:303–311

    Article  CAS  PubMed  Google Scholar 

  • Haque M, Sanyal AJ (2002) The metabolic abnormalities associated with non-alcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 16:709–731

    Article  CAS  PubMed  Google Scholar 

  • Harrison SA (2015) Nonalcoholic fatty liver disease and fibrosis progression: the good, the bad, and the unknown. Clin Gastroenterol Hepatol 13:655–657

    Article  PubMed  Google Scholar 

  • Hensley K, Kotake Y, Sang H, Pye QN, Wallis GL, Kolker LM, Tabatabaie T, Stewart CA, Konishi Y, Nakae D (2000) Dietary choline restriction causes complex I dysfunction and increased H2O2 generation in liver mitochondria. Carcinogenesis 21:983–989

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Kaplowitz N, Tsukamoto H, Kamimura S, Fernandez-Checa JC (1992) Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats. Hepatology 16:1423–1427

    Article  CAS  PubMed  Google Scholar 

  • Hossain N, Afendy A, Stepanova M, Nader F, Srishord M, Rafiq N, Goodman Z, Younossi Z (2009) Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 7:1224–9, 1229 e1-2

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi-Shimizu S, Park EJ, Roh YS, Yang L, Zhang B, Song J, Liang S, Pimienta M, Taniguchi K, Wu X, Asahina K, Lagakos W, Mackey MR, Akira S, Ellisman MH, Sears DD, Olefsky JM, Karin M, Brenner DA, Seki E (2014) TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest 124:3566–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isom HC, Mcdevitt EI, Moon MS (2009) Elevated hepatic iron: a confounding factor in chronic hepatitis C. Biochim Biophys Acta 1790:650–662

    Article  CAS  PubMed  Google Scholar 

  • Israel Y (1989) Covalent binding of acetaldehyde to liver tubulin: a step in the right direction. Hepatology 9:161–162

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Ozawa K, Shimahara Y, Mori K, Kobayashi N, Kumada K, Yamaoka Y (1991) Diurnal fluctuations of arterial ketone body ratio in normal subjects and patients with liver dysfunction. Gastroenterology 100:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Jadeja RN, Devkar RV, Nammi S (2017) Oxidative stress in liver diseases: pathogenesis, prevention, and therapeutics. Oxidative Med Cell Longev 2017:8341286

    Article  Google Scholar 

  • Janssen M, Swinkels D (2009) Hereditary haemochromatosis. Best Pract Res Clin Gastroenterol 23:171–183

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES, Lindblom KR, Robeson A, Stevens RD, Ilkayeva OR, Newgard CB, Kornbluth S, Andersen JL (2013) Metabolomic profiling reveals a role for caspase-2 in lipoapoptosis. J Biol Chem 288:14463–14475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jou J, Choi SS, Diehl AM (2008) Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis 28:370–379

    Article  CAS  PubMed  Google Scholar 

  • Jouihan HA, Cobine PA, Cooksey RC, Hoagland EA, Boudina S, Abel ED, Winge DR, McClain DA (2008) Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol Med 14:98

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Bayır HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46:1439–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama F, Kobayashi Y, Kawasaki T, Toyokuni S, Uchida K, Nakamura H (2000) Successful interferon therapy reverses enhanced hepatic iron accumulation and lipid peroxidation in chronic hepatitis C. Am J Gastroenterol 95:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Kamimura S, Gaal K, Britton RS, Bacon BR, Triadafilopoulos G, Tsukamoto H (1992) Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis. Hepatology 16:448–453

    Article  CAS  PubMed  Google Scholar 

  • Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferre P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampf JP, Kleinfeld AM (2007) Is membrane transport of FFA mediated by lipid, protein, or both? An unknown protein mediates free fatty acid transport across the adipocyte plasma membrane. Physiology (Bethesda) 22:7–14

    CAS  Google Scholar 

  • Kampf JP, Parmley D, Kleinfeld AM (2007) Free fatty acid transport across adipocytes is mediated by an unknown membrane protein pump. Am J Physiol Endocrinol Metab 293:E1207–E1214

    Article  CAS  PubMed  Google Scholar 

  • Kass GE (2006) Mitochondrial involvement in drug-induced hepatic injury. Chem Biol Interact 163:145–159

    Article  CAS  PubMed  Google Scholar 

  • Kass GE, Price SC (2008) Role of mitochondria in drug-induced cholestatic injury. Clin Liver Dis 12:27–51, vii

    Article  PubMed  Google Scholar 

  • Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, Herder C, Carstensen M, Krausch M, Knoefel WT, Schlensak M, Roden M (2015) Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 21:739–746

    Article  CAS  PubMed  Google Scholar 

  • Krahenbuhl S (1993) Alterations in mitochondrial function and morphology in chronic liver disease: pathogenesis and potential for therapeutic intervention. PharmacolTher 60:1–38

    CAS  Google Scholar 

  • Krahenbuhl S, Brass EP (1991) Fuel homeostasis and carnitine metabolism in rats with secondary biliary cirrhosis. Hepatology 14:927–934

    Article  CAS  PubMed  Google Scholar 

  • Krähenbühl S, Krähenbühl-Glauser S, Stucki J, Gehr P, Reichen J (1992a) Stereological and functional analysis of liver mitochondria from rats with secondary biliary cirrhosis: impaired mitochondrial metabolism and increased mitochondrial content per hepatocyte. Hepatology 15:1167–1172

    Article  PubMed  Google Scholar 

  • Krähenbühl S, Stucki J, Reichen J (1992b) Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 15:1160–1166

    Article  PubMed  Google Scholar 

  • Krähenbühl S, Fischer S, Talos C, Reichen PJ (1994) Ursodeoxycholate protects oxidative mitochondrial metabolism from bile acid toxicity: dose-response study in isolated rat liver mitochondria. Hepatology 20:1595–1601

    Article  PubMed  Google Scholar 

  • Krähenbühl S, Talos C, Lauterburg BH, Reichen J (1995) Reduced antioxidative capacity in liver mitochondria from bile duct ligated rats. Hepatology 22:607–612

    PubMed  Google Scholar 

  • Krähenbühl L, Ledermann M, Lang C, Krähenbühl S (2000) Relationship between hepatic mitochondrial functions in vivo and in vitro in rats with carbon tetrachloride-induced liver cirrhosis. J Hepatol 33:216–223

    Article  PubMed  Google Scholar 

  • Krawczyk M, Bonfrate L, Portincasa P (2010) Nonalcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 24:695–708

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk M, Portincasa P, Lammert F (2013) PNPLA3-associated steatohepatitis: toward a gene-based classification of fatty liver disease. Semin Liver Dis 33:369–379

    Article  CAS  PubMed  Google Scholar 

  • Krumschnabel G, Manzl C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209:62–73

    Article  CAS  PubMed  Google Scholar 

  • Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–735

    Article  CAS  PubMed  Google Scholar 

  • Lauterburg BH, Bilzer M (1988) Mechanisms of acetaldehyde hepatotoxicity. J Hepatol 7:384–390

    Article  CAS  PubMed  Google Scholar 

  • Lauterburg BH, Davies S, Mitchell J (1984) Ethanol suppresses hepatic glutathione synthesis in rats in vivo. J Pharmacol Exp Ther 230:7–11

    CAS  PubMed  Google Scholar 

  • Lauterburg BH, Liang D, Schwarzenbach FA, Breen KJ (1993) Mitochondrial dysfunction in alcoholic patients as assessed by breath analysis. Hepatology 17:418–422

    Article  CAS  PubMed  Google Scholar 

  • Lauterburg BH, Grattagliano I, GmüR R, Stalder M, Hildebrand P (1995) Noninvasive assessment of the effect of xenobiotics on mitochondrial function in human beings: studies with acetylsalicylic acid and ethanol with the use of the carbon 13-labeled ketoisocaproate breath test. J Lab Clin Med 125:378–383

    CAS  PubMed  Google Scholar 

  • Lee PL, Beutler E (2009) Regulation of hepcidin and iron-overload disease. Annu Rev Pathol Mech Dis 4:489–515

    Article  CAS  Google Scholar 

  • Leroux A, Ferrere G, Godie V, Cailleux F, Renoud M-L, Gaudin F, Naveau S, Prévot S, Makhzami S, Perlemuter G (2012) Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol 57:141–149

    Article  CAS  PubMed  Google Scholar 

  • Levi S, Rovida E (2009) The role of iron in mitochondrial function. Biochim Biophys Acta 1790:629–636

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Boehning DF, Qian T, Popov VL, Weinman SA (2007) Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J 21:2474–2485

    Article  CAS  PubMed  Google Scholar 

  • Lieber C, Baraona E, Hernandez-Munoz R, Kubota S, Sato N, Kawano S, Matsumura T, Inatomi N (1989) Impaired oxygen utilization. A new mechanism for the hepatotoxicity of ethanol in sub-human primates. J Clin Investig 83:1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–14895

    Article  CAS  PubMed  Google Scholar 

  • Loguercio C, Andreone P, Brisc C, Brisc MC, Bugianesi E, Chiaramonte M, Cursaro C, Danila M, de Sio I, Floreani A, Freni MA, Grieco A, Groppo M, Lazzari R, Lobello S, Lorefice E, Margotti M, Miele L, Milani S, Okolicsanyi L, Palasciano G, Portincasa P, Saltarelli P, Smedile A, Somalvico F, Spadaro A, Sporea I, Sorrentino P, Vecchione R, Tuccillo C, del Vecchio Blanco C, Federico A (2012) Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med 52:1658–1665

    Article  CAS  PubMed  Google Scholar 

  • Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10:686–690

    Article  CAS  PubMed  Google Scholar 

  • Ludwig J, Viggiano TR, McGill DB, Oh BJ (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55:434–438

    CAS  PubMed  Google Scholar 

  • Ma L, Dong JX, Wu C, Li XY, Chen J, Zhang H, Liu Y (2017) Spectroscopic, polarographic, and microcalorimetric studies on mitochondrial dysfunction induced by ethanol. J Membr Biol 250:195–204

    Article  PubMed  CAS  Google Scholar 

  • Machado MV, Michelotti GA, Pereira Tde A, Boursier J, Kruger L, Swiderska-Syn M, Karaca G, Xie G, Guy CD, Bohinc B, Lindblom KR, Johnson E, Kornbluth S, Diehl AM (2015) Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 64:1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Malhi H, Gores GJ (2008a) Cellular and molecular mechanisms of liver injury. Gastroenterology 134:1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi H, Gores GJ (2008b) Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis 28:360–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri A, Gaou I, Fromenty B, Berson A, Letteron P, Degott C, Erlinger S, Pessayre D (1997) Premature oxidative aging of hepatic mitochondrial DNA in Wilson’s disease. Gastroenterology 113:599–605

    Article  CAS  PubMed  Google Scholar 

  • Mantena SK, King AL, Andringa KK, Landar A, Darley-Usmar V, Bailey SM (2007) Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease. World J Gastroenterol 13:4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM (2008) Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med 44:1259–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Hsieh T-Y, Zhu N, Vanarsdale T, Hwang SB, Jeng K-S, Gorbalenya AE, Lo S-Y, Ou J-H, Ware CF (1997) Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-beta receptor. J Virol 71:1301–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–1419

    Article  CAS  PubMed  Google Scholar 

  • Mccommis KS, Chen Z, Fu X, McDonald WG, Colca JR, Kletzien RF, Burgess SC, Finck BN (2015) Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab 22:682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccommis K, Hodges W, Brunt E, Nalbantoglu I, McDonald W, Holley C, Fujiwara H, Schaffer J, Colca J, Finck B (2016) Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology (Baltimore, Md) 65(5):1543–1556

    Article  CAS  Google Scholar 

  • McCullough AJ (2006) Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol 40(Suppl 1):S17–S29

    CAS  PubMed  Google Scholar 

  • Mehta R, Templeton DM, O’Brien PJ (2006) Mitochondrial involvement in genetically determined transition metal toxicity: II. Copper toxicity. Chem Biol Interact 163:77–85

    Article  CAS  PubMed  Google Scholar 

  • Merriman RB, Aouizerat BE, Bass NM (2006) Genetic influences in nonalcoholic fatty liver disease. J Clin Gastroenterol 40:S30–S33

    CAS  PubMed  Google Scholar 

  • Michaletz PA, Cap L, Alpert E, Lauterburg BH (1989) Assessment of mitochondrial function in vivo with a breath test utilizing α-ketoisocaproic acid. Hepatology 10:829–832

    Article  CAS  PubMed  Google Scholar 

  • Miele L, Grieco A, Armuzzi A, Candelli M, Forgione A, Gasbarrini A, Gasbarrini G (2003) Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. Am J Gastroenterol 98:2335–2336

    Article  PubMed  Google Scholar 

  • Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Masciana R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49:1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Miki C, Iriyama K, Mirza DF, Mayer AD, Buckels JA, Suzuki H, McMaster P (1998) Postperfusion energy metabolism of steatotic graft and its relation to early graft viability following liver transplantation. Dig Dis Sci 43:74–79

    Article  CAS  PubMed  Google Scholar 

  • Minor T, Akbar S, Tolba R, Dombrowski F (2000) Cold preservation of fatty liver grafts: prevention of functional and ultrastructural impairments by venous oxygen persufflation. J Hepatol 32:105–111

    Article  CAS  PubMed  Google Scholar 

  • Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, Birney E, Rosenthal N, Gross C (2007) Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 17:320–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuyoshi H, Yasui K, Harano Y, Endo M, Tsuji K, Minami M, Itoh Y, Okanoue T, Yoshikawa T (2009) Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol Res 39:366–373

    Article  CAS  PubMed  Google Scholar 

  • Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA (2012) Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 55:429–436

    Article  CAS  PubMed  Google Scholar 

  • Monsenego J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C (2012) Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatol 56:632–639

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RI, Coleman WB, Eble KS, Cunningham CC (1987) Ethanol-elicited alterations in the oligomycin sensitivity and structural stability of the mitochondrial F0. F1 ATPase. J Biol Chem 262:13285–13289

    CAS  PubMed  Google Scholar 

  • Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556

    Article  CAS  PubMed  Google Scholar 

  • Nardo B, Grattagliano I, Domenicali M, Caraceni P, Catena F, Santoni B, Turi P, Cavallari G, Dall’agata M, Trevisani F (2000) Mitochondrial oxidative injury in rat fatty livers exposed to warm ischemia-reperfusion. Transplant Proc 32:51

    Article  CAS  PubMed  Google Scholar 

  • Nikitovic D, Holmgren A (1996) S-Nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185

    Article  CAS  PubMed  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  CAS  PubMed  Google Scholar 

  • Nomura-Takigawa Y, Nagano-Fujii M, Deng L, Kitazawa S, Ishido S, Sada K, Hotta H (2006) Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87:1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Noureddin M, Yates KP, Vaughn IA, Neuschwander-Tetri BA, Sanyal AJ, McCullough A, Merriman R, Hameed B, Doo E, Kleiner DE, Behling C, Loomba R, Nash CRN (2013) Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology 58:1644–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375

    Article  CAS  PubMed  Google Scholar 

  • Ottesen LH, Harry D, Frost M, Davies S, Khan K, Halliwell B, Moore K (2001) Increased formation of S-nitrothiols and nitrotyrosine in cirrhotic rats during endotoxemia. Free Radic Biol Med 31:790–798

    Article  CAS  PubMed  Google Scholar 

  • Papucci L, Formigli L, Schiavone N, Tani A, Donnini M, Lapucci A, Perna F, Tempestini A, Witort E, Morganti M (2004) Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 316:197–209

    Article  CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Carreras M, Del Hoyo P, Martín MA, Rubio JC, Martín A, Castellano G, Colina F, Arenas J, Solis-Herruzo JA (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38:999–1007

    Article  PubMed  Google Scholar 

  • Perry RJ, Kim T, Zhang X-M, Lee H-Y, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW (2013) Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 18:740–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessayre D, Fromenty B (2005) NASH: a mitochondrial disease. J Hepatol 42:928–940

    Article  CAS  PubMed  Google Scholar 

  • Pessayre D, Haouzi D, Fau D, Robin MA, Mansouri A, Berson A (1999a) Withdrawal of life support, altruistic suicide, fratricidal killing and euthanasia by lymphocytes: different forms of drug-induced hepatic apoptosis. J Hepatol 31:760–770

    Article  CAS  PubMed  Google Scholar 

  • Pessayre D, Mansouri A, Haouzi D, Fromenty B (1999b) Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol 15:367–373

    Article  CAS  PubMed  Google Scholar 

  • Petrescu O, Fan X, Gentileschi P, Hossain S, Bradbury M, Gagner M, Berk PD (2005) Long-chain fatty acid uptake is upregulated in omental adipocytes from patients undergoing bariatric surgery for obesity. Int J Obes 29:196–203

    Article  CAS  Google Scholar 

  • Petrosillo G, Portincasa P, Grattagliano I, Casanova G, Matera M, Ruggiero FM, Ferri D, Paradies G (2007) Mitochondrial dysfunction in rat with nonalcoholic fatty liver Involvement of complex I, reactive oxygen species and cardiolipin. BiochimBiophysActa 1767:1260–1267

    CAS  Google Scholar 

  • Petta S, Amato MC, Di Marco V, Camma C, Pizzolanti G, Barcellona MR, Cabibi D, Galluzzo A, Sinagra D, Giordano C, Craxi A (2012) Visceral adiposity index is associated with significant fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 35:238–247

    Article  CAS  PubMed  Google Scholar 

  • Piccoli C, Scrima R, Quarato G, D’Aprile A, Ripoli M, Lecce L, Boffoli D, Moradpour D, Capitanio N (2007) Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology 46:58–65

    Article  CAS  PubMed  Google Scholar 

  • Pietrangelo A, Grandi R, Tripodi A, Tomasi A, Ceccarelli D, Ventura E, Masini A (1990) Lipid composition and fluidity of liver mitochondria, microsomes and plasma membrane of rats with chronic dietary iron overload. Biochem Pharmacol 39:123–128

    Article  CAS  PubMed  Google Scholar 

  • Pocha C, Kolly P, Dufour JF (2015) Nonalcoholic fatty liver disease-related hepatocellular carcinoma: a problem of growing magnitude. Semin Liver Dis 35:304–317

    Article  PubMed  Google Scholar 

  • Pohl J, Ring A, Stremmel W (2002) Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway. J Lipid Res 43:1390–1399

    Article  CAS  PubMed  Google Scholar 

  • Poonawala A, Nair SP, Thuluvath PJ (2000) Prevalence of obesity and diabetes in patients with cryptogenic cirrhosis: a case-control study. Hepatology 32:689–692

    Article  CAS  PubMed  Google Scholar 

  • Portincasa P, Wang DQH (2017) Nonalcoholic fatty liver and gallstone disease. In: Wang DQH, Portincasa P (eds) Gallstones. Recent advances in epidemiology, pathogenesis, diagnosis and management. Nova Science Publishers, Inc, New York

    Google Scholar 

  • Portincasa P, Grattagliano I, Lauterburg BH, Palmieri VO, Palasciano G, Stellaard F (2006) Liver breath tests non-invasively predict higher stages of non-alcoholic steatohepatitis. Clin Sci (Lond) 111:135–143

    Article  CAS  Google Scholar 

  • Portincasa P, Grattagliano I, Testini M, Caruso ML, Wang DQ, Moschetta A, Calamita G, Vacca M, Valentini AM, Renna G, Lissidini G, Palasciano G (2007) Parallel intestinal and liver injury during early cholestasis in the rat: modulation by bile salts and antioxidants. Free RadicBiolMed 42:1381–1391

    Article  CAS  Google Scholar 

  • Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prohaska JR, Gybina AA (2004) Intracellular copper transport in mammals. J Nutr 134:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Quintanilla ME, Tampier L (1989) Sensitivity of liver mitochondrial functions to various levels of ethanol intake in the rat. Alcohol Clin Exp Res 13:280–283

    Article  CAS  PubMed  Google Scholar 

  • Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, Khalil L, Turpin G, Opolon P, Poynard T (2000) Liver fibrosis in overweight patients. Gastroenterology 118:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Rehman H, Ramshesh VK, Theruvath TP, Kim I, Currin RT, Giri S, Lemasters JJ, Zhong Z (2008) NIM811 (N-methyl-4-isoleucine cyclosporine), a mitochondrial permeability transition inhibitor, attenuates cholestatic liver injury but not fibrosis in mice. J Pharmacol Exp Ther 327:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribiere C, Hininger I, Saffar-Boccara C, Sabourault D, Nordmann R (1994) Mitochondrial respiratory activity and superoxide radical generation in the liver, brain and heart after chronic ethanol intake. Biochem Pharmacol 47:1827–1833

    Article  CAS  PubMed  Google Scholar 

  • Roe C, Hoppel CL, Stacey T, Chalmers R, Tracey B, Millington D (1983) Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child 58:916–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh YS, Seki E (2013) Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 28:38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM (2000) Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol Sci 57:177–185

    Article  CAS  PubMed  Google Scholar 

  • Rolo AP, Oliveira PJ, SeiçA R, Santos MS, Moreno AJ, Palmeira CM (2002a) Disruption of mitochondrial calcium homeostasis after chronic α-naphthylisothiocyanate administration: relevance for cholestasis. J Investig Med 50:193–200

    Article  CAS  PubMed  Google Scholar 

  • Rolo AP, Oliveira PJ, Seiça R, Santos MS, Moreno AJ, Palmeira CM (2002b) Improved efficiency of hepatic mitochondrial function in rats with cholestasis induced by an acute dose of α-naphthylisothiocyanate. Toxicol Appl Pharmacol 182:20–26

    Article  CAS  PubMed  Google Scholar 

  • Roy DN, Mandal S, Sen G, Biswas T (2009) Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats. Chem Biol Interact 182:136–147

    Article  CAS  PubMed  Google Scholar 

  • Samuel VT, Liu Z-X, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang X-M, Monia BP, Bhanot S, Shulman GI (2007) Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287

    Article  CAS  PubMed  Google Scholar 

  • Schaffer JE, Lodish HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–436

    Article  CAS  PubMed  Google Scholar 

  • Schilling RJ, Reitz RC (1980) A mechanism for ethanol-induced damage to liver mitochondrial structure and function. Biochim Biophys Acta 603:266–277

    Article  CAS  PubMed  Google Scholar 

  • Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146:1513–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13:1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Sheline CT, Choi DW (2004) Cu2+ toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo. Ann Neurol 55:645–653

    Article  CAS  PubMed  Google Scholar 

  • Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401:73–76

    Article  CAS  PubMed  Google Scholar 

  • Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 13:643–54 e1–9; quiz e39–40

    Article  PubMed  Google Scholar 

  • Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Deverbaux M, Mierau GW, Hambidge KM, Shikes RH (1990) Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload: modification by vitamin E deficiency. Gastroenterology 99:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Devereaux M, Khandwala RA (1991) Effect of dietary lipid and vitamin E on mitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. J Lipid Res 32:1349–1357

    CAS  PubMed  Google Scholar 

  • Spach PI, Bottenus RE, Cunningham CC (1982) Control of adenine nucleotide metabolism in hepatic mitochondria from rats with ethanol-induced fatty liver. Biochem J 202:445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, Gudnason V, Eiriksdottir G, Garcia ME, Launer LJ, Nalls MA, Clark JM, Mitchell BD, Shuldiner AR, Butler JL, Tomas M, Hoffmann U, Hwang SJ, Massaro JM, O’Donnell CJ, Sahani DV, Salomaa V, Schadt EE, Schwartz SM, Siscovick DS, Voight BF, Carr JJ, Feitosa MF, Harris TB, Fox CS, Smith AV, Kao WH, Hirschhorn JN, Borecki IB (2011) Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7:e1001324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl A, Gimeno RE, Tartaglia LA, Lodish HF (2001) Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12:266–273

    Article  CAS  PubMed  Google Scholar 

  • Sternlieb I (1992) Fraternal concordance of types of abnormal hepatocellular mitochondria in Wilson’s disease. Hepatology 16:728–732

    Article  CAS  PubMed  Google Scholar 

  • Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE (2005) Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. J Am Chem Soc 127:15815–15823

    Article  CAS  PubMed  Google Scholar 

  • Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD (1985) Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci U S A 82:4–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromeyer FW, Ishak KG (1980) Histology of the liver in Wilson’s disease: a study of 34 cases. Am J Clin Pathol 73:12–24

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang W, Zhong W, Sun X, Zhou Z (2017) Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function. Biochim Biophys Acta 1861:2912–2921

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366:151–165

    Article  CAS  PubMed  Google Scholar 

  • Sykora P, Kharbanda KK, Crumm SE, Cahill A (2009) S-Adenosyl-L-methionine co-administration prevents the ethanol-elicited dissociation of hepatic mitochondrial ribosomes in male rats. Alcohol Clin Exp Res 33:1–9

    Article  CAS  PubMed  Google Scholar 

  • Thayer WS, Rubin E (1980) Effects of chronic ethanol consumption on the respiratory chain of rat liver submitochondrial particles. Adv Exp Med Biol 132:385–392

    CAS  PubMed  Google Scholar 

  • Tiao M-M, Lin T-K, Liou C-W, Wang P-W, Chen J-B, Kuo F-Y, Huang C-C, Chou Y-M, Chuang J-H (2009) Early transcriptional deregulation of hepatic mitochondrial biogenesis and its consequent effects on murine cholestatic liver injury. Apoptosis 14:890–899

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, Okada Y, Kurihara C, Irie R, Yokoyama H, Shimamura K, Usui S, Ebinuma H, Saito H, Watanabe C, Komoto S, Kawaguchi A, Nagao S, Sugiyama K, Hokari R, Kanai T, Miura S, Hibi T (2014) Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59:154–169

    Article  CAS  PubMed  Google Scholar 

  • Torres DM, Harrison SA (2012) Nonalcoholic steatohepatitis and noncirrhotic hepatocellular carcinoma: fertile soil. Semin Liver Dis 32:30–38

    Article  CAS  PubMed  Google Scholar 

  • Trevisani F, Colantoni A, Caraceni P, Van Thiel DH (1996) The use of donor fatty liver for liver transplantation: a challenge or a quagmire? J Hepatol 24:114–121

    Article  CAS  PubMed  Google Scholar 

  • Trigatti BL, Anderson RG, Gerber GE (1999) Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun 255:34–39

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Gaal K, French SW (1990) Insights into the pathogenesis of alcoholic liver necrosis and fibrosis: status report. Hepatology 12:599–608

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi T, Matsuda M, Aizaki H, Moriya K, Miyoshi H, Fujie H, Shintani Y, Yotsuyanagi H, Miyamura T, Suzuki T (2009) Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 50:378–386

    Article  CAS  PubMed  Google Scholar 

  • Unger RH (2003) Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144:5159–5165

    Article  CAS  PubMed  Google Scholar 

  • Unger RH, Orci L (2001) Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 15:312–321

    Article  CAS  PubMed  Google Scholar 

  • Upton J-P, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, Papa FR, Oakes SA (2008) Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28:3943–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanni E, Marengo A, Mezzabotta L, Bugianesi E (2015) Systemic complications of nonalcoholic fatty liver disease: when the liver is not an innocent bystander. Semin Liver Dis 35:236–249

    Article  PubMed  Google Scholar 

  • Vecchione G, Grasselli E, Voci A, Baldini F, Grattagliano I, Wang DQ, Portincasa P, Vergani L (2016) Silybin counteracts lipid excess and oxidative stress in cultured steatotic hepatic cells. World J Gastroenterol 22:6016–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendemiale G, Grattagliano I, Signorile A, Altomare E (1998) Ethanol-induced changes of intracellular thiol compartmentation and protein redox status in the rat liver: effect of tauroursodeoxycholate. J Hepatol 28:46–53

    Article  CAS  PubMed  Google Scholar 

  • Vendemiale G, Grattagliano I, Lupo L, Memeo V, Altomare E (2002) Hepatic oxidative alterations in patients with extra-hepatic cholestasis. Effect of surgical drainage. J Hepatol 37:601–605

    Article  CAS  PubMed  Google Scholar 

  • Venkatraman A, Shiva S, Wigley A, Ulasova E, Chhieng D, Bailey SM, Darley-Usmar VM (2004) The role of iNOS in alcohol-dependent hepatotoxicity and mitochondrial dysfunction in mice. Hepatology 40:565–573

    Article  CAS  PubMed  Google Scholar 

  • Walewski JL, Ge F, Lobdell HT, Levin N, Schwartz GJ, Vasselli JR, Pomp A, Dakin G, Berk PD (2014) Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity (Silver Spring) 22:1643–1652

    Article  CAS  Google Scholar 

  • Wallace MC, Friedman SL, Mann DA (2015) Emerging and disease-specific mechanisms of hepatic stellate cell activation. Semin Liver Dis 35:107–118

    Article  CAS  PubMed  Google Scholar 

  • Wehr A, Baeck C, Ulmer F, Gassler N, Hittatiya K, Luedde T, Neumann UP, Trautwein C, Tacke F (2014) Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS One 9:e112327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei Y, Clark SE, Thyfault JP, Uptergrove GM, Li W, Whaley-Connell AT, Ferrario CM, Sowers JR, Ibdah JA (2009) Oxidative stress-mediated mitochondrial dysfunction contributes to angiotensin II-induced nonalcoholic fatty liver disease in transgenic Ren2 rats. Am J Pathol 174:1329–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieland P, Lauterburg BH (1995) Oxidation of mitochondrial proteins and DNA following administration of ethanol. Biochem Biophys Res Commun 213:815–819

    Article  CAS  PubMed  Google Scholar 

  • Wijarnpreecha K, Thongprayoon C, Ungprasert P (2017) Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 29:e8–e12

    Article  CAS  PubMed  Google Scholar 

  • Williamson CD, Colberg-Poley AM (2009) Access of viral proteins to mitochondria via mitochondria-associated membranes. Rev Med Virol 19:147–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong VW, Wong GL, Choi PC, Chan AW, Li MK, Chan HY, Chim AM, Yu J, Sung JJ, Chan HL (2010) Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 59:969–974

    Article  PubMed  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Shimahara Y, Takada Y, Ino K, Mori K, Kobayashi N, Yamaoka Y, Ozawa K (1992) Evaluation of ketogenesis in seriously reduced hepatic mitochondrial redox state an analysis of survivors and non-survivors in critically ill hepatectomized patients. Scand J Gastroenterol 27:472–478

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Zhu P, Liu H-M, Zhang H-T, Liu L (2007) Ethanol induced mitochondria injury and permeability transition pore opening: role of mitochondria in alcoholic liver disease. World J Gastroenterol 13:2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, Diehl AM (2000) Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 378:259–268

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ (2001) Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33:616–626

    Article  CAS  PubMed  Google Scholar 

  • Young TA, Bailey SM, Van Horn CG, Cunningham CC (2006) Chronic ethanol consumption decreases mitochondrial and glycolytic production of ATP in liver. Alcohol Alcohol 41:254–260

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang M, Park JH, Singelyn J, Ma H, Sailor MJ, Ruoslahti E, Ozkan M, Ozkan C (2009) A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small 5:1990–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Deng S, Zhao S, Ai Y, Zhang L, Pan P, Su X, Tan H, Wu D (2016) Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via Toll-like receptor 9. Int J Mol Sci 17:E1425

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, Khadem S, Ren S, Li S, Silverstein RL, Xie W (2008) Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 134:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Khoshnan A, Schneider R, Matsumoto M, Dennert G, Ware C, Lai MM (1998) Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 72:3691–3697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zischka H, Lichtmannegger J (2014) Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models. Ann N Y Acad Sci 1315:6–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present chapter is written in the context of the project FOIE GRAS, which has received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 722619.

Conflicts of Interest 

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Portincasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grattagliano, I. et al. (2018). Mitochondria in Liver Diseases. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_7

Download citation

Publish with us

Policies and ethics