Skip to main content

Effect of ZnONP Surface Defects on Cytotoxic and Antimicrobial Propensities

  • Chapter
  • First Online:
Interfacial Phenomena on Biological Membranes

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Due to wide band gap (3.37 eV) and large excitation binding energy (60 meV at room temperature), ZnO nanomaterial has been adopted as a promising material for different biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., et al. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports, 4.

    Google Scholar 

  2. Tian, L., et al. (2015). Neurotoxicity induced by zinc oxide nanoparticles: Age-related differences and interaction. Scientific Reports, 5.

    Google Scholar 

  3. Wang, J., Deng, X., Zhang, F., Chen, D., & Ding, W. (2014). ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale Research Letters, 9, 1–12.

    Article  Google Scholar 

  4. Hu, X., Cook, S., Wang, P., & Hwang, H.-M. (2009). In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Science of the Total Environment, 407, 3070–3072.

    Article  Google Scholar 

  5. Hanley, C., et al. (2008). Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology, 19, 295103.

    Article  Google Scholar 

  6. Arakha, M., Saleem, M., Mallick, B. C., & Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 5.

    Google Scholar 

  7. Arakha, M., et al. (2015). Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5.

    Google Scholar 

  8. Applerot, G., et al. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small (Weinheim an der Bergstrasse, Germany), 8, 3326–3337.

    Article  Google Scholar 

  9. Kang, M., So, E., Simons, A., Spitz, D., & Ouchi, T. (2012). DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death and Disease, 3, e249.

    Article  Google Scholar 

  10. Olive, P. L., & Banáth, J. P. (2006). The comet assay: A method to measure DNA damage in individual cells. Nature Protocols, 1, 23.

    Article  Google Scholar 

  11. Lu, Z., Zhang, C., & Zhai, Z. (2005). Nucleoplasmin regulates chromatin condensation during apoptosis. Proceedings of National Academy of Sciences, 102, 2778–2783.

    Article  Google Scholar 

  12. Suman, S., Pandey, A., & Chandna, S. (2012). An improved non-enzymatic “DNA ladder assay” for more sensitive and early detection of apoptosis. Cytotechnology, 64, 9–14.

    Article  Google Scholar 

  13. AshaRani, P., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2008). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano, 3, 279–290.

    Article  Google Scholar 

  14. Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C., & Pijnenborg, R. (2007). The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human Reproduction, 22, 1304–1309.

    Article  Google Scholar 

  15. Arakha, M., Saleem, M., Mallick, B. C., & Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 5.

    Google Scholar 

  16. Arakha, M., et al. (2015). Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5.

    Google Scholar 

  17. Ng, C. T., et al. (2017). Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. International Journal of Nanomedicine, 12, 1621.

    Article  Google Scholar 

  18. Zhao, X., Ren, X., Zhu, R., Luo, Z., & Ren, B. (2016). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquatic Toxicology, 180, 56–70.

    Article  Google Scholar 

  19. Chakraborti, S., et al. (2017). PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radical Biology and Medicine, 103, 35–47.

    Article  Google Scholar 

  20. Khan, M. M., et al. (2014). Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2, 637–644.

    Article  Google Scholar 

  21. Olive, P. L., & Banáth, J. P. (2006). The comet assay: A method to measure DNA damage in individual cells. Nature Protocols, 1, 23.

    Article  Google Scholar 

  22. Rath, S. K., et al. (2016). Silencing of ZRF1 impedes survival of estrogen receptor positive MCF-7 cells and potentiates the effect of curcumin. Tumour Biology, 37, 12535–12546.

    Article  Google Scholar 

  23. Pal, A., et al. (2016). UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 807, 15–24.

    Article  Google Scholar 

  24. Checkley, S., et al. (2015). Bridging the gap between in vitro and in vivo: Dose and schedule predictions for the ATR inhibitor AZD6738. Scientific Reports, 5.

    Google Scholar 

  25. Ivashkevich, A., Redon, C. E., Nakamura, A. J., Martin, R. F., & Martin, O. A. (2012). Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Letters, 327, 123–133. https://doi.org/10.1016/j.canlet.2011.12.025.

    Article  Google Scholar 

  26. Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., & Schiestl, R. H. (2009). Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Research, 69, 8784–8789.

    Article  Google Scholar 

  27. Yin, Y., et al. (2012). Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells. Nanoscale Research Letters, 7, 1–8.

    Article  Google Scholar 

  28. Wong, V. K., et al. (2013). Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death and Disease, 4, e720.

    Article  Google Scholar 

  29. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S., & Germano, I. (2003). Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Research, 63, 2103–2108.

    Google Scholar 

  30. Kundu, S., et al. (2014). Viriditoxin regulates apoptosis and autophagy via mitotic catastrophe and microtubule formation in human prostate cancer cells. International Journal of Oncology, 45, 2331–2340.

    Article  Google Scholar 

  31. Hackenberg, S., et al. (2014). Nanoparticle-induced photocatalytic head and neck squamous cell carcinoma cell death is associated with autophagy. Nanomedicine, 9, 21–33.

    Article  Google Scholar 

  32. Gao, M., et al. (2016). Ferroptosis is an autophagic cell death process. Cell Research, 26, 1021–1032.

    Article  Google Scholar 

  33. Deb, M., et al. (2015). Clusterin gene is predominantly regulated by histone modifications in human colon cancer and ectopic expression of the nuclear isoform induces cell death. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852, 1630–1645.

    Article  Google Scholar 

  34. Toné, S., et al. (2007). Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental Cell Research, 313, 3635–3644.

    Article  Google Scholar 

  35. Gurunathan, S., Han, J. W., Eppakayala, V., Jeyaraj, M., & Kim, J.-H. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Research International, 2013.

    Google Scholar 

  36. Verma, A., & Stellacci, F. (2010). Effect of surface properties on nanoparticle–Cell interactions. Small (Weinheim an der Bergstrasse, Germany), 6, 12–21.

    Article  Google Scholar 

  37. Villanueva, A., et al. (2009). The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology, 20, 115103.

    Article  Google Scholar 

  38. Nel, A. E., et al. (2009). Understanding biophysicochemical interactions at the nano–Bio interface. Nature Materials, 8, 543–557.

    Article  Google Scholar 

  39. Gratton, S. E., et al. (2008). The effect of particle design on cellular internalization pathways. Proceedings of National Academy of Sciences, 105, 11613–11618.

    Article  Google Scholar 

  40. Karaman, D. S., et al. (2012). Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 7, 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Arakha .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arakha, M., Jha, S. (2018). Effect of ZnONP Surface Defects on Cytotoxic and Antimicrobial Propensities. In: Interfacial Phenomena on Biological Membranes. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73326-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73326-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73325-8

  • Online ISBN: 978-3-319-73326-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics