Skip to main content

Amphipol-Mediated Immobilization of Membrane Proteins and Its Applications

  • Chapter
  • First Online:
Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1455 Accesses

Summary

Tagged amphipols (APols) are obtained by chemically grafting APols with moieties that can interact with specific partners. They combine in a single molecule three highly useful properties: keeping membrane proteins (MPs) water-soluble, stabilizing them, and functionalizing them. MPs trapped with tagged APols can be attached to solid supports and other scaffolds in a gentle, non-covalent but permanent manner, without interacting themselves with the support nor having to be genetically nor chemically modified. Furthermore, a single tagged APol can be used for any number of MPs. Three types of tags have been thoroughly validated to date – biotin, polyhistidine, and an oligonucleotide – and three more are under development, randomly distributed imidazoles, sulfides, and sulfhydrides. Between them, they cover a very broad range of properties, from low to extremely high affinity and from easy reversibility to near-irreversibility. They have been applied to immobilizing membrane proteins onto a variety of supports, including avidin-coated or nucleotide-bearing beads, chips, and culture plates. MPs immobilized via tagged APols remain native and functional and can be recognized by ligands big and small, such as antibodies, toxins, or neurotransmitter analogs, which can be directly or indirectly detected by such methods as surface plasmon resonance (SPR) and fluorescence microscopy. They have been used to select protein binders and to study the interaction of a bacterial outer membrane protein with a bacteriophage tail protein. They lend themselves well to multiplexing approaches permitting to immobilize multiple membrane proteins at defined positions onto chips or electrodes. Tagged APols have other possible applications, e.g. in structural biology and for medical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansar, S.M., Haputhanthri, R., Edmonds, B., Liu, D., Yu, L., Sygula, A., Zhang, D. (2011) Determination of the binding affinity, packing, and conformation of thiolate and thione ligands on gold nanoparticles. J. Phys. Chem. C 115:653–660.

    Article  Google Scholar 

  • Arora, A., Abildgaard, F., Bushweller, J.H., Tamm, L.K. (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8:334–338.

    Article  Google Scholar 

  • Bailey, K., Bally, M., Leifert, W., Vörös, J., McMurchie, T. (2009) G protein-coupled receptor array technologies: Site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics 9:2052–2063.

    Article  Google Scholar 

  • Bain, C.D., Biebuyck, H.A., Whitesides, G.M. (1989a) Comparison of self-assembled monolayers on gold: Coadsorption of thiols and disulfides. Langmuir 5:723–727.

    Article  Google Scholar 

  • Bain, C.D., Evall, J., Whitesides, G.M. (1989b) Formation of monolayers by the coadsorption of thiols on gold: Variation in the head group, tail group, and solvent. J. Am. Chem. Soc. 111:7155–7164.

    Article  Google Scholar 

  • Bano, F., Fruk, L., Sanavio, B., Glettenberg, M., Casalis, L., Niemeyer, C.M., Scoles, G. (2009) Toward multiprotein nanoarrays using nanografting and DNA-directed immobilization of proteins. Nano Lett. 9:2614–2618.

    Article  ADS  Google Scholar 

  • Basit, H., Sharma, S., Van der Heyden, A., Gondran, C., Breyton, C., Dumy, P., Winnik, F.M., Labbé, P. (2012) Amphipol-mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5. Chem. Commun. 48:6037–6039.

    Article  Google Scholar 

  • Bellot, G., McClintock, M.A., Chou, J.J., Shih, W.M. (2013) DNA nanotubes for NMR structure determination of membrane proteins. Nat. Protoc. 8:755–770.

    Article  Google Scholar 

  • Berry, E.A., Guergova-Kuras, M., Huang, L.-S., Crofts, A.R. (2000) Structure and function of cytochrome bc1 complexes. Annu. Rev. Biochem. 69:1005–1075.

    Article  Google Scholar 

  • Beulen, M.W.J., Huisman, B.-H., van der Heijden, P.A., van Veggel, F.C.J.M., Simons, M.G., Biemond, E.M.E.F., de Lange, P.J., Reinhoudt, D.N. (1996) Evidence for nondestructive adsorption of dialkyl sulfides on gold. Langmuir 12:6170–6172.

    Article  Google Scholar 

  • Bidan, G., Billon, M., Galasso, K., Livache, T., Mathis, C., Roget, A., Torres-Rodriguez, L.M., Vieil, E. (2000) Electropolymerization as a versatile route for immobilizing biological species onto surfaces – Application to DNA biochips. Appl. Biochem. Biotechnol. 89:183–193.

    Article  Google Scholar 

  • Bieri, C., Ernst, O.P., Heyse, S., Hofmann, K.P., Vogel, H. (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat. Biotech. 17:1105–1108.

    Article  Google Scholar 

  • Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P., Plückthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332:489–503.

    Article  Google Scholar 

  • Blanchard, S.G., Quast, U., Reed, K., Lee, T., Schimerlik, M.I., Vandlen, R., Claudio, T., Strader, C.D., Moore, H.P., Raftery, M.A. (1979) Interaction of 125I-α-bungarotoxin with acetylcholine receptor from Torpedo californica. Biochemistry 18:1875–1883.

    Article  Google Scholar 

  • Block, H., Maertens, B., Spriestersbach, A., Brinker, N., Kubicek, J., Fabis, R., Labahn, J., Schäfer, F. (2009) Immobilized-metal affinity chromatography (IMAC): a review. Methods Enzymol. 463:439–473.

    Article  Google Scholar 

  • Boersma, Y.L., Plückthun, A. (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 22:849–857.

    Article  Google Scholar 

  • Catoire, L.J., Damian, M., Giusti, F., Martin, A., van Heijenoort, C., Popot, J.-L., Guittet, E., Banères, J.-L. (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J. Am. Chem. Soc. 132:9049–9057.

    Article  Google Scholar 

  • Champeil, P., Menguy, T., Tribet, C., Popot, J.-L., le Maire, M. (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275:18623–18637.

    Article  Google Scholar 

  • Charvolin, D., Perez, J.-B., Rouvière, F., Giusti, F., Bazzacco, P., Abdine, A., Rappaport, F., Martinez, K.L., Popot, J.-L. (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc. Natl. Acad. Sci. USA 106:405–410.

    Article  ADS  Google Scholar 

  • Christman, K.L., Enriquez-Rios, V.D., Maynard, H.D. (2006a) Nanopatterning proteins and peptides. Soft Matter 2:928–939.

    Article  ADS  Google Scholar 

  • Christman, K.L., Requa, M.V., Enriquez-Rios, V.D., Ward, S.C., Bradley, K.A., Turner, K.L., Maynard, H.D. (2006b) Submicron streptavidin patterns for protein assembly. Langmuir 22:7444–7450.

    Article  Google Scholar 

  • Cosnier, S., Galland, B., Gondran, C., Le Pellec, A. (1998) Electrogeneration of biotinylated functionalized polypyrroles for the simple immobilization of enzymes. Electroanalysis 10:808–813.

    Article  Google Scholar 

  • Cosnier, S., Stoytcheva, M., Senillou, A., Perrot, H., Furriel, R.P.M., Leone, F.A. (1999) A biotinylated conducting polypyrrole for the spatially controlled construction of an amperometric biosensor. Anal. Chem. 71:3692–3697.

    Article  Google Scholar 

  • Coyer, S.R., García, A.J., Delamarche, E. (2007) Facile preparation of complex protein architectures with sub-100-nm resolution on surfaces. Angew. Chem. Int. Ed. 46:6837–6840.

    Article  Google Scholar 

  • Dahmane, T., Damian, M., Mary, S., Popot, J.-L., Banères, J.-L. (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521.

    Article  Google Scholar 

  • Darmanin, T., Bellanger, H., Guittard, F., Lisboa, P., Zurn, M., Colpo, P., Gilliland, D., Rossi, F. (2012) Structured biotinylated poly(3,4-ethylenedioxypyrrole) electrodes for biochemical applications. RSC Adv. 2:1033–1039.

    Article  Google Scholar 

  • Della Pia, E.A., Holm, J., Lloret, N., Le Bon, C., Popot, J.-L., Zoonens, M., Nygård, J., Martinez, K.L. (2014a) A step closer to membrane protein multiplexed nano-arrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853.

    Article  Google Scholar 

  • Della Pia, E.A., Westh Hansen, R., Zoonens, M., Martinez, K.L. (2014b) Functionalized amphipols: A versatile toolbox suitable for applications of membrane proteins in synthetic biology. J. Membr. Biol. 247:815–826.

    Article  Google Scholar 

  • Fang, Y., Frutos, A.G., Lahiri, J. (2002) Membrane protein microarrays. J. Am. Chem. Soc. 124:2394–2395.

    Article  Google Scholar 

  • Fernandez, A., Le Bon, C., Baumlin, N., Giusti, F., Crémel, G., Popot, J.-L., Bagnard, D. (2014) In vivo characterization of the biodistribution profile of amphipols J. Membr. Biol. 247:1043–1051.

    Article  Google Scholar 

  • Ferrandez, Y., Dezi, M., Bosco, M., Urvoas, A., Valério, M., Le Bon, C., Giusti, F., Broutin, I., Durand, G., Polidori, A., Popot, J.-L., Picard, M., Minard, P. (2014) Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J. Membr. Biol. 247:925–940.

    Article  Google Scholar 

  • Franklin, G.I., Potter, L.T. (1972) Studies of the binding of α-bungarotoxin to membrane-bound and detergent-dispersed acetylcholine receptors from Torpedo electric tissue. FEBS Lett. 28:101–106.

    Article  Google Scholar 

  • Friedrich, M.G., Giess, F., Naumann, R., Knoll, W., Ataka, K., Heberle, J., Hrabakova, J., Murgida, D.H., Hildebrandt, P. (2004) Active site structure and redox processes of cytochrome c oxidase immobilised in a novel biomimetic lipid membrane on an electrode. Chem. Commun. 21:2376–2377.

    Article  Google Scholar 

  • Früh, V., IJzerman, A.P., Siegal, G. (2011) How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem. Rev. 111:640–656.

    Article  Google Scholar 

  • Giusti, F., Kessler, P., Westh Hansen, R., Della Pia, E.A., Le Bon, C., Mourier, G., Popot, J.-L., Martinez, K.L., Zoonens, M. (2015) Synthesis of a polyhistidine-bearing amphipol and its use for immobilizing membrane proteins. Biomacromolecules 16:3751–3761.

    Article  Google Scholar 

  • Giusti, F., Rieger, J., Catoire, L., Qian, S., Calabrese, A.N., Watkinson, T.G., Casiraghi, M., Radford, S.E., Ashcroft, A.E., Popot, J.-L. (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J. Membr. Biol. 247:909–924.

    Article  Google Scholar 

  • Gohon, Y., Giusti, F., Prata, C., Charvolin, D., Timmins, P., Ebel, C., Tribet, C., Popot, J.-L. (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290.

    Article  Google Scholar 

  • Gohon, Y., Pavlov, G., Timmins, P., Tribet, C., Popot, J.-L., Ebel, C. (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal. Biochem. 334:318–334.

    Article  Google Scholar 

  • Gottschalk, I., Li, Y.M., Lundahl, P. (2000) Chromatography on cells: analyses of solute interactions with the glucose transporter Glut1 in human red cells adsorbed on lectin-gel beads. J. Chromatogr. B 739:55–62.

    Article  Google Scholar 

  • Gu, J.H., Yam, C.M., Li, S., Cai, C.Z. (2004) Nanometric protein arrays on protein-resistant monolayers on silicon surfaces. J. Am. Chem. Soc. 126:8098–8099.

    Article  Google Scholar 

  • Guellouz, A., Valerio-Lepiniec, M., Urvoas, A., Chevrel, A., Graille, M., Fourati-Kammoun, Z., Desmadril, M., van Tilbeurgh, H., Minard, P. (2013) Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). PLoS One 8:e71512.

    Article  ADS  Google Scholar 

  • Harding, P.J., Hadingham, T.C., McDonnell, J.M., Watts, A. (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur. Biophys. J. Biophys. Lett. 35:709–712.

    Article  Google Scholar 

  • Hochuli, E., Döbeli, H., Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411:177–184.

    Article  Google Scholar 

  • Hoff, J.D., Cheng, L.J., Meyhofer, E., Guo, L.J., Hunt, A.J. (2004) Nanoscale protein patterning by imprint lithography. Nano Lett. 4:853–857.

    Article  ADS  Google Scholar 

  • Hong, Y.L., Webb, B.L., Su, H., Mozdy, E.J., Fang, Y., Wu, Q., Liu, L., Beck, J., Ferrie, A.M., Raghavan, S., Mauro, J., Carre, A., Mueller, D., Lai, F., Rasnow, B., Johnson, M., Min, H.S., Salon, J., Lahiri, J. (2005) Functional GPCR microarrays. J. Am. Chem. Soc. 127:15350–15351.

    Article  Google Scholar 

  • Hoover, D.K., Lee, E.J., Chan, E.W.L., Yousaf, M.N. (2007) Electroactive nanoarrays for biospecific ligand mediated studies of cell adhesion. ChemBioChem 8:1920–1923.

    Article  Google Scholar 

  • Huber, T., Steiner, D., Röthlisberger, D., Plückthun, A. (2007) In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na+-citrate symporter CitS as an example. J. Struct. Biol. 159:206–221.

    Article  Google Scholar 

  • Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C.M., Waldmann, H. (2008) Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. 47:9618–9647.

    Article  Google Scholar 

  • Jung, C., Dannenberger, O., Xu, Y., Buck, M., Grunze, M. (1998) Self-assembled monolayers from organosulfur compounds: A comparison between sulfides, disulfides, and thiols. Langmuir 14:1103–1107.

    Article  Google Scholar 

  • Kang, E., Park, J.-W., McClellan, S.J., Kim, J.-M., Holland, D.P., Lee, G.U., Franses, E.I., Park, K., Thompson, D.H. (2007) Specific adsorption of histidine-tagged proteins on silica surfaces modified with Ni2+/NTA-derivatized poly(ethylene glycol). Langmuir 23:6281–6288.

    Article  Google Scholar 

  • Kannan, B., Kulkarni, R.P., Majumdar, A. (2004) DNA-based programmed assembly of gold nanoparticles on lithographic patterns with extraordinary specificity. Nano Lett. 4:1521–1524.

    Article  ADS  Google Scholar 

  • Karlsson, R., Fält, A. (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200:121–133.

    Article  Google Scholar 

  • Knecht, S., Ricklin, D., Eberle, A.N., Ernst, B. (2009) Oligo-his-tags: mechanisms of binding to Ni2+-NTA surfaces. J. Mol. Recognit. 22:270–279.

    Article  Google Scholar 

  • Koide, S. (2009) Engineering of recombinant crystallization chaperones. Curr. Opin. Struct. Biol. 19:449–457.

    Article  Google Scholar 

  • Kumar, S., Bagchi, S., Prasad, S., Sharma, A., Kumar, R., Kaur, R., Singh, J., Bhondekar, A.P. (2016) Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour. Beilstein J. Nanotechnol. 7:501–510.

    Article  Google Scholar 

  • LaBean, T.M., Li, H. (2007) Constructing novel materials with DNA. Nano Today 2:26–35.

    Article  Google Scholar 

  • Laitinen, O.H., Nordlund, H.R., Hytonen, V.P., Kulomaa, M.S. (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol. 25:269–277.

    Article  Google Scholar 

  • Lavrich, D.J., Wetterer, S.M., Bernasek, S.L., Scoles, G. (1998) Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au(111). J. Phys. Chem. B 102:3456–3465.

    Article  Google Scholar 

  • Le Bon, C., Della Pia, E.A., Giusti, F., Lloret, N., Zoonens, M., Martinez, K.L., Popot, J.-L. (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. 42:e83.

    Article  Google Scholar 

  • Le Bon, C., Popot, J.-L., Giusti, F. (2014b) Labeling and functionalizing amphipols for biological applications. J. Membr. Biol. 247:797–814.

    Article  Google Scholar 

  • Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M. (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–1705.

    Article  ADS  Google Scholar 

  • Leggett, G.J. (2007) Bionanofabrication by near-field optical methods. NanoBiotechnology 3:223–240.

    Article  Google Scholar 

  • Lenk, T.J., Hallmark, V.M., Rabolt, J.F., Häussling, L., Ringsdorf, H. (1993) Formation and characterization of self-assembled films of sulfur-derivatized poly(methyl methacrylates) on gold. Macromolecules 26:1230–1237.

    Article  ADS  Google Scholar 

  • Lieberman, R.L., Culver, J.A., Entzminger, K.C., Pai, J.C., Maynard, J.A. (2011) Crystallization chaperone strategies for membrane proteins. Methods 55:293–302.

    Article  Google Scholar 

  • Lim, J.K., Kim, I.-H., Kim, K.-H., Shin, K.S., Kang, W., Choo, J., Joo, S.W. (2006) Adsorption of dimethyl sulfide and methanethiolate on Ag and Au surfaces: Surface-enhanced Raman scattering and density functional theory calculation study. Chem. Phys. 330:245–252.

    Article  ADS  Google Scholar 

  • Lindhoud, S., Carvalho, V., Pronk, J.W., Aubin-Tam, M.E. (2016) SMA-SH: Modified styrene-maleic acid copolymer for functionalization of lipid nanodiscs. Biomacromolecules 17:1516–1522.

    Article  Google Scholar 

  • Liu, Y.C., Rieben, N., Iversen, L., Sørensen, B.S., Park, J., Nygård, J., Martinez, K.L. (2010) Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology 21:245105.

    Article  ADS  Google Scholar 

  • Lukas, R.J., Morimoto, H., Hanley, M.R., Bennett, E.L. (1981) Radiolabeled α-bungarotoxin derivatives: kinetic interaction with nicotinic acetylcholine receptors. Biochemistry 20:7373–7378.

    Article  Google Scholar 

  • Mahyad, B., Janfaza, S., Hosseini, E.S. (2015) Bio-nano hybrid materials based on bacteriorhodopsin: Potential applications and future strategies. Adv. Coll. Interf. Sci. 225:194–202.

    Article  Google Scholar 

  • Majd, S., Mayer, M. (2008) Generating arrays with high content and minimal consumption of functional membrane proteins. J. Am. Chem. Soc. 130:16060–16064.

    Article  Google Scholar 

  • Martinez, K.L., Gohon, Y., Corringer, P.-J., Tribet, C., Mérola, F., Changeux, J.-P., Popot, J.-L. (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett. 528:251–256.

    Article  Google Scholar 

  • Martinez, K.L., Meyer, B.H., Hovius, R., Lundstrom, K., Vogel, H. (2003) Ligand binding to G protein-coupled receptors in tethered cell membranes. Langmuir 19:10925–10929.

    Article  Google Scholar 

  • Mary, S., Damian, M., Rahmeh, R., Marie, J., Mouillac, B., Banères, J.-L. (2014) Amphipols in G protein-coupled receptor pharmacology: What are they good for? J. Membr. Biol. 247:853–860.

    Article  Google Scholar 

  • Melosh, N.A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P.M., Heath, J.R. (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115.

    Article  ADS  Google Scholar 

  • Moyle, P.M., Toth, I. (2013) Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8:360–376.

    Article  Google Scholar 

  • Nieba, L., Nieba-Axmann, S.E., Persson, A., Hämäläinen, M., Edebratt, F., Hansson, A., Lidholm, J., Magnusson, K., Frostell Karlsson, Å., Plückthun, A. (1997) BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal. Biochem. 252:217–228.

    Article  Google Scholar 

  • Niemeyer, C.M., Burger, W., Hoedemakers, R.M.J. (1998) Hybridization characteristics of biomolecular adaptors, covalent DNA-streptavidin conjugates. Bioconjugate Chem. 9:168–175.

    Article  Google Scholar 

  • Nirthanan, S., Gwee, M.C.E. (2004) Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J. Pharmacol. Sci. 94:1–17.

    Article  Google Scholar 

  • Nowaczyk, M., Oworah-Nkruma, R., Zoonens, M., Rögner, M., Popot, J.-L. (2004) Amphipols: strategies for an improved PS2 environment in aqueous solution, in: Miyake, J., ed., Biohydrogen III. Elsevier, Dordrecht, The Netherlands, Kyoto, Japan, pp. 151–159.

    Chapter  Google Scholar 

  • Ostermeier, C., Iwata, S., Ludwig, B., Michel, H. (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nature Struct. Biol. 2:842–846.

    Article  Google Scholar 

  • Park, S., Kang, Y.J., Majd, S. (2015) A review of patterned organic bioelectronic materials and their biomedical applications. Adv. Mater. 27:7583–7619.

    Article  Google Scholar 

  • Patel, J.D., O’Carra, R., Jones, J., Woodward, J.G., Mumper, R.J. (2007) Preparation and characterization of nickel nanoparticles for binding to his-tag proteins and antigens. Pharm. Res. 24:343–352.

    Article  Google Scholar 

  • Pautsch, A., Schulz, G.E. (2000) High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298:273–282.

    Article  Google Scholar 

  • Pérez-Mitta, G., Burr, L., Tuninetti, J.S., Trautmann, C., Toimil-Molares, M.E., Azzaroni, O. (2016) Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale 8:1470–1478.

    Article  ADS  Google Scholar 

  • Perez, J.B., Martinez, K.L., Segura, J.M., Vogel, H. (2006) Supported cell-membrane sheets for functional fluorescence imaging of membrane proteins. Adv. Funct. Mater. 16:306–312.

    Article  Google Scholar 

  • Perlmutter, J.D., Popot, J.-L., Sachs, J.N. (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J. Membr. Biol. 247:883–895.

    Article  Google Scholar 

  • Perry, T., Souabni, H., Rapisarda, C., Fronzes, R., Giusti, F., Popot, J.-L., Zoonens, M., Gubellini, F. (2018) Visualizing transmembrane regions of protein complexes by electron microscopy using biotinylated amphipols, submitted for publication.

    Google Scholar 

  • Pervushin, K., Braun, D., Fernàndez, C., Wüthrich, K. (2000) [15N,1H]/[13C,1H]-TROSY for simultaneous detection of backbone 15N-1H, aromatic 13C-1H and side-chain 15N-1H2 correlations in large proteins. J. Biomol. NMR 17:195–202.

    Article  Google Scholar 

  • Petrlova, J., Masarik, M., Potesil, D., Adam, V., Trnkova, L., Kizek, R. (2007) Zeptomole detection of streptavidin using carbon paste electrode and square-wave voltammetry. Electroanalysis 19:1177–1182.

    Article  Google Scholar 

  • Pierre, Y., Breyton, C., Kramer, D., Popot, J.-L. (1995) Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. J. Biol. Chem. 270:29342–29349.

    Article  Google Scholar 

  • Polovinkin, V., Balandin, T., Volkov, O., Round, E., Borshchevskiy, V., Utrobin, P., von Stetten, D., Royant, A., Willbold, D., Arzumanyan, A., Popot, J.-L., Gordeliy, V. (2014) Nanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35. J. Membr. Biol. 247:971–980.

    Article  Google Scholar 

  • Ravi, V., Binz, J.M., Rioux, R.M. (2013) Thermodynamic profiles at the solvated inorganic−organic interface: The case of gold-thiolate monolayers. Nano Lett. 13:4442–4448.

    Article  ADS  Google Scholar 

  • Rich, R.L., Myszka, D.G. (2005) Survey of the year 2004 commercial optical biosensor literature. J. Mol. Recognit. 18:431–478.

    Article  Google Scholar 

  • Schmid, E.L., Tairi, A.P., Hovius, R., Vogel, H. (1998) Screening ligands for membrane protein receptors by total internal reflection fluorescence: The 5-HT3 serotonin receptor. Anal. Chem. 70:1331–1338.

    Article  Google Scholar 

  • Seeger, M.A., Zbinden, R., Flutsch, A., Gutte, P., Engeler, S., Roschitzki-Voser, H., Grütter, M.G. (2013) Design, construction, and characterization of a second-generation DARPin library with reduced hydrophobicity. Prot. Sci. 22:1239–1257.

    Article  Google Scholar 

  • Selmi, D.N., Adamson, R.J., Attrill, H., Goddard, A.D., Gilbert, R.J.C., Watts, A., Turberfield, A.J. (2011) DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11:657–660.

    Article  ADS  Google Scholar 

  • Sennhauser, G., Grütter, M.G. (2008) Chaperone-assisted crystallography with DARPins. Structure 16:1443–1453.

    Article  Google Scholar 

  • Sharma, K.S., Durand, G., Gabel, F., Bazzacco, P., Le Bon, C., Billon-Denis, E., Catoire, L.J., Popot, J.-L., Ebel, C., Pucci, B. (2012) Non-ionic amphiphilic homopolymers: Synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639.

    Article  Google Scholar 

  • Skerra, A. (2007) Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 18:295–304.

    Article  Google Scholar 

  • Stenberg, E., Persson, B., Roos, H., Urbaniczky, C. (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radio-labeled proteins. J. Colloid Interface Sci. 143:513–526.

    Article  ADS  Google Scholar 

  • Stroebel, D., Choquet, Y., Popot, J.-L., Picot, D. (2003) An atypical haem in the cytochrome b6 f complex. Nature 426:413–418.

    Article  ADS  Google Scholar 

  • Stumpp, M.T., Forrer, P., Binz, H.K., Plückthun, A. (2003) Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J. Mol. Biol. 332:471–487.

    Article  Google Scholar 

  • Suárez-Suárez, S., Carriedo, G.A., Presa Soto, A. (2013) Gold-decorated chiral macroporous films by the self-assembly of functionalised block copolymers. Chem. Eur. J. 19:15933–15940.

    Article  Google Scholar 

  • Tifrea, D.F., Pal, S., Le Bon, C., Giusti, F., Cocco, M.J., Zoonens, M., de la Maza, L.M. (2018a) Resiquimod conjugated with amphipols bound to the Chlamydia muridarum MOMP enhances protection against a mucosal challenge. In preparation.

    Google Scholar 

  • Tifrea, D.F., Pal, S., Le Bon, C., Giusti, F., Popot, J.-L., Cocco, M.J., Zoonens, M., de la Maza, L.M. (2018b) Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Submitted for publication.

    Google Scholar 

  • Torres-Rodriguez, L.M., Roget, A., Billon, M., Bidan, G. (1998) Synthesis of a biotin functionalized pyrrole and its electropolymerization: Toward a versatile avidin biosensor. Chem. Commun. 1998:1993–1994.

    Article  Google Scholar 

  • Tribet, C., Porcar, I., Bonnefont, P.A., Audebert, R. (1998) Association between hydrophobically modified polyanions and negatively charged bovine serum albumin. J. Phys. Chem. B 102:1327–1333.

    Article  Google Scholar 

  • Troughton, E.B., Bain, C.D., Whitesides, G.M., Nuzzo, R.G., Allara, D.L., Porter, M.D. (1988) Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: Structure, properties, and reactivity of constituent functional groups. Langmuir 4:365–385.

    Article  Google Scholar 

  • Valiokas, R., Vaitekonis, Š., Klenkar, G., Trinkunas, G., Liedberg, B. (2006) Selective recruitment of membrane protein complexes onto gold substrates patterned by dip-pen nanolithography. Langmuir 22:3456–3460.

    Article  Google Scholar 

  • Weinrich, D., Jonkheijm, P., Niemeyer, C.M., Waldmann, H. (2009) Applications of protein biochips in biomedical and biotechnological research. Angew. Chem. Int. Ed. Engl. 48:7744–7751.

    Article  Google Scholar 

  • Wingren, C., Borrebaeck, C.A. (2007) Progress in miniaturization of protein arrays-a step closer to high-density nanoarrays. Drug Discov. Today 12:813–818.

    Article  Google Scholar 

  • Wong, I.Y., Melosh, N.A. (2009) Directed hybridization and melting of DNA linkers using counterion-screened electric fields. Nano Lett. 9:3521–3526.

    Article  ADS  Google Scholar 

  • Xu, C., Xu, K., Gu, H., Zhong, X., Guo, Z., Zheng, R., Zhang, X., Xu, B. (2004) Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 126:3392–3393.

    Article  Google Scholar 

  • Yang, Q., Lundahl, P. (1994) Steric immobilization of liposomes in chromatographic gel beads and incorporation of integral membrane proteins into their lipid bilayers. Anal. Biochem. 218:210–221.

    Article  Google Scholar 

  • Yang, S.T., Witkowski, A., Hutchins, R.S., Scott, D.L., Bachas, L.G. (1998) Biotin-modified surfaces by electrochemical polymerization of biotinyl-tyramide. Electroanalysis 10:58–60.

    Article  Google Scholar 

  • Zdyrko, B., Klep, V., Luzinov, I. (2003) Synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Langmuir 19:10179–10187.

    Article  Google Scholar 

  • Zhang, G.J., Tanii, T., Kanari, Y., Ohdomari, I. (2007) Production of nanopatterns by a combination of electron beam lithography and a self-assembled monolayer for an antibody nanoarray. J. Nanosci. Nanotechnol. 7:410–417.

    Article  Google Scholar 

  • Zheng, Z.J., Daniel, W.L., Giam, L.R., Huo, F.W., Senesi, A.J., Zheng, G.F., Mirkin, C.A. (2009) Multiplexed protein arrays enabled by polymer pen lithography: Addressing the inking challenge. Angew. Chem., Int. Ed. 48:7626–7629.

    Article  Google Scholar 

  • Zoonens, M., Giusti, F., Zito, F., Popot, J.-L. (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404.

    Article  Google Scholar 

  • Zoonens, M., Popot, J.-L. (2014) Amphipols for each season. J. Membr. Biol. 247:759–796.

    Article  Google Scholar 

  • Zoonens, M., Zito, F., Martinez, K.L., Popot, J.-L. (2014) Amphipols: a general introduction and some protocols, in: Mus-Veteau, I., ed., Membrane Proteins Production for Structural Analysis. Springer, New York, Heidelberg, Dordrecht, London, pp. 173–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Amphipol-Mediated Immobilization of Membrane Proteins and Its Applications. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_13

Download citation

Publish with us

Policies and ethics