Skip to main content

The Adhesion Force in Nano-Contact During Approaching and Retrieving Processes

  • Conference paper
  • First Online:
TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 3964 Accesses

Abstract

Atomistic simulations are used to test the continuum contact theories on the micro scale. Nominally spherical tips are pressed into a flat substrate. The force-displacement curves obtained contain information about the relationship between the adhesion force and the normal displacement. The indenter size is also taken into consideration. Snapshots of atomistic configurations are used to explain the results. Results show that the adhesion effects are different during the approaching and retrieving processes. Which means different effects of surface interaction and would give different solutions of continuum contact theories. What’s more, the maximum normal displacement (Dmax) has great impact on the pull-off force, accompanied with different dislocation nucleation, movements and annihilation. Also it is found that the position where the maximum pull-off force occurred is related to the maximum normal displacement and the indenter size. It happens earlier with decreased normal displacement and indenter size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hertz H (1896) Miscellaneous papers. Macmillan, London, p 146

    Google Scholar 

  2. Leng Y, Yang G, Hu Y, Zheng L (2000) Computer experiments on nano-indentation: a molecular dynamics approach to the elasto-plastic contact of metal copper. Journal of materials science 35(8):2061–2067

    Article  CAS  Google Scholar 

  3. Cha PR, Srolovitz DJ, Vanderlick TK (2004) Molecular dynamics simulation of single asperity contact. Acta Mater 52(13):3983–3996

    Article  CAS  Google Scholar 

  4. Luan B, Robbins MO (2006) Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys Rev E 74(2):026111

    Article  CAS  Google Scholar 

  5. Efremov YM, Bagrov DV, Kirpichnikov MP, Shaitan KV (2015) Application of the Johnson–Kendall–Roberts model in AFM-based mechanical measurements on cells and gel. Colloids Surf B 134:131–139

    Article  CAS  Google Scholar 

  6. Solhjoo S, Vakis AI (2015) Single asperity nanocontacts: Comparison between molecular dynamics simulations and continuum mechanics models. Comput Mater Sci 99:209–220

    Article  CAS  Google Scholar 

  7. Giannakopoulos AE, Venkatesh TA, Lindley TC, Suresh S (1999) The role of adhesion in contact fatigue. Acta Mater 47(18):4653–4664

    Article  CAS  Google Scholar 

  8. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc Royal Soc London A Math Phys Engineering Sci 324(1558):301–313

    Article  CAS  Google Scholar 

  9. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  CAS  Google Scholar 

  10. Zhao YP, Shi X, Li WJ (2003) Effect of work of adhesion on nanoindentation. Rev Advanc Mater Sci 5(4):348–353

    Google Scholar 

  11. Luan B, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435(7044):929

    Article  CAS  Google Scholar 

  12. Landman U, Luedtke WD, Burnham NA, Colton R (1990) Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science, 248(4954):454–461

    Article  CAS  Google Scholar 

  13. Yu N, Polycarpou AA (2004) Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential. J Colloid Interface Sci 278(2):428–435

    Article  CAS  Google Scholar 

  14. Si L, Wang X (2014) Nano-adhesion influenced by atomic-scale asperities: A molecular dynamics simulation study. Appl Surf Sci 317:710–717

    Article  CAS  Google Scholar 

  15. Fang TH, Chang WY, Huang JJ (2009) Dynamic characteristics of nanoindentation using atomistic simulation. Acta Mater 57(11):3341–3348

    Article  CAS  Google Scholar 

  16. Kramer B, Schreiber M, Hoffmann KH (1996) Computational physics. Springer

    Google Scholar 

  17. Lee Y, Park JY, Kim SY, Jun S, Im S (2005) Atomistic simulations of incipient plasticity under Al (111) nanoindentation. Mech Mater 37(10):1035–1048

    Article  Google Scholar 

  18. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983

    Article  CAS  Google Scholar 

  19. Lilleodden ET, Zimmerman JA, Foiles SM, Nix WD (2003) Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids 51(5):901–920

    Article  CAS  Google Scholar 

  20. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085

    Article  CAS  Google Scholar 

  21. Johnson KL (1998) Mechanics of adhesion. Tribol Int 31(8):413–418

    Article  Google Scholar 

  22. Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci USA 101(21):7851–7856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natural Science Foundation of China (51210008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Zheng, B. (2018). The Adhesion Force in Nano-Contact During Approaching and Retrieving Processes. In: & Materials Society, T. (eds) TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72526-0_29

Download citation

Publish with us

Policies and ethics