Skip to main content

Miscellaneous Cellulose Derivatives and Reactions

  • Chapter
  • First Online:
Cellulose Derivatives

Abstract

Oxidation of cellulose is another important synthesis path to modify the properties of the biopolymer to get value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dias GJ, Peplow PV, Teixeira F (2003) Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 14:739–745

    Article  CAS  Google Scholar 

  2. Galgut PN (1990) Oxidized cellulose mesh: I. Biodegradable membrane in periodontal surgery. Biomaterials 11:561–564

    Article  CAS  Google Scholar 

  3. Dimitrijevich SD, Tatarko M, Gracy RW, Linsky CB, Olsen C (1990) Biodegradation of oxidized regenerated cellulose. Carbohydr Res 195:247–255

    Article  CAS  Google Scholar 

  4. Wiseman DM, Saferstein L, Wolf S (2002) Bioresorbable oxidized cellulose composite material for prevention of postsurgical adhesions. US 6,500,777 B1

    Google Scholar 

  5. Pameijer CH, Jensen S (2007) Agents and devices comprising oxidized cellulose fibers for providing blood clotting for wound healing promotion. US 20,070,190,110 A1 20070816 CAN 147:243491

    Google Scholar 

  6. Butrim SM, Bil’dyukevich TD, Butrim NS, Yurkshtovich TL (2007) Structural modification of potato starch by solutions of nitrogen (IV) oxide in CCl4. Chem Nat Compd 43:302–305

    Google Scholar 

  7. Painter TJ (1977) Preparation and periodate oxidation of C-6-oxycellulose: conformational interpretation of hemiacetal stability. Carbohydr Res 55:95–103

    Article  CAS  Google Scholar 

  8. Johansson E, Lind J (2005) Free radical mediated cellulose degradation during high consistency ozonation. J Wood Chem Technol 25:171–186

    Article  CAS  Google Scholar 

  9. Manhas MS, Mohammed F, Khan Z (2007) A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media. Colloids Surf A 295:165–171

    Article  CAS  Google Scholar 

  10. Borisov IM, Shirokova EN, Mudarisova RKh, Muslukhov RR, Zimin YuS, Medvedeva SA, Tolstikov GA, Monakov YB (2004) Kinetics of oxidation of an arabinogalactan from larch (Larix sibirica L.) in an aqueous medium in the presence of hydrogen peroxide. Russ Chem Bull 53:318–324

    Article  CAS  Google Scholar 

  11. Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107

    Article  CAS  Google Scholar 

  12. Zimnitsky DS, Yurkshtovich TL, Bychkovsky PM (2004) Synthesis and characterization of oxidized cellulose. J Polym Sci, Part A: Polym Chem 42:4785–4791

    Article  CAS  Google Scholar 

  13. Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids Surface A 260:101–108

    Article  CAS  Google Scholar 

  14. de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98

    Article  Google Scholar 

  15. Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15:819–830

    Article  CAS  Google Scholar 

  16. Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188

    Article  CAS  Google Scholar 

  17. Davis NJ, Flitsch SL (1993) Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Lett 34:1181–1184

    Article  CAS  Google Scholar 

  18. Gomez-Bujedo S, Fleury E, Vignon MR (2004) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate. Biomacromol 5:565–571

    Article  CAS  Google Scholar 

  19. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  20. Kato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58:421–426

    Article  CAS  Google Scholar 

  21. Coseri S, Nistor G, Fras L, Strnad S, Harabagiu V, Simionescu BC (2009) Mild and selective oxidation of cellulose fibers in the presence of N-hydroxyphthalimide. Biomacromol 10:2294–2299

    Article  CAS  Google Scholar 

  22. Biliuta G, Fras L, Strnad S, Harabagiu V, Coseri S (2010) Oxidation of cellulose fibers mediated by nonpersistent nitroxyl radicals. J Polym Sci, Part A: Polym Chem 48:4790–4799

    Article  CAS  Google Scholar 

  23. Yackel EC, Kenyon WO (1942) Oxidation of cellulose by nitrogen dioxide. J Am Chem Soc 64:121–127

    Article  CAS  Google Scholar 

  24. Nevell TP (1963) Oxidation. In: Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry, vol 3. Academic Press, New York, pp 164–185

    Google Scholar 

  25. Heinze T, Klemm D, Schnabelrauch M, Nehls I (1993) Properties and following reactions of homogeneously oxidized celluloses. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulosics: chemical, biochemical and material aspects. Ellis Horwood, New York, pp 349–354

    Google Scholar 

  26. Heinze T (1998) Ionische Funktionspolymere aus Cellulose: Neue Synthesekonzepte, Strukturaufklärung und Eigenschaften. Habilitation thesis, Friedrich Schiller University of Jena, Jena

    Google Scholar 

  27. Painter TJ, Cesaro A, Delben F, Paoletti S (1985) New glucuronoglucans obtained by oxidation of amylose at position 6. Carbohydr Res 140:61–68

    Article  CAS  Google Scholar 

  28. Nehls I, Heinze T, Philipp B, Klemm D, Ebringerova A (1991) Carbon-13 NMR studies of oxidation of cellulose in phosphoric acid-sodium nitrite systems. Acta Polym 42:339–340

    Article  CAS  Google Scholar 

  29. Camy S, Montanari S, Rattaz A, Vignon M, Condoret J-S (2009) Oxidation of cellulose in pressurized carbon dioxide. J Supercrit Fluids 51:188–196

    Article  CAS  Google Scholar 

  30. de Nooy AEJ, Besemer AC, van Bekkum H (1994) Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays-Bas 113:165–166

    Article  Google Scholar 

  31. Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66

    Article  CAS  Google Scholar 

  32. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989

    Article  CAS  Google Scholar 

  33. Hirota M, Tamura N, Saito T, Isogai A (2009) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335

    Article  CAS  Google Scholar 

  34. Hirota M, Tamura N, Saito T, Isogai A (2009) Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO2 system. Cellulose 16:841–851

    Article  CAS  Google Scholar 

  35. Li B, Xu W, Kronlund D, Määttänen A, Liu J, Småttc J-H, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang L, Shuang S, Feng F, Qiao J, Guo Y, Choi MMF, Dong C (2010) Electro-oxidation of methane on roughened palladium electrode in acidic electrolytes at ambient temperatures. Anal Lett 43:1055–1065

    Article  CAS  Google Scholar 

  37. Danaee I, Jafarian M, Mirzapoor A, Gobal F, Mahjani MG (2010) Electrooxidation of methanol on NiMn alloy modified graphite electrode. Electrochim Acta 55:2093–2100

    Article  CAS  Google Scholar 

  38. Isogai T, Saito T, Isogai A (2010) TEMPO electromediated oxidation ofs polysaccharides including regenerated cellulose fiber. Biomacromol 11:1593–1599

    Article  CAS  Google Scholar 

  39. Bailey WF, Bobbitt JM, Wiberg KB (2007) Mechanism of the oxidation of alcohols by oxoammonium cations. J Org Chem 72:4504–4509

    Article  CAS  Google Scholar 

  40. Schnabelrauch M, Heinze T, Klemm D, Nehls I, Koetz J (1991) Investigations on synthesis and characterization of carboxy group-containing cellulose sulfates. Polym Bull 27:147–153

    Article  CAS  Google Scholar 

  41. Rahn K, Heinze T, Klemm D (1995) Investigations of amidation of C-6 car-boxy cellulose. In: Kennedy HF, Phillips GO, Williams PA, Piculell L (eds) Cellulose and cellulose derivatives, physico-chemical aspects and industrial applications. Ellis Horwood, New York, pp 213–218

    Chapter  Google Scholar 

  42. Bosso C, Defaye J, Gadelle A, Wong CC, Pedersen C (1982) Homopolysaccharides interaction with the dimethyl sulfoxide-paraformaldehyde cellulose solvent system. Selective oxidation of amylose and cellulose at secondary alcohol groups. J Chem Soc, Perkin Trans 1(1972–1999):1579–1585

    Google Scholar 

  43. Defaye J, Gadelle A (1977) Selective oxidation of secondary vicinal diols. Part III. Selective oxidation of vicinal hydroxyl groups of methyl-4,6-O-benzylidene-β-d-glucopyranoside by dimethyl sulfoxide and acetic anhydride. Carbohydr Res 56:411–414

    Article  CAS  Google Scholar 

  44. Bredereck K (1967) Synthesis of ketocellulose. Tetrahedron Lett 8:695–698

    Article  Google Scholar 

  45. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297

    Article  CAS  Google Scholar 

  46. Painter TJ (1988) Control of depolymerization during the preparation of reduced dialdehyde cellulose. Carbohydr Res 179:259–268

    Article  CAS  Google Scholar 

  47. Morooka T, Norimoto N, Yamada T (1989) Periodate oxidation of cellulose by homogeneous reaction. J Appl Polym Sci 38:849–858

    Article  CAS  Google Scholar 

  48. Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667

    Article  CAS  Google Scholar 

  49. Floor M, Hofsteede LPM, Groenland WPT, Verhaar LAT, Kieboom APG, van Bekkum H (1989) Preparation and calcium complexation of oxidized polysaccharides. II. Hydrogen peroxide as coreactant in the chlorite oxidation of dialde-hyde glucans. Recl Trav Chim Pays-Bas 108:384–392

    Google Scholar 

  50. Matsumura S, Nishioka M, Shigeno H, Tanaka T, Yoshikawa S (1993) Builder performance in detergent formulations and biodegradability of partially dicarboxylated cellulose and amylose containing sugar residues in the backbone. Angew Makromol Chem 205:117–129

    Article  CAS  Google Scholar 

  51. Varma AJ, Chavan VB (1995) Some preliminary studies on polyelectrolyte and rheological properties of sodium 2,3-dicarboxycellulose. Carbohydr Polym 27:63–67

    Article  CAS  Google Scholar 

  52. Csanady G, Narayanan P, Mueller K, Wegscheider W, Knapp G (1989) Synthesis of various oxine celluloses for enriching processes for trace analysis. Angew Makromol Chem 170:159–172

    Article  CAS  Google Scholar 

  53. Valentova O, Marek M, Svec F, Stamberg J, Vodrazka Z (1981) Comparison of different methods of glucose oxidase immobilization. Biotechnol Bioeng 23:2093–2104

    Article  CAS  Google Scholar 

  54. Turkova J, Vajcner J, Vancurova D, Stamberg J (1979) Immobilization on cellulose in bead form after periodate oxidation and reductive alkylation. Collect Czech Chem Commun 44:3411–3417

    Article  CAS  Google Scholar 

  55. Maekawa E (1991) Analysis of oxidized moiety of partially periodate-oxidized cellulose by NMR spectroscopy. J Appl Polym Sci 43:417–422

    Article  CAS  Google Scholar 

  56. Rahn K, Heinze T (1998) New cellulosic polymers by subsequent modification of 2,3-dialdehyde cellulose. Cellul Chem Technol 32:173–183

    CAS  Google Scholar 

  57. Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15:489–496

    Article  CAS  Google Scholar 

  58. Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    Article  CAS  Google Scholar 

  59. Coseri S, Biliuta G, Zemljic LF, Srndovic JS, Larsson PT, Strnad S, Kreze T, Naderi A, Lindstrom T (2015) One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC Adv 5:85889–85897

    Article  CAS  Google Scholar 

  60. Calado Vieira M (2000) Studien zur regioselektiven Oxidation von Celluloseethern sowie Celluloseestern und Funktionalisierung cellulosereicher Fasern. Ph.D. thesis, Friedrich Schiller University of Jena, Jena

    Google Scholar 

  61. Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364

    Article  CAS  Google Scholar 

  62. Potthast A, Roherling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749

    Article  CAS  Google Scholar 

  63. Kostic M, Potthast A, Rosenau T, Kosma P, Sixta H (2006) A novel approach to determination of carbonyl groups in DMAc/LiCl-insoluble pulps by flu-orescence labeling. Cellulose 13:429–435

    Article  CAS  Google Scholar 

  64. Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. Adv Polym Sci 205:1–48

    Article  CAS  Google Scholar 

  65. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  66. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998

    Article  CAS  Google Scholar 

  67. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed 2:565–598

    Article  Google Scholar 

  68. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 114:2596–2599

    Article  Google Scholar 

  69. Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed 41:1053–1057

    Article  CAS  Google Scholar 

  70. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    Article  CAS  Google Scholar 

  71. Fenn D, Pohl M, Heinze T (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69:347–352

    Article  CAS  Google Scholar 

  72. Peng P, Cao X, Peng F, Bian J, Xu F, Sun R (2012) Binding cellulose and chitosan via click chemistry: synthesis, characterization, and formation of some hollow tubes. J Polym Sci, Part A: Polym Chem 50:5201–5210

    Article  CAS  Google Scholar 

  73. Pierre-Antoine F, Francois B, Rachida Z (2012) Crosslinked cellulose developed by CuAAC, a route to new materials. Carbohydr Res 356:247–251

    Google Scholar 

  74. Hafren J, Zou W, Cordova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366

    Article  CAS  Google Scholar 

  75. Koschella A, Hartlieb M, Heinze T (2011) A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr Polym 86:154–161

    Article  CAS  Google Scholar 

  76. Montanez MI, Hed Y, Utsel S, Ropponen J, Malmstroem E, Wagberg L, Hult A, Malkoch M (2011) Bifunctional dendronized cellulose surfaces as biosensors. Biomacromol 12:2114–2125

    Article  CAS  Google Scholar 

  77. Pahimanolis N, Hippi U, Johansson L-S, Saarinen T, Houbenov N, Ruokolainen J, Seppaelae J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212

    Article  CAS  Google Scholar 

  78. Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R (2007) Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromol 8:1844–1850

    Article  CAS  Google Scholar 

  79. Gattás-Asfura KM, Stabler CL (2013) Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers. ACS Appl Mater Interfaces 5:9964–9974

    Article  CAS  Google Scholar 

  80. Zhang F, Bernet B, Bonnet V, Dangles O, Sarabia F, Vasella A (2008) 2-Azido-2-deoxycellulose: synthesis and 1,3-dipolar cycloaddition. Helv Chim Acta 91:608–618

    Article  CAS  Google Scholar 

  81. Fox SC, Edgar KJ (2012) Staudinger reduction chemistry of cellulose: synthesis of selectively O-acylated-6-amino-6-deoxy-cellulose. Biomacromol 13:992–1001

    Article  CAS  Google Scholar 

  82. Furuhata K, Koganei K, Chang HS, Aoki N, Sakamoto M (1992) Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide-triphenylphosphine in lithium bromide-N,N-dimethylacetamide. Carbohydr Res 230:165–177

    Article  CAS  Google Scholar 

  83. Liebert T, Hänsch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213

    Article  CAS  Google Scholar 

  84. Negishi K, Mashiko Y, Yamashita E, Otsuka A, Hasegawa T (2011) Cellulose chemistry meets click chemistry: syntheses and properties of cellulose-based glycoclusters with high structural homogeneity. Polymers 3:489–508

    Article  CAS  Google Scholar 

  85. Meng X, Edgar KJ (2016) “Click” reactions in polysaccharide modification. Prog Polym Sci 53:52–85

    Article  CAS  Google Scholar 

  86. Vögtle F, Richardt G, Werner N (2007) Dendritische Moleküle, Konzepte, Synthesen, Eigenschaften und Anwendungen. Teubner Studienbücher Chemie, Wiesbaden

    Google Scholar 

  87. Hassan ML, Moorefield CN, Newkome GR (2004) Regioselective dendritic functionalization of cellulose. Macromol Rapid Commun 25:1999–2002

    Article  CAS  Google Scholar 

  88. Hassan ML, Moorefield CN, Kotta K, Newkome GR (2005) Regioselective combinatorial-type synthesis, characterization, and physical properties of dendronized cellulose. Polymer 46:8947–8955

    Article  CAS  Google Scholar 

  89. Heinze T, Pohl M, Schaller J, Meister F (2007) Novel bulky esters of cellulose. Macromol Biosci 7:1225–1231

    Article  CAS  Google Scholar 

  90. Pohl M, Schaller J, Meister F, Heinze T (2008) Selectively dendronized cellulose: synthesis and characterization. Macromol Rapid Commun 29:142–148

    Article  CAS  Google Scholar 

  91. Heinze T, Schöbitz M, Pohl M, Meister F (2008) Interactions of ionic liquids with polysaccharides. IV. Dendronization of 6-azido-6-deoxy cellulose. J Polym Sci, Part A: Polym Chem 46:3853–3859

    Article  CAS  Google Scholar 

  92. Kamitakahara H, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivative. Cellulose 12:209–219

    Article  CAS  Google Scholar 

  93. Nakagawa A, Kamitakahara H, Takano T (2012) Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1,3-dipolar cycloaddition. Cellulose 19:1315–1326

    Article  CAS  Google Scholar 

  94. Enomoto-Rogers Y, Kamitakahara H, Yoshinaga A, Takano T (2012) Comb-shaped graft copolymers with cellulose side-chains prepared via click chemistry. Carbohydr Polym 87:2237–2245

    Article  CAS  Google Scholar 

  95. Thakur VK (2015) Cellulose-based graft copolymers: structure and chemistry. CRC Press, Boca Raton, Fla

    Book  Google Scholar 

  96. Tischer T, Claus TK, Bruns M, Trouillet V, Linkert K, Rodriguez-Emmenegger C, Goldmann AS, Perrier S, Boerner HG, Barner-Kowollik C (2013) Spatially controlled photochemical peptide and polymer conjugation on biosurfaces. Biomacromol 14:4340–4350

    Article  CAS  Google Scholar 

  97. Ax J, Wenz G (2012) Thermoreversible networks by Diels-Alder reaction of cellulose furoates with bismaleimides. Macromol Chem Phys 213:182–186

    Article  CAS  Google Scholar 

  98. Wang G-F, Chu H-J, Wei H-L, Liu X-Q, Zhao Z-X, Zhu J (2014) Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels. Chem Pap 68:1390–1399

    CAS  Google Scholar 

  99. Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C (2011) Mild and modular surface modification of cellulose via hetero Diels-Alder (HDA) cycloaddition. Biomacromol 12:1137–1145

    Article  CAS  Google Scholar 

  100. Tischer T, Goldmann AS, Linkert K, Trouillet V, Boerner HG, Barner-Kowollik C (2012) Modular ligation of thioamide functional peptides onto solid cellulose substrates. Adv Funct Mater 22:3853–3864

    Article  CAS  Google Scholar 

  101. Wondraczek H, Pfeifer A, Heinze T (2012) Water soluble photoactive cellulose derivatives: synthesis and characterization of mixed 2-[(4-methyl-2-oxo-2H-chromen-7-yl)oxy]acetic acid-(3-carboxypropyl)trimethylammonium chloride esters of cellulose. Cellulose 19:1327–1335

    Article  CAS  Google Scholar 

  102. Grigoray O, Wondraczek H, Daus S, Kuehnoel K, Latifi SK, Saketi P, Fardim P, Kallio P, Heinze T (2015) Photocontrol of mechanical properties of pulp fibers and fiber-to-fiber bonds via self-assembled polysaccharide Derivatives. Macromol Mater Eng 300:277–282

    Article  CAS  Google Scholar 

  103. Nair DP, Podgorski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744

    Article  CAS  Google Scholar 

  104. Eyley S (2013) Surface modification of cellulose nanocrystals. Ph.D. thesis, University of Nottingham, Nottingham

    Google Scholar 

  105. Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931

    Article  CAS  Google Scholar 

  106. Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors based on porous cellulose nanocrystal–poly(vinyl alcohol) scaffolds. ACS Appl Mater Interfaces 6:12674–12683

    Article  CAS  Google Scholar 

  107. Zhao GL, Hafren J, Deiana L, Cordova A (2010) Heterogeneous “organo-click” derivatization of polysaccharides: photochemical thiol-ene click modification of solid cellulose. Macromol Rapid Commun 31:740–744

    Article  CAS  Google Scholar 

  108. Rosilo H, Kontturi E, Seitsonen J, Kolehmainen E, Ikkala O (2013) Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Biomacromol 14:1547–1554

    Article  CAS  Google Scholar 

  109. Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straight-forward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21:16066–16076

    Article  CAS  Google Scholar 

  110. Huang JL, Li CJ, Gray DG (2014) Functionalization of cellulose nanocrystal films via “thiol-ene” click reaction. RSC Adv 4:6965–6969

    Article  CAS  Google Scholar 

  111. Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, Berlin

    Book  Google Scholar 

  112. Wågberg L (2000) Polyelectrolyte adsorption onto cellulose fibers—a review. Nord Pulp Pap Res J 15:586–597

    Article  Google Scholar 

  113. Stevens MP (1999) Polymer chemistry, 3rd ed. Oxford University Press, New York

    Google Scholar 

  114. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  115. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 2. Wiley-VCH, Weinheim, pp 17–27

    Google Scholar 

  116. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  117. Carlmark A, Larsson E, Malmstrom E (2012) Grafting of cellulose by ring-opening polymerization—a review. Eur Polym J 48:1646–1659

    Article  CAS  Google Scholar 

  118. Heinze T, Liebert T (2012) Celluloses and polyoses/hemicelluloses. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 10, pp. 83–152

    Google Scholar 

  119. Gürdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin

    Google Scholar 

  120. Tosh B, Routray CR (2014) Grafting of cellulose based materials: a review. Chem Sci Rev Lett 3:74–92

    CAS  Google Scholar 

  121. Wei L, McDonald AG (2016) A review on grafting of biofibers for biocomposites. Materials 9:303. https://doi.org/10.3390/ma9040303

    Article  Google Scholar 

  122. Odian G (2004) Principles of polymerization, 4th ed. Wiley, New York

    Google Scholar 

  123. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  124. Bahattacharyya SN, Maldas D (1984) Graft copolymerization onto cellulosics. Prog Polym Sci 10:171–270

    Article  Google Scholar 

  125. Okieimen EF (1987) Studies on the graft copolymerization of cellulosic materials. Eur Polym J 23:319–322

    Article  CAS  Google Scholar 

  126. Ouajai S, Hodzic A, Shanks RA (2004) Morphological and grafting modification of natural cellulose fibers. J Appl Polym Sci 94:2456–2465

    Article  CAS  Google Scholar 

  127. Gurdag G, Guclu G, Ozgumus S (2001) Graft copolymerization of acrylic acid onto cellulose: effects of pretreatments and crosslinking agent. J Appl Polym Sci 80:2267–2272

    Article  CAS  Google Scholar 

  128. Diamantoglou M, Kundinger EF (1995) Derivatisation of cellulose in homogeneous reaction. In: Kennedy JF, Phillips GO (eds) Cellulose and cellulose derivatives: physicochemical aspects and industrial applications. Woodhead Publishers, Cambridge

    Google Scholar 

  129. Zhang ZB, McCormick CL (1997) Graft copolymerization of cellulose with structopendant unsaturated ester moieties in homogeneous solution. J Appl Polym Sci 66:307–317

    Article  CAS  Google Scholar 

  130. Bhattacharyya SN, Maldas D (1982) Radiation-Induced graft copolymerization of mixtures of styrene and acrylamide onto cellulose acetate. I. Effect of solvents. J Polym Sci: Polym Chem Ed 20:939–950

    CAS  Google Scholar 

  131. Nishioka N, Matsumoto Y, Yumen T, Monmae K, Kosai K (1986) Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide-paraformaldehyde solvent system IV. 2-hydroxyethyl methacrylate. Polym J 18:323–330

    Article  CAS  Google Scholar 

  132. Abdel-Razik EA (1990) Homogeneous graft copolymerization of acrylamide onto ethyl cellulose. Polymer 31:1739–1744

    Article  CAS  Google Scholar 

  133. Ibrahim MM, Flefel EM, El-Zawawy WK (2002) Cellulose membranes grafted with vinyl monomers in a homogeneous system. Polym Adv Technol 13:548–557

    Article  CAS  Google Scholar 

  134. Ibrahim MM, Flefel EM, El-Zawawy WK (2002) Cellulose membranes grafted with vinyl monomers in homogeneous system. J Appl Polym Sci 84:2629–2638

    Article  CAS  Google Scholar 

  135. Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187

    Article  CAS  Google Scholar 

  136. Shukla SR, Rao GVG, Athalye AR (1992) Ultraviolet-radiation-induced graft copolymerization of styrene and acrylonitrile onto cotton cellulose. J Appl Polym Sci 45:1341–1354

    Article  CAS  Google Scholar 

  137. Takacs E, Wojnarovits L, Borsa J, Papp J, Hargittai P, Korecz L (2005) Modification of cotton-cellulose by preirradiation grafting. Nucl Instrum Methods Phys Res, Sect B 236:259–265

    Article  CAS  Google Scholar 

  138. Andreozzi L, Castelvetro V, Ciardelli G, Corsi L, Faetti M, Fatarella E, Zulli F (2005) Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization. J Colloid Interface Sci 289:455–465

    Article  CAS  Google Scholar 

  139. Ghosh P, Das D (2000) Modification of cotton by acrylic acid (AA) in the presence of NaH2PO4 and K2S2O8 as catalysts under thermal treatment. Eur Polym J 36:2505–2511

    Article  CAS  Google Scholar 

  140. Suo A, Qian J, Yao Y, Zhang W (2007) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103:1382–1388

    Article  CAS  Google Scholar 

  141. Aliouche D, Sid B, Ait-Amar (2006) Graft-copolymerization of acrylic monomers onto cellulose. Influence on fiber swelling and absorbency. Ann Chim (Cachan, Fr.) 31:527–540

    Google Scholar 

  142. Ogiwara Y, Kubota H (1970) Graft copolymerization to cellulose by the metallic ion-hydrogen peroxide initiator system. J Polym Sci, Part A-1, Polym Chem 8:1069–1076

    Article  CAS  Google Scholar 

  143. Misra BN, Dogra R, Kaur I, Jassal JK (1979) Grafting onto cellulose. IV. Effect of complexing agents on Fenton’s reagent (iron(2+)-hydrogen peroxide)-initiated grafting of poly(vinyl acetate). J Polym Sci Polym Chem Ed 17:1861–1863

    Google Scholar 

  144. Stannett VT, Hopfenberg HB (1971) Graft copolymers. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, vol 5. Wiley, New York, pp 907–936

    Google Scholar 

  145. Toledano-Thompson T, Loria-Bastarrachea MI, Aguilar-Vega MJ (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73

    Article  CAS  Google Scholar 

  146. Kubota H, Kuwabara S (1997) Cellulosic absorbents for water synthesized by grafting of hydrophilic vinyl monomers on carboxymethyl cellulose. J Appl Polym Sci 64:2259–2263

    Article  CAS  Google Scholar 

  147. Jianqin L, Maolin Z, Hongfei H (1999) Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiat Phys Chem 55:55–59

    Article  CAS  Google Scholar 

  148. Lu J, Yi M, Li J, Ha H (2001) Preirradiation grafting polymerization of DMAEMA onto cotton cellulose fabrics. J Appl Polym Sci 81:3578–3581

    Article  CAS  Google Scholar 

  149. Carlmark A, Malmstrom EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromol 4:1740–1745

    Article  CAS  Google Scholar 

  150. Kumar V, Bhardwaj YK, Jamdar SN, Goel NK, Sabharwal S (2006) Preparation of an anion-exchange adsorbent by the radiation-induced grafting of vinylbenzyltrimethylammonium chloride onto cotton cellulose and its application for protein adsorption. J Appl Polym Sci 102:5512–5521

    Article  CAS  Google Scholar 

  151. Lawrence KDN, Verdin D (1973) Graft polymerization of acrylamide onto paper preirradiated with high energy electrons. J Appl Polym Sci 17:2653–2666

    Article  CAS  Google Scholar 

  152. Shukla SR, Rao GVG, Athalye AR (1993) Improving graft level during photoinduced graft copolymerization of styrene onto cotton cellulose. J Appl Polym Sci 49:1423–1430

    Article  CAS  Google Scholar 

  153. Shukla SR, Athalye AR (1992) Bifunctional monomers in photoinduced vinyl grafting on cotton cellulose: use of divinylbenzene in grafting of styrene. Polymer 33:3729–3733

    Article  CAS  Google Scholar 

  154. Vander Wielen LC, Ragauskas AJ (2004) Grafting of acrylamide onto cellulosic fibers via dielectric-barrier discharge. Eur Polym J 40:477–482

    Article  CAS  Google Scholar 

  155. Zubaidi Hirotsu TH (1996) Graft polymerization of hydrophilic monomers onto textile fibers treated by glow discharge plasma. J Appl Polym Sci 61:1579–1584

    Article  CAS  Google Scholar 

  156. Carothers WH, Dorough GL, Van Natta FJ (1932) Polymerization and ring formation. X. Reversible polymerization of six-membered cyclic esters. J Am Chem Soc 54:761–772

    Article  CAS  Google Scholar 

  157. Dubois P, Coulembier O, Raquez J-M (2009) Handbook of ring-opening polymerization. Wiley-VCH, Germany, pp 1–408

    Google Scholar 

  158. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    Google Scholar 

  159. Cordova A, Hafren J (2005) Direct organic acid-catalyzed polyester derivatization of lignocellulosic material. Nord Pulp Pap Res J 20:477–480

    Article  CAS  Google Scholar 

  160. Yang Q, Pan X, Huang F, Li K (2011) Synthesis and characterization of cellulose fibers grafted with hyperbranched poly(3-methyl-3-oxetanemethanol). Cellulose 18:1611–1621

    Article  CAS  Google Scholar 

  161. Kahovec J, Jelinkova M, Janout V (1986) Polymer-supported oligo(N-acetyliminoethylenes). New phase-transfer catalysts Polym Bull 15:485–490

    CAS  Google Scholar 

  162. Cohen E, Avny Y, Zilkha A (1971) Anionic graft polymerization of propylene sulfide on cellulose. I. J Polym Sci, Part A-1 9:1469–1479

    Google Scholar 

  163. Ikeda I, Kurushima Y, Takashima H, Suzuki K (1988) Cationic graft polymerization of 2-oxazolines on cellulose derivatives. Polym J 20:243–250

    Article  CAS  Google Scholar 

  164. Hawker CJ (2002) Nitroxide-mediated living radical polymerizations. In: Matyjaszewski K, Davis TP (eds) Handbook of radical polymerization. Wiley, Hoboken, pp 463–521

    Chapter  Google Scholar 

  165. Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163

    Article  CAS  Google Scholar 

  166. Wang JS, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615

    Article  CAS  Google Scholar 

  167. Carlmark A, Malmstroem E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    Article  CAS  Google Scholar 

  168. Rizzardo E, Chiefari J, Mayadunne RTA, Moad G, Thang SH (2000) Synthesis of defined polymers by reversible addition-fragmentation chain transfer: the RAFT process. ACS Symp Ser 768:278–296

    Article  CAS  Google Scholar 

  169. Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717

    Article  CAS  Google Scholar 

  170. Dahou W, Ghemati D, Oudia A, Aliouche D (2010) Preparation and biological characterization of cellulose graft copolymers. Biochem Eng J 48:187–194

    Article  CAS  Google Scholar 

  171. Dhiman PK, Kaur I, Mahajan RK (2008) Synthesis of a cellulose-grafted polymeric support and its application in the reductions of some carbonyl compounds. J Appl Polym Sci 108:99–111

    Article  CAS  Google Scholar 

  172. Mao C, Qiu Y, Sang H, Mei H, Zhu A, Shen J, Lin S (2004) Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv Colloid Interface Sci 110:5–17

    Article  CAS  Google Scholar 

  173. Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804

    Article  CAS  Google Scholar 

  174. Gupta KC, Khandekar K (2006) Ceric(IV) ion-induced graft copolymerization of acrylamide and ethyl acrylate onto cellulose. Polym Int 55:139–150

    Article  CAS  Google Scholar 

  175. Gupta KC, Khandekar K (2002) Graft copolymerization of acrylamide-methylacrylate comonomers onto cellulose using ceric ammonium nitrate. J Appl Polym Sci 86:2631–2642

    Article  CAS  Google Scholar 

  176. Kim BS, Mun SP (2009) Effect of Ce4+ pretreatment on swelling properties of cellulosic superabsorbents. Polym Adv Technol 20:899–906

    Google Scholar 

  177. Mondal MIH, Uraki Y, Ubukata M, Itoyama K (2008) Graft polymerization of vinyl monomers onto cotton fibres pretreated with amines. Cellulose 15:581–592

    Article  CAS  Google Scholar 

  178. Nishioka N, Watase K, Arimura K, Kosai K, Uno M (1984) Permeability through cellulose membranes grafted with vinyl monomers in a homogeneous system. 1. Diffusive permeability through acrylonitrile grafted cellulose membranes. Polym J 16:867–875

    Article  CAS  Google Scholar 

  179. Nishioka N, Yoshimi S, Iwaguchi T, Kosai K (1984) Permeability through cellulose membranes grafted with vinyl monomers in homogeneous system. 2. States of water in acrylonitrile grafted cellulose membranes. Polym J 16:877–885

    Article  CAS  Google Scholar 

  180. Bicak N, Sherrington DC, Senkal BF (1999) Graft copolymer of acrylamide onto cellulose as mercury selective sorbent. React Funct Polym 41:69–76

    Article  CAS  Google Scholar 

  181. Wen OH, Kuroda SI, Kubota H (2001) Temperature-responsive character of acrylic acid and N-isopropylacrylamide binary monomers-grafted celluloses. Eur Polym J 37:807–813

    Article  CAS  Google Scholar 

  182. Gueclue G, Guerdag G, Oezguemues S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90:2034–2039

    Article  CAS  Google Scholar 

  183. O’Connell DW, Birkinshaw C, O’Dwyer TF (2006) A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions. J Chem Technol Biotechnol 81:1820–1828

    Article  CAS  Google Scholar 

  184. Liu S, Sun G (2008) Radical graft functional modification of cellulose with allyl monomers: chemistry and structure characterization. Carbohydr Polym 71:614–625

    Article  CAS  Google Scholar 

  185. Wang D, Tan J, Kang H, Ma L, Jin X, Liu R, Huang Y (2011) Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym 84:195–202

    Article  CAS  Google Scholar 

  186. Bokias G, Mylonas Y, Staikos G, Bumbu GG, Vasile C (2001) Synthesis and aqueous solution properties of novel thermo-responsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules 34:4958–4964

    Article  CAS  Google Scholar 

  187. Li Y, Liu R, Liu W, Kang H, Wu M, Huang Y (2008) Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-p(PEGMA) amphiphilic copolymers. J Polym Sci, Part A: Polym Chem 46:6907–6915

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinze, T., El Seoud, O.A., Koschella, A. (2018). Miscellaneous Cellulose Derivatives and Reactions. In: Cellulose Derivatives. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-73168-1_7

Download citation

Publish with us

Policies and ethics