Skip to main content

Applications and Opportunities of Nanomaterials in Construction and Infrastructure

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

New and extraordinary physical-chemical properties of materials at nanoscale open up new applications for the building and infrastructure industry such as structural reinforcements, electronic properties and energy harvesting. Therefore the issues and risks associated with the manufacturing of nanomaterials are now of big concern due to the large volumes and typical processing involved in this industry. This paper presents a discussion and selected applications of nanotechnology in the construction and building materials: from metals and alloys, clay and minerals, ceramics, cement and concrete, asphalt, wood and composites, to finishing systems and some of the most used characterization techniques. Besides the progress in some areas, nanotechnology is just emerging in this field, with many challenges and opportunities, problems unsolved and business opportunities. A discussion regarding the potential health issues and risks of using nanomaterials for workers and the potential environment effects is included as well. New images and diagrams are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu JF, Omotoso O, Wiskel JB, Ivey DG, Henein H (2012) Strengthening mechanisms and their relative contributions to the yield strength of microalloyed steels. Metall Mater Trans A 43A(9):3043–3061. https://doi.org/10.1007/s11661-012-1135-3

    Article  Google Scholar 

  2. Mao XY, Li DY, Fang F, Tan RS, Jiang JQ (2011) Application of a simple surface nanocrystallization process to a Cu-30Ni alloy for enhanced resistances to wear and corrosive wear. Wear 271(9-10):1224–1230. https://doi.org/10.1016/j.wear.2010.12.063

    Article  Google Scholar 

  3. Hoppel HW, Kautz M, Xu C, Murashkin A, Langdon TG, Valiev RZ, Mughrabi H (2006) An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int J Fatigue 28(9):1001–1010. https://doi.org/10.1016/j.ijfatigue.2005.08.014

    Article  Google Scholar 

  4. Saidi M, Maddahian R, Farhanieh B, Afshin H (2012) Modeling of flow field and separation efficiency of a deoiling hydrocyclone using large eddy simulation. Int J Min Process 112–113

    Google Scholar 

  5. Aghaiea E, Pazoukib M, Hosseinia MR, Ranjbara M, Ghavipanjeh F (2009) Response surface methodology (RSM) analysis of organic acid production for Kaolin beneficiation by Aspergillus niger. Chem Eng J 147:245–251

    Article  Google Scholar 

  6. Yoon R-H, Nagaraj DR, Wang SS, Hildebrand TM (1992) Benefication of kaolin clay by froth flotation using hydroxamate collectors. Min Eng 5(3–5):457–467 (March–May)

    Google Scholar 

  7. Jiménez G, María A (2012) Estudio del Efecto de la Fracción de Ultrafinos sobre el Blanqueo de Caolines. Tesis de Maestría. Facultad de Minas. Universidad Nacional de Colombia

    Google Scholar 

  8. Giraldo C, Tobón JI, Restrepo Baena OJ (2012) Ultramarine blue pigment: a non-conventional pozzolan. Constr Build Mater 36:305–310

    Article  Google Scholar 

  9. Chavarriaga E, Montoya J, Restrepo C, Restrepo O. Synthesis of ceramic nanopigments. In: TMS 2014, 143th annual meeting and exhibition. San Diego, Ca. USA, 16–20 Feb 2014

    Google Scholar 

  10. Sancho JP, Restrepo OJ, García P, Ayala J, Fernández B, Verdeja LF (2008) Ultramarine blue from Asturian hard kaolins. Applied Clay Science 41(3–4):133–142

    Article  Google Scholar 

  11. Hernández MY, Restrepo O (2014) Sol-gel synthesis NaCrSi2O6 nanopigments aided by statistical design of experiments. In: TMS 2014, 143th annual meeting and exhibition. San Diego, Ca. USA, 16–20 Feb 2014

    Google Scholar 

  12. Zhang ZT, Gao YF, Chen Z, Du J, Cao CX, Kang LT, Luo HJ (2010) Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir 26(13):10738–10744. https://doi.org/10.1021/La100515k

    Article  Google Scholar 

  13. Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS (2013) Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Syst Energ Rev 26:353–364. https://doi.org/10.1016/j.rser.2013.05.038

    Article  Google Scholar 

  14. Chabas A, Lombardo T, Cachier H, Pertuisot MH, Oikonomou K, Falcone R, Verita M, Geotti-Bianchini F (2008) Behaviour of self-cleaning glass in urban atmosphere. Build Environ 43(12):2124–2131. https://doi.org/10.1016/j.buildenv.2007.12.008

    Article  Google Scholar 

  15. Guan KH (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Tech 191(2–3):155–160. https://doi.org/10.1016/j.surfcoat.2004.02.022

    Article  Google Scholar 

  16. Jelle BP, Hynd A, Gustavsen A, Arasteh D, Goudey H, Hart R (2012) Fenestration of today and tomorrow: a state-of-the-art review and future research opportunities. Sol Energ Mat Sol C 96(1):1–28. https://doi.org/10.1016/j.solmat.2011.08.010

    Article  Google Scholar 

  17. Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J (eds) (2009) Nanotechnology in Construction. In: Proceedings of the NICOM3

    Google Scholar 

  18. Raki L, Beaudoin JJ, Alizadeh R (2009) Nanotechnology applications for sustainable cement-based products. In: Nanotechnology in Construction 3. Springer Berlin Heidelberg, pp 119–124

    Google Scholar 

  19. Cong X, Kirkpatrick RJ (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cement Based Mater 3(3):144–156

    Google Scholar 

  20. Richardson IG (1999) The nature of CSH in hardened cements. Cem Concr Res 29(8):1131–1147

    Article  Google Scholar 

  21. Richardson IG (2002) Electron microscopy of cements. Structure and Performance of Cements. Spon Press, London

    Google Scholar 

  22. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38(2):137–158

    Article  Google Scholar 

  23. Peyvandi A, Soroushian P, Balachandra AM, Sobolev K (2013) Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Constr Build Mater 47:111–117

    Article  Google Scholar 

  24. Colorado HA, Rivera D, Hiel C, Hahn HT, Yang JM (2011) Effect of fly ash and graphite nanoplatelets contents on the compression strength of rapid-setting cement concrete. Society for the advancement of material and process engineering. Sampe, Long Beach-CA, USA

    Google Scholar 

  25. Yang Jun, Tighe Susan (2013) A review of advances of nanotechnology in asphalt mixtures. Procedia-Social Behav Sci 96:1269–1276

    Article  Google Scholar 

  26. Yao H, You Z, Li L, Shi X, Goh SW, Mills-Beale J, Wingard D (2012) Performance of asphalt binder blended with non-modified and polymer-modified nanoclay. Constr Build Mater 35:159–170

    Article  Google Scholar 

  27. Yao H, You Z, Li L, Lee CH, Wingard D, Yap YK, Goh SW (2012) Rheological properties and chemical bonding of asphalt modified with nanosilica. J Mater Civil Eng 25(11):1619–1630

    Google Scholar 

  28. Chen SJ, Zhang XN (2012) Mechanics and pavement properties research of nanomaterial modified asphalt. Adv Eng Forum 5

    Google Scholar 

  29. Artus GRJ, Jung S, Zimmermann J, Gautschi HP, Marquardt K, Seeger S (2006) Silicone nanofilaments and their application as superhydrophobic coating. Adv Mater 18(20) 2758–2762. https://doi.org/10.1002/adma.200502030

  30. Wang CY, Piao C (2011) From hydrophilicity to hydrophobicity: a critical review-part II: hydrophobic conversion. Wood Fiber Sci 43(1):41–56

    Google Scholar 

  31. Kessler MR, Goertzen WK (2009) Polymer nanocomposites for infrastructure rehabilitation. In: Nanotechnology in Construction 3. Springer, Berlin, Heidelberg, pp 241–250

    Google Scholar 

  32. Bauer M, Kahle O, Landeck S, Uhlig C, Wurzel R (2008) High performance composites using nanotechnology. Adv Mater Res 32:149–152

    Article  Google Scholar 

  33. Wang Z, Colorad HA, Guo Z-H, Kim H, Park C-L, Hahn HT, Lee S-G, Lee K-H, Shang Y-Q (2012) Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Mater Res 15(4):510–516

    Google Scholar 

  34. Woo K, Jang D, Kim Y, Moon J (2013) Relationship between printability and rheological behavior of ink-jet conductive inks. Ceram Int 39:7015–7021

    Article  Google Scholar 

  35. Dobrzanski LA, Pakułaa D, Kˇrizˇ A, Sokovic´ M, Kopac J (2006) Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics. J Mater Process Technol 175:179–185

    Google Scholar 

  36. Sato T, Diallo F (2010) Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. J Transp Res Board, No 2142. Nanotechnol Cement Concrete 1: 61–67

    Google Scholar 

  37. Li H, Zhang M, Ou J (2006) Abrasion resistance of concrete containing nano-particles for pavement. Wear 260:1262–1266

    Article  Google Scholar 

  38. Comunidad de Madrid (2007) Consejería de Economía e Innovación Tecnológica. Los minerales industriales. El recorrido de los minerales. http://www.uhu.es/jc.caliani/pdf/MinIndustrialesMadrid.pdf

  39. Enea D, Guerrini G (2010) Photocatalytic properties of cement-based plasters and paints containing mineral pigments. In: Transportation research record: journal of transportation research board, No 2142. Nanotechnology in cement and concrete vol 1. Transportation Research Board of the National Academies, Washington, DC, pp 52–60

    Google Scholar 

  40. How safe is nano? Nanotoxicology, an interdisciplinary challenge. http://phys.org/news/2011-01-safe-nano-nanotoxicology-interdisciplinary.html. Website visited on August 2015

  41. Nanotoxicology, assessing the risks of emerging technology. http://followgreenliving.com/nanotoxicology-assessing-risks-emerging-technology/ Website visited on August 2015

  42. Slezakova K, Morais S, do Carmo Pereira M (2013) Atmospheric nanoparticles and their impacts on public health

    Google Scholar 

  43. Lee J, Shaily M, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS nano 4(7): 3580–3590

    Google Scholar 

  44. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217. https://doi.org/10.1080/10408440600570233

  45. Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen F (2005) Molecular characterization of the cytotoxic mechanism multiwall carbon nanotubes and nano-onions on skin fibroblast. Nano Lett 5:2448–2464. https://doi.org/10.1021/nl051748o

  46. Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Technol 41:2636–2642. https://doi.org/10.1021/es062181w

  47. Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543. https://doi.org/10.1021/nl0726398

  48. Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured Nanoparticles: their uptake and effects on fish-a mechanistic analysis. Ecotoxicology 17:396–409. https://doi.org/10.1007/s10646-008-0205-1

  49. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732. https://doi.org/10.1021/tx800064j

  50. Oberdorster G, Gelein RM, Ferin J, Weiss B (1995) Association of particulate air-pollution and acute mortality involvement of Ultrafine particles. Inhalation Toxicol 7:111–124

    Google Scholar 

  51. Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y, Lee KH (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation Toxicol 19:59–65. http://www.ncbi.nlm.nih.gov/pubmed/17886052

  52. Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry A. Colorado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colorado, H.A., Nino, J.C., Restrepo, O. (2018). Applications and Opportunities of Nanomaterials in Construction and Infrastructure. In: Li, B., et al. Characterization of Minerals, Metals, and Materials 2018 . TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72484-3_46

Download citation

Publish with us

Policies and ethics