Skip to main content

Effect of Interfacial Potential on Antimicrobial Propensity of ZnONPs

  • Chapter
  • First Online:
Interfacial Phenomena on Biological Membranes

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 452 Accesses

Abstract

In current era, the engineered nanoparticles (NPs) are being widely used in different fields of science and technology such as drug delivery, biosensing, antibiotics, and imaging (Nel in Nature Materials 8:543–557, 2009 [1]; Arakha in Scientific reports 5, 2015 [2]). Inside the biological milieu, these engineered nanoparticles come in myriad shape and interact with cell, membrane, lipid, protein, DNA, and establish nano–biointerface. The interaction pattern at this nano–biointerface largely depends upon the physicochemical properties of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nel, A. E., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.

    Article  Google Scholar 

  2. Arakha, M., Saleem, M., Mallick, B. C., & Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports 5.

    Google Scholar 

  3. Huang, Z., et al. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24, 4140–4144.

    Article  Google Scholar 

  4. Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279, 71–76.

    Article  Google Scholar 

  5. Leung, Y., et al. (2012). Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology, 23, 475703.

    Article  Google Scholar 

  6. Durairaj, R., Amirulhusni, A. N., Palanisamy, N. K., Mohd-Zain, Z., & Ping, L. J. (2012). Antibacterial effect of silver nanoparticles on multi drug resistant Pseudomonas aeruginosa. International Science Index, 6, 07–22.

    Google Scholar 

  7. De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10, 471–477.

    Article  Google Scholar 

  8. Liu, S., et al. (2014). Porous fluorinated SnO2 hollow nanospheres: transformative self-assembly and photocatalytic inactivation of bacteria. ACS Applied Materials & Interfaces, 6, 2407–2414.

    Article  Google Scholar 

  9. Su, H.-L., et al. (2009). The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 30, 5979–5987.

    Article  Google Scholar 

  10. Tavares, A. F. N., et al. (2011). Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules. Journal of Biological Chemistry, 286, 26708–26717.

    Article  Google Scholar 

  11. Possel, H., Noack, H., Augustin, W., Keilhoff, G., & Wolf, G. (1997). 2, 7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Letters, 416, 175–178.

    Article  Google Scholar 

  12. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77, 2325–2331.

    Article  Google Scholar 

  13. Dutta, R., Nenavathu, B. P., Gangishetty, M. K., & Reddy, A. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids and Surfaces B: Biointerfaces, 94, 143–150.

    Article  Google Scholar 

  14. Alves, C. S., et al. (2010). Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR. Journal of Biological Chemistry, 285, 27536–27544.

    Article  Google Scholar 

  15. Espitia, P. J. P., et al. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5, 1447–1464.

    Article  Google Scholar 

  16. Zhang, X. et al. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports 4.

    Google Scholar 

  17. Becheri, A., Dürr, M., Nostro, P. L., & Baglioni, P. (2008). Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10, 679–689.

    Article  Google Scholar 

  18. Seven, O., et al. (2004). Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology A: Chemistry, 165, 103–107.

    Article  Google Scholar 

  19. Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials 9(3), 035004.

    Google Scholar 

  20. Kairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 128, 78–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Arakha .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arakha, M., Jha, S. (2018). Effect of Interfacial Potential on Antimicrobial Propensity of ZnONPs. In: Interfacial Phenomena on Biological Membranes. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73326-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73326-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73325-8

  • Online ISBN: 978-3-319-73326-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics