Skip to main content

Lipids of Clinically Significant Mycobacteria

  • Living reference work entry
  • First Online:
Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Abstract

Mycobacterial pathogens, such as Mycobacterium tuberculosis, Mycobacterium leprae, and the “non-tuberculous mycobacteria,” are characterised by the presence of a robust cell envelope that influences pathogenicity but also provides targets for antimycobacterial drugs. A key cell envelope component is a lipid rich mycobacterial outer membrane (MOM) involving “free” lipids interacting with a “bound” layer of high molecular weight (70–90 carbons) long-chain fatty acids, the mycolic acids. The principal free lipids range from the highly hydrophobic phthiocerol dimycocerosate waxes through related glycosyl phenolphthiocerol dimycocerosates (phenolic glycolipids) to strongly antigenic hydrophilic glycopeptidolipids and lipooligosaccharides. The mycolic acids are covalently linked to a special arabinogalactan polysaccharide, which is attached to the basal cell wall structural peptidoglycan. The specialized mycobacterial inner membrane (MIM) is rich in characteristic glycophospholipids, the phosphatidylinositol mannoside family, which are extended into important lipopolysaccharides, the lipomannans, and lipoarabinomanns. The origins and structures of the full range of lipids, from clinically significant mycobacteria, are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adam A, Senn M, Vilkas E, Lederer E (1967) Spectrométrie de masse de glycolipides. 2. Diesters de tréhalose naturels et synthétiques. Europ J Biochem 2:460–468

    Article  CAS  PubMed  Google Scholar 

  • Aebi A, Asselineau J, Lederer E (1953) The lipids of the Brevannes human strain of Mycobacterium tuberculosis. Bull Soc Chim Biol (Paris) 35:661–684

    CAS  Google Scholar 

  • Al Dulayymi JR, Baird MS, Roberts E (2005) The synthesis of a single enantiomer of a major alpha-mycolic acid of M. tuberculosis. Tetrahedron 61:11939–11951

    Article  CAS  Google Scholar 

  • Al Dulayymi JR, Baird MS, Mohammed H, Roberts E, Clegg W (2006a) The synthesis of one enantiomer of the alpha-methyl-trans-cyclopropane unit of mycolic acids. Tetrahedron 62:4851–4862

    Article  CAS  Google Scholar 

  • Al Dulayymi JR, Baird MS, Roberts Minnikin DE (2006b) The synthesis of single enantiomers of meromycolic acids from mycobacterial wax esters. Tetrahedron 62:11867–11880

    Article  CAS  Google Scholar 

  • Al Kremawi DZ, Al Dulayymi JR, Baird MS (2014) Synthetic epoxy-mycolic acids. Tetrahedron 70:7322–7335

    Article  CAS  Google Scholar 

  • Ali OT, Sahb MM, Al Dulayymi JR, Baird MS (2017) Glycerol mycolates from synthetic mycolic acids. Carbohydr Res 448:67–73

    Article  CAS  PubMed  Google Scholar 

  • Ali OT, Mohammed MO, Gates PJ, Baird MS, Al Dulayymi JR (2019) The synthesis of mycobacterial dimycoloyl diarabinoglycerol based on defined synthetic mycolic acids. Chem Phys Lipids 221:207–218

    Article  CAS  PubMed  Google Scholar 

  • Alugupalli S, Lanéelle MA, Larsson L, Daffé M (1995) Chemical characterization of the ester-linked 3-hydroxy fatty acyl-containing lipids in Mycobacterium tuberculosis. J Bacteriol 177:4566–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen CS, Agger EM, Rosenkrands I, Gomes JM, Bhowruth V, Gibson KJC, Petersen RV, Minnikin DE, Besra GS, Andersen P (2009) A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J Immunol 182:424–432

    Article  CAS  PubMed  Google Scholar 

  • Anderson RJ (1929) The chemistry of the lipoids of tubercle bacilli. III Concerning phthioic acid. Preparation and properties of phthioic acid. J Biol Chem 83:169–175

    CAS  Google Scholar 

  • Anderson RJ (1939) The chemistry of the lipoids of the tubercle bacillus and certain other microorganisms. Prog Chem Org Nat Prod 3:145–202

    CAS  Google Scholar 

  • Anderson RJ (1940) The chemistry of the lipids of the tubercule bacilli. Harvey Lect Ser 35:271

    CAS  Google Scholar 

  • Anderson RJ (1941) Structural peculiarities of acid-fast bacterial lipids. Chem Rev 29:225–243

    Article  CAS  Google Scholar 

  • Anderson RJ (1943) The chemistry of the lipids of the tubercle bacillus. Yale J Biol Med 15:311–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RJ, Chargaff E (1929) The chemistry of the lipoids of tubercle bacilli. VI. Concerning tuberculostearic acid and phthioic acid from the acetone-soluble fat. J Biol Chem 85:77–88

    CAS  Google Scholar 

  • Anderson RJ, Roberts EG (1930) The chemistry of the lipoids of tubercle bacilli. XX. The occurrence of mannose and inosite in the phosphatide fractions from the human, avian, and bovine tubercle bacilli. J Biol Chem 89:611–617

    CAS  Google Scholar 

  • Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M (2014) The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 49:361–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angala SK, McNeil MR, Shi L, Joe M, Pham H, Zuberogoitia S, Nigou J, Boot CM, Lowary TL, Gilleron M, Jackson M (2017) Biosynthesis of the methylthioxylose capping motif of lipoarabinomannan in Mycobacterium tuberculosis. ACS Chem Biol 12:682–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angala SK, Palčeková Z, Belardinelli JM, Jackson M (2018) Covalent modifications of polysaccharides in mycobacteria. Nat Chem Biol 14:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariza MA, Valero-Guillén PL (1994) Delineation of molecular species of a family of diacyltrehaloses from Mycobacterium fortuitum by mass spectrometry. FEMS Microbiol Lett 119:279–282

    Article  CAS  PubMed  Google Scholar 

  • Ariza MA, Martín-Luengo F, Valero-Guillén PL (1994) A family of diacyltrehaloses isolated from Mycobacterium fortuitum. Microbiology 140:1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Aspinall GO, Khare NK, Sood RK, Chatterjee D, Rivoire B, Brennan PJ (1991) Structure of the glycopeptidolipid antigen of serovar 20 of the Mycobacterium avium serocomplex, synthesis of allyl glycosides of the outer di- and tri-saccharide units of the antigens of serovars 14 and 20, and serology of the derived neoglycoproteins. Carbohydr Res 216:357–373

    Article  CAS  PubMed  Google Scholar 

  • Aspinall GO, Gammon DW, Sood RK, Chatterjee D, Rivoire B, Brennan PJ (1992) Structures of the glycopeptidolipid antigens of serovars 25 and 26 of the Mycobacterium avium serocomplex, synthesis of allyl glycosides of the outer disaccharide units and serology of the derived neoglycoproteins. Carbohydr Res 237:57–77

    Article  CAS  PubMed  Google Scholar 

  • Aspinall GO, Chatterjee D, Brennan PJ (1995) The variable surface glycolipids of mycobacteria: structures, synthesis of epitopes and biological properties. Adv Carbohydr Chem Biochem 51:169–242

    Article  CAS  PubMed  Google Scholar 

  • Asselineau J (1966) The bacterial lipids. Hermann, Paris

    Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose-containing glycolipids. Prog Chem Fats Other Lipids 16:59–99

    Article  CAS  PubMed  Google Scholar 

  • Asselineau J, Lederer E (1950) Structure of the mycolic acids of mycobacteria. Nature 166:782–782

    Article  CAS  PubMed  Google Scholar 

  • Asselineau C, Montrozier H, Promé JC (1969a) Structure des acides α-mycoliques isolés de la souche Canetti de Mycobacterium tuberculosis. Bull Soc Chim Fr:592–596

    Google Scholar 

  • Asselineau C, Montrozier H, Promé JC (1969b) Présence d’acides polyinsaturés dans une bactérie: isolement, à partir des lipides de Mycobacterium phlei, d’acide hexatriacontapentaène-4,8,12,16,20-oïque et d’acides analogues. Europ J Biochem 10:580–584

    CAS  Google Scholar 

  • Asselineau C, Tocanne G, Tocanne JF (1970) Stéréochimie des acides mycoliques. Bull Soc Chim Fr 4:1455–1459

    Google Scholar 

  • Asselineau C, Montrozier HL, Promé J-C, Savagnac AM, Welby M (1972) Étude d’un glycolipide polyinsaturé synthétisé par Mycobacterium phlei. Eur J Biochem 28:102–109

    Article  CAS  PubMed  Google Scholar 

  • Aubry S, Lee RE, Mahrous EA, Small PLC, Beachboard D, Kishi Y (2008) Synthesis and structure of mycolactone E isolated from frog Mycobacterium. Org Lett 10:5385–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azerad R, Cyrot-Pelletier M-O (1973) Structure and configuration of the polyprenoid side chain of dihydromenaquinones from myco- and corynebacteria. Biochimie 55:591–603

    Article  CAS  PubMed  Google Scholar 

  • Azerad R, Cyrot M-O, Lederer E (1967) Structure of the dihydromenaquinone-9 of Mycobacterium phlei. Biochem Biophys Res Commun 27:249–252

    Article  CAS  PubMed  Google Scholar 

  • Baer HH (1993) The structure of an antigenic glycolipid (SL-IV) from Mycobacterium tuberculosis. Carbohydr Res 240:1–22

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Chu C, Lowary T (2015) Lipooligosaccharides from mycobacteria: structure, function and synthesis. Isr J Chem 55:360–372

    Article  CAS  Google Scholar 

  • Ballou CE, Lee YC (1964) The structure of a myo-inositol mannoside from Mycobacterium tuberculosis glycolipids. Biochemistry 3:682–685

    Article  CAS  PubMed  Google Scholar 

  • Ballou CE, Vilkas E, Lederer E (1963) Structural studies on the myo-inositol phospholipids of Mycobacterium tuberculosis (var. bovis, strain BCG). J Biol Chem 238:69–76

    CAS  PubMed  Google Scholar 

  • Bannantine JP, Etienne G, Laval F, Stabel JR, Lemassu A, Daffé M, Bayles DO, Ganneau C, Bonhomme F, Branger M, Cochard T, Bay S, Biet F (2017) Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide. Mol Microbiol 105:525–539

    Article  CAS  PubMed  Google Scholar 

  • Bansal-Mutalik R, Nikaido H (2014) Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 111:4958–4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber M, Jolles P, Vilkas E, Lederer E (1965) Determination of amino acid sequences in oligopeptides by mass spectrometry I. The structure of fortuitine, an acyl nonapeptide methyl ester. Biochem Biophys Res Commun 18:469–473

    Article  CAS  PubMed  Google Scholar 

  • Barclay R, Ewing DF, Ratledge C (1985) Isolation, identification, and structural analysis of the mycobactins of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum and Mycobacterium paratuberculosis. J Bacteriol 164:896–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barksdale L, Kim KS (1977) Mycobacterium. Bacteriol Rev 41:217–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso S, Castelli R, Baggelaar MP, Geerdink D, ter Horst B, Casas-Arce E, Overkleeft HS, van der Marel GA, Codée JDC, Minnaard AJ (2012) Total synthesis of the triglycosyl phenolic glycolipid PGL-tb1 from Mycobacterium tuberculosis. Angew Chem Int Ed 51:11774–11777

    Article  CAS  Google Scholar 

  • Barroso S, Geerdink D, ter Horst B, Casas-Arce E, Minnaard AJ (2013) Total synthesis of the phenolic glycolipid mycoside B and the glycosylated p-hydroxybenzoic acid methyl ester HBAD-I, virulence markers of Mycobacterium tuberculosis. Euro J Org Chem:4642–4654

    Article  CAS  Google Scholar 

  • Barrow WW, Brennan PJ (1982) Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J Bacteriol 150:381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belisle JT, Brennan PJ (1989) Chemical basis of rough and smooth variation in mycobacteria. J Bacteriol 171:3465–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belisle JT, McNeil MR, Chatterjee D, Inamine JM, Brennan PJ (1993a) Expression of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of Mycobacterium avium. J Biol Chem 268:10510–10516

    CAS  PubMed  Google Scholar 

  • Belisle JT, Klaczkiewicz K, Brennan PJ, Jacobs WR Jr, Inamine JM (1993b) Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J Biol Chem 268:10517–10523

    CAS  PubMed  Google Scholar 

  • Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  CAS  PubMed  Google Scholar 

  • Benjak A, Avanzi C, Benito Y, Breysse F, Chartier C, Boschiroli M-L, Fourichon C, Michelet L, Pin D, Flandrois J-P, Bruyere P, Dumitrescu O, Cole ST, Lina G (2018) Highly reduced genome of the new species “Mycobacterium uberis”, the causative agent of nodular thelitis and tuberculoid scrotitis in livestock and a close relative of the leprosy bacilli. mSphere 3:e00405–e00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernut A, Herrmann JL, Kissa K, Dubremetz JF, Gaillard JL, Lutfalla G, Kremer L (2014) Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A 111:E943–E952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertozzi CR, Schelle MW (2008) Sulfated metabolites from Mycobacterium tuberculosis: sulfolipid-1 and beyond. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. ASM Press, Washington, DC, pp 291–304

    Google Scholar 

  • Besra GS, Mallet AI, Minnikin DE, Ridell M (1989) New members of the phthiocerol and phenolphthiocerol families from Mycobacterium marinum. J Chem Soc Chem Commun:451–452

    Google Scholar 

  • Besra GS, Minnikin DE, Sharif A, Stanford JL (1990a) Characteristic new members of the phthiocerol and phenolphthiocerol families from Mycobacterium ulcerans. FEMS Microbiol Lett 66:11–14

    Article  CAS  Google Scholar 

  • Besra GS, Minnikin DE, Rigouts L, Portaels F, Ridell M (1990b) A characteristic phenolic glycolipid antigen from Mycobacterium haemophilum. Lett Appl Microbiol 11:202–204

    Article  CAS  Google Scholar 

  • Besra GS, McNeil M, Minnikin DE, Portaels F, Ridell M, Brennan PJ (1991) Structural elucidation and antigenicity of a novel phenolic glycolipid antigen from Mycobacterium haemophilum. Biochemistry 30:7772–7777

    Article  CAS  PubMed  Google Scholar 

  • Besra GS, Bolton RC, McNeil MR, Ridell M, Simpson KE, Glushka J, van Halbeek H, Brennan PJ, Minnikin DE (1992a) Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis. Biochemistry 31:9832–9837

    Article  CAS  PubMed  Google Scholar 

  • Besra GS, McNeil MR, Brennan PJ (1992b) Characterisation of the specific antigenicity of Mycobacterium fortuitum. Biochemistry 31:6504–6509

    Article  CAS  PubMed  Google Scholar 

  • Besra GS, McNeil MR, Khoo KH, Dell A, Morris HR, Brennan PJ (1993a) Trehalose-containing lipooligosaccharides of Mycobacterium gordonae: presence of a mono-O-methyltetra-O-acyltrehalose “core” and branching in the oligosaccharide backbone. Biochemistry 32:12705–12714

    Article  CAS  PubMed  Google Scholar 

  • Besra GS, McNeil MR, Rivoire B, Khoo KH, Morris HR, Dell A, Brennan PJ (1993b) Further structural definition of a new family of glycopeptidolipids from Mycobacterium xenopi. Biochemistry 32:347–355

    Article  CAS  PubMed  Google Scholar 

  • Besra GS, Gurcha SS, Khoo KH, Morris HR, Dell A, Hamid ME, Minnikin DE, Goodfellow M, Brennan PJ (1994a) Characterization of the specific antigenicity of representatives of M. senegalense and related bacteria. Zentralbl Bakteriol 281:415–432

    Article  CAS  PubMed  Google Scholar 

  • Besra GS, Sievert T, Lee RE, Slayden RA, Brennan PJ, Takayama K (1994b) Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci U S A 91:12735–12739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhamidi S, Scherman MS, Jones V, Crick DC, Belisle JT, Brennan PJ, McNeil MR (2011) Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown M. tuberculosis. J Biol Chem 286:23168–23177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biet F, Bay S, Thibault VC, Euphrasie D, Grayon M, Ganneau C, Lanotte P, Daffé M, Gokhale R, Etienne G, Reyrat J-M (2008) Lipopentapeptide induces a strong host humoral response and distinguishes Mycobacterium avium subsp. paratuberculosis from M. avium subsp. avium. Vaccine 26:257–268

    Article  CAS  PubMed  Google Scholar 

  • Bloch H (1950) Studies on the virulence of tubercle bacilli. Isolation and biological properties of a constituent of virulent organisms. J Exp Med 91:197–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch H, Sorkin E, Erlenmeyer H (1953) A toxic lipid component of the tubercle bacillus (cord factor). I. Isolation from petroleum ether extracts of young bacterial cultures. Am Rev Tuberc 67:629–643

    CAS  PubMed  Google Scholar 

  • Bloch H, Defaye J, Lederer E, Noll H (1957) Constituents of a “toxic-lipid” obtained from Mycobacterium tuberculosis. Biochim Biophys Acta 23:312–321

    Article  CAS  PubMed  Google Scholar 

  • Boritsch EC, Frigui W, Cascioferro A, Malaga W, Etienne G, Laval F, Pawlik A, Le Chevalier F, Orgeur M, Ma L, Bouchier C, Stinear TP, Supply P, Majlessi L, Daffé M, Guilhot C, Brosch R (2016) pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat Microbiol 1:15019

    Article  CAS  PubMed  Google Scholar 

  • Bozic CM, McNeil M, Chatterjee D, Jardine I, Brennan PJ (1988) Further novel amido sugars within the glycopeptidolipid antigens of Mycobacterium avium. J Biol Chem 263:14984–14991

    CAS  PubMed  Google Scholar 

  • Brambilla C, Llorens-Fons M, Julián E, Noguera-Ortega E, Tomàs-Martínez C, Pérez-Trujillo M, Byrd TF, Alcaide F, Luquin M (2016) Mycobacteria clumping increase their capacity to damage macrophages. Front Microbiol 7:1562

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennan PJ (1981) Structures of the typing antigens of atypical mycobacteria: a brief review of present knowledge. Rev Infect Dis 3:905–913

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ (1984) New-found glycolipid antigens in mycobacteria. In: Lieve L, Schlessinger D (eds) Microbiology. American Society for Microbiology, Washington, DC, pp 366–375

    Google Scholar 

  • Brennan PJ, Ballou CE (1967) Biosynthesis of mannophosphoinositides by Mycobacterium phlei. The family of dimannophosphoinositides. J Biol Chem 242:3046–3056

    CAS  PubMed  Google Scholar 

  • Brennan PJ, Ballou CE (1968) Biosynthesis of mannophosphoinositides by Mycobacterium phlei. Enzymatic acylation of the dimannophosphoinositides. J Biol Chem 243:2975–2984

    CAS  PubMed  Google Scholar 

  • Brennan PJ, Goren MB (1979) Structural studies on the type-specific antigens and lipids of the Mycobacterium avium. Mycobacterium intracellulare. Mycobacterium scrofulaceum serocomplex. Mycobacterium intracellulare serotype 9. J Biol Chem 254:4205–4211

    CAS  PubMed  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ, Lehane DP, Thomas DW (1970) Acylglucoses of the corynebacteria and mycobacteria. Eur J Biochem 13:117–123

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ, Souhrada M, Ullom B, McClatchy JK, Goren MB (1978) Identification of atypical mycobacteria by thin-layer chromatography of their surface antigens. J Clin Microbiol 8:374–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan PJ, Aspinall GO, Nam Shin JE (1981a) Structure of the specific oligosaccharides from the glycopeptidolipid antigens of serovars in the Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum complex. J Biol Chem 256:6817–6822

    CAS  PubMed  Google Scholar 

  • Brennan PJ, Mayer H, Aspinall GO, Nam Shin JE (1981b) Structures of the glycopeptidolipid antigens from serovars in the Mycobacterium avium/Mycobacterium intracellulare/Mycobacterium scrofulaceum serocomplex. Eur J Biochem 115:7–15

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ, Heifets M, Ullom BP (1982) Thin-layer chromatography of lipid antigens as a means of identifying nontuberculous mycobacteria. J Clin Microbiol 15:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbaud S, Laval F, Lemassu A, Daffé M, Guilhot C, Chalut C (2016) Trehalose polyphleates are produced by a glycolipid biosynthetic pathway conserved across phylogenetically distant mycobacteria. Cell Chem Biol 23:278–289

    Article  CAS  PubMed  Google Scholar 

  • Burguière A, Hitchen PG, Dover LG, Kremer L, Ridell M, Alexander DC, Liu J, Morris HR, Minnikin DE, Dell A, Besra GS (2005) LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J Biol Chem 280:42124–42133

    Article  PubMed  Google Scholar 

  • Buter J, Yeh EA, Budavich OW, Damodaran K, Minnaard AJ, Curran DP (2013) Synthesis and analysis of the all-(S) side chain of phosphomycoketides: a test of NMR predictions for saturated oligoisoprenoid stereoisomers. J Org Chem 78:4913–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buter J, Heijnen D, Wan IC, Bickelhaupt FM, Young DC, Otten E, Moody DB, Minnaard AJ (2016) Stereoselective synthesis of 1-tuberculosinyl adenosine; a virulence factor of Mycobacterium tuberculosis. J Org Chem 81:6686–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camphausen RT, Jones RL, Brennan PJ (1985) A glycolipid antigen specific to Mycobacterium paratuberculosis: structure and antigenicity. Proc Natl Acad Sci U S A 82:3068–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camphausen RT, McNeil M, Jardine I, Brennan PJ (1987) Location of acyl groups of trehalose-containing lipooligosaccharides of mycobacteria. J Bacteriol 169:5473–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cason J, Lange GL, Urscheler H-R (1964) Isolation of 2,4-dimethyldocosanoic acid from the lipids of the tubercle bacillus. Tetrahedron 20:1955–1961

    Article  CAS  Google Scholar 

  • Catherinot E, Clarissou J, Etienne G, Ripoll F, Emile JF, Daffé M, Perronne C, Soudais C, Gaillard JL, Rottman M (2007) Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect Immun 75:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Chamoiseau G (1979) Etiology of farcy in African bovines: nomenclature of the causal organisms Mycobacterium farcinogenes (Chamoiseau) and Mycobacterium senegalense (Chamoiseau) comb. nov. Int J Syst Bacteriol 29:407–410

    Article  Google Scholar 

  • Chanley JD, Polgar N (1950) Dextrorotatory acids of tubercle bacilli lipids. Nature 166:693–694

    Article  CAS  PubMed  Google Scholar 

  • Chany AC, Tresse C, Casarotto V, Blanchard N (2013) History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 30:1527–1567

    Article  CAS  PubMed  Google Scholar 

  • Chargaff E, Lederer E (1935) Sur les pigments carotenoides de deux bactéries acido-resistantes. Ann Inst Pasteur 54:383–388

    CAS  Google Scholar 

  • Chatterjee D, Khoo KH (1998) Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8:113–120

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee D, Khoo KH (2001) The surface glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci 58:2018–2042

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee D, Aspinall GO, Brennan PJ (1987) The presence of novel glucuronic acid-containing, type-specific glycolipid antigens within Mycobacterium spp. Revision of earlier structures. J Biol Chem 262:3528–3533

    CAS  PubMed  Google Scholar 

  • Chatterjee D, Bozic C, Aspinall GO, Brennan PJ (1988) Glucuronic acid and branched sugar-containing glycolipid antigens of Mycobacterium avium. J Biol Chem 263:4092–4097

    CAS  PubMed  Google Scholar 

  • Chatterjee D, Bozic CM, Knisley C, Cho SN, Brennan PJ (1989) Phenolic glycolipids of Mycobacterium bovis: new structures and synthesis of a corresponding seroreactive neoglycoprotein. Infect Immun 57:322–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee D, Hunter SW, McNeil M, Brennan PJ (1992) Lipoarabinomannan. Multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem 267:6228–6233

    CAS  PubMed  Google Scholar 

  • Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, Tropis M, Daffé M (2017) Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep 7:12807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho SN, Yanagihara DL, Hunter SW, Gelber RH, Brennan PJ (1983) Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect Immun 41:1077–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun J, Kang SO, Hah YC, Goodfellow M (1996) Phylogeny of mycolic acid-containing actinomycetes. J Ind Microbiol Biotechnol 17:205–212

    Article  CAS  Google Scholar 

  • Claeys TA, Robinson RT (2018) The many lives of nontuberculous mycobacteria. J Bacteriol 200:e00739–e00717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles L, Polgar N (1968) The mycolipanolic acids. J Chem Soc:1541–1544

    Google Scholar 

  • Coles L, Polgar N (1969) The mycolipodienic acids. J Chem Soc:23–27

    Google Scholar 

  • Collins FM, Cunningham DS (1981) Systemic Mycobacterium kansasii infection and regulation of the alloantigenic response. Infect Immun 32:614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE, Alderson G (1985) Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58:77–86

    Article  CAS  PubMed  Google Scholar 

  • Converse SE, Mougous JD, Leavell MD, Leary JA, Bertozzi CR, Cox JS (2003) MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci 100:6121–6126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daffé M (1991) Further stereochemical studies of phthiocerol and phenolphthiocerol in mycobacteria. Res Microbiol 142:405–410

    Article  PubMed  Google Scholar 

  • Daffé M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    Article  PubMed  Google Scholar 

  • Daffé M, Lanéelle M-A (1988) Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria. J Gen Microbiol 134:2049–2055

    PubMed  Google Scholar 

  • Daffé M, Lanéelle M-A (1989) Diglycosyl phenol phthiocerol diester of Mycobacterium leprae. Biochim Biophys Acta 1002:333–337

    Article  PubMed  Google Scholar 

  • Daffé M, Lemassu A (2000) Glycobiology of the mycobacterial surface. Structures and biological activities of the cell envelope glycoconjugates. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic/Plenum, New York, pp 225–273

    Google Scholar 

  • Daffé M, Reyrat J-M (eds) (2008) The mycobacterial cell envelope. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Daffé M, Zuber B (2014) The fascinating coat surrounding mycobacteria. In: Remaut H, Fronzes R (eds) Bacterial membranes: structural and molecular biology. Caister Academic Press, Cambridge, UK, pp 179–192

    Google Scholar 

  • Daffé M, Lanéelle M-A, Promé D, Asselineau C (1981a) Etude des lipides de Mycobacterium gordonae comparativement à ceux de M. leprae et de quelques mycobactéries scotochromogènes. Ann Microbiol 132B:3–12

    Google Scholar 

  • Daffé M, Lanéelle M-A, Puzo G, Asselineau C (1981b) Acide mycolique epoxydique: un nouveau type d’acide mycolique. Tetrahedron Lett 22:4515–4516

    Article  Google Scholar 

  • Daffé M, Lanéelle M-A, Asselineau C, Levy-Frébault V, David H (1983) Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis. Ann Microbiol (Paris) 134B:241–256

    Google Scholar 

  • Daffé M, Lanéelle M-A, Roussel J, Asselineau C (1984) Specific lipids from Mycobacterium ulcerans. Ann Microbiol (Paris) 135A:191–201

    Google Scholar 

  • Daffé M, Lacave C, Lanéelle MA, Lanéelle G (1987) Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium tuberculosis (strain Canetti). Eur J Biochem 167:155–160

    Article  PubMed  Google Scholar 

  • Daffé M, Lacave C, Lanéelle M-A, Gillois M, Lanéelle G (1988a) Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur J Biochem 172:579–584

    Article  PubMed  Google Scholar 

  • Daffé M, Lanéelle MA, Lacave C, Lanéelle G (1988b) Monoglycosyldiacylphenol-phthiocerol of Mycobacterium tuberculosis and Mycobacterium bovis. Biochim Biophys Acta 958:443–449

    Article  PubMed  Google Scholar 

  • Daffé M, Lanéelle M-A, Lacave C (1991a) Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. Res Microbiol 142:397–403

    Article  PubMed  Google Scholar 

  • Daffé M, McNeil M, Brennan PJ (1991b) Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis. Biochemistry 30:378–388

    Article  PubMed  Google Scholar 

  • Daffé M, Varnerot A, Lévy-Frébault VV (1992) The phenolic mycoside of Mycobacterium ulcerans: structure and taxonomic implications. J Gen Microbiol 138:131–137

    Article  PubMed  Google Scholar 

  • Daffé M, Crick DC, Jackson M (2014) Genetics of capsular polysaccharides and cell envelope (glyco)lipids. Microbiol Spectr 2(4):MGM2-0021-2013

    PubMed  Google Scholar 

  • Daffé M, Quémard A, Marrakchi H (2017) Mycolic acids: from chemistry to biology. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 176–211

    Google Scholar 

  • David HL (1974) Carotenoid pigments of Mycobacterium kansasii. Appl Microbiol 28:696–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De P, McNeil M, Xia M, Boot CM, Hesser DC, Denef K, Rithner C, Sours T, Dobos KM, Hoft D, Chatterjee D (2018) Structural determinants in a glucose-containing lipopolysaccharide from Mycobacterium tuberculosis critical for inducing a subset of protective T cells. J Biol Chem 293:9706–9717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demarteau-Ginsburg H, Lederer E (1963) Sur la structure chimique du Mycoside B. Biochim Biophys Acta 70:442–451

    Article  CAS  PubMed  Google Scholar 

  • Demarteau-Ginsburg H, Lederer E, Ryhage R, Ställberg-Stenhagen S, Stenhagen E (1959) Structure of phthiocerol. Nature 183:117–119

    Article  Google Scholar 

  • Denner JC, Tsang AY, Chatterjee D, Brennan PJ (1992) Comprehensive approach to identification of serovars of Mycobacterium avium complex. J Clin Microbiol 30:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshayes C, Laval F, Montrozier H, Daffé M, Etienne G, Reyrat JM (2005) A glycosyltransferase involved in biosynthesis of triglycosylated glycopeptidolipids in Mycobacterium smegmatis: impact on surface properties. J Bacteriol 187:7283–7291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson G, Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M, Ridell M, Magnusson M (1985) Systematic analyses of complex mycobacterial lipids. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 237–265

    Google Scholar 

  • Dobson G, Minnikin DE, Besra GS, Mallet AI, Magnusson M (1990) Characterisation of phenolic glycolipids from Mycobacterium marinum. Biochim Biophys Acta 1042:176–181

    Article  CAS  PubMed  Google Scholar 

  • Domenech P, Reed MB, Dowd CS, Manca C, Kaplan G, Barry CE (2004) The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 279:21257–21265

    Article  CAS  PubMed  Google Scholar 

  • Donoghue HD, Taylor GM, Mendum TA, Stewart GR, Rigouts L, Lee OY-C, Wu HHT, Besra GS, Minnikin DE (2018) The distribution and origins of ancient leprosy, Chapter 2. In: Ribòn W (ed) Hansen’s disease – the forgotten and neglected disease. Intech, Rijeka, pp 1–31

    Google Scholar 

  • Draper P, Daffé M (2005) The cell envelope of Mycobacterium tuberculosis with special reference to the capsule and outer permeability barrier. In: Cole ST, Eisenach KD, McMurray DN, Jacobs WR (eds) Tuberculosis and the tubercle bacillus. American Society for Microbiology, Washington, DC, pp 287–305

    Google Scholar 

  • Draper P, Dobson G, Minnikin DE, Minnikin SM (1982) The mycolic acids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. Ann Microbiol (Inst Pasteur) 133B:39–47

    Google Scholar 

  • Draper P, Payne SN, Dobson G, Minnikin DE (1983) Isolation of a characteristic phthiocerol dimycocerosate from Mycobacterium leprae. J Gen Microbiol 129:859–863

    CAS  PubMed  Google Scholar 

  • Drayson FK, Lewis JW, Polgar N (1958) Experiments relating to phthiocerol. Part III. Degradative studies of a C11 oxidation product of phthiocerol. J Chem Soc:430–433

    Google Scholar 

  • Dyer BS, Jones JD, Ainge GD, Denis M, Larsen DS, Painter GF (2007) Synthesis and structure of phosphatidylinositol dimannoside. J Org Chem 72:3282–3288

    Article  CAS  PubMed  Google Scholar 

  • Eckstein TM, Chandrasekaran S, Mahapatra S, McNeil MR, Chatterjee D, Rithner CD, Ryan PW, Belisle JT, Inamine JM (2006) A major cell wall lipopeptide of Mycobacterium avium subspecies paratuberculosis. J Biol Chem 281:5209–5215

    Article  CAS  PubMed  Google Scholar 

  • Elass-Rochard E, Rombouts Y, Coddeville B, Maes E, Blervaque R, Hot D, Kremer L, Guérardel Y (2012) Structural determination and Toll-like receptor 2-dependent proinflammatory activity of dimycolyl-diarabino-glycerol from Mycobacterium marinum. J Biol Chem 287:34432–34444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etémadi AH (1967a) Les acides mycoliques structure, biogenèse et intérêt phylogenetique. Expos Annu Biochim Med 28:77–109

    PubMed  Google Scholar 

  • Etémadi AH (1967b) Structural and biogenetic correlations of mycolic acids in relation to the phylogenesis of various genera of Actinomycetales. Bull Soc Chim Biol (Paris) 49:695–706

    Google Scholar 

  • Etémadi AH, Convit J (1974) Mycolic acids from “noncultivable” mycobacteria. Infect Immun 10:236–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Etémadi AH, Miquel AM, Lederer E, Barber M (1964) Sur la structure des acides α-mycoliques de Mycobacterium kansasii. Spectrométrie de masse à haute resolution pour des masses de 750 à 1200. Bull Soc Chim Fr:3274–3276

    Google Scholar 

  • Falkinham JO (2003) Mycobacterial aerosols and respiratory disease. Emerg Infect Dis 9:763–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Falkinham JO (2015) Environmental sources of nontuberculous mycobacteria. Clin Chest Med 36:35–41

    Article  PubMed  Google Scholar 

  • Fekete A, Gyergyói K, Kövér KE, Bajza I, Lipták A (2006) Preparation of the pentasaccharide hapten of the GPL of Mycobacterium avium serovar 19 by achieving the glycosylation of a tertiary hydroxyl group. Carbohydr Res 341:1312–1321

    Article  CAS  PubMed  Google Scholar 

  • Flentie KN, Stallings CL, Turk J, Minnaard AJ, Hsu FF (2016) Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS. J Lipid Res 57:142–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg LS, Dell A, Walton DJ, Ballou CE (1982) Revised structure for the 6-O- methylglucose polysaccharide of Mycobacterium smegmatis. J Biol Chem 257:3555–3563

    CAS  PubMed  Google Scholar 

  • Fournié JJ, Rivière M, Puzo G (1987a) Structural elucidation of the major phenolic glycolipid from Mycobacterium kansasii. I. Evidence for tetrasaccharide structure of the oligosaccharide moiety. J Biol Chem 262:3174–3179

    PubMed  Google Scholar 

  • Fournié JJ, Rivière M, Papa F, Puzo G (1987b) Structural elucidation of the major phenolic glycolipid from Mycobacterium kansasii. II. Presence of a novel dideoxyhexose. J Biol Chem 262:3180–3184

    PubMed  Google Scholar 

  • Fournié JJ, Rivière M, Puzo G (1987c) Absolute configuration of the unique 2,6-dideoxy-4-O-methyl-arabino-hexopyranose of the major phenolic glycolipid antigen from Mycobacterium kansasii. Eur J Biochem 168:181–183

    Article  PubMed  Google Scholar 

  • Francis J, Madinaveitia J, Macturk HM, Snow GA (1949) Isolation from acid-fast bacteria of a growth-factor for Mycobacterium johnei and of a precursor of phthiocol. Nature 163:365

    Article  CAS  PubMed  Google Scholar 

  • Francis J, Macturk HM, Madinaveitia J, Snow GA (1953) Mycobactin, a growth factor for Mycobacterium johnei. I. Isolation from Mycobacterium phlei. Biochem J 55:596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankfater C, Abramovitch RB, Purdy GE, Turk J, Legentil L, Lemiègre L, Hsu F-F (2019) Multiple-stage precursor ion separation and high resolution mass spectrometry toward structural characterization of 2,3-diacyltrehalose family from Mycobacterium tuberculosis. Separations 6:4

    Article  CAS  Google Scholar 

  • Fregnan GB, Smith DW, Randall HM (1961) Biological and chemical studies on mycobacteria. Relationship of colony morphology to mycoside content for Mycobacterium kansasii and Mycobacterium fortuitum. J Bacteriol 82:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fregnan GB, Smith DW, Randall HM (1962) A mutant of a scotochromogenic Mycobacterium detected by colony morphology and lipid studies. J Bacteriol 83:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Naka T, Doi T, Yano I (2005a) Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:1443–1452

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Naka T, McNeil MR, Yano I (2005b) Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:3403–3416

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Hunter SW, Cho SN, Aspinall GO, Brennan PJ (1984) Chemical synthesis and serology of disaccharides and trisaccharides of phenolic glycolipid antigens from the leprosy bacillus and preparation of a disaccharide protein conjugate for serodiagnosis of leprosy. Infect Immun 43:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara N, Nakata N, Maeda S, Naka T, Doe M, Yano I, Kobayashi K (2007) Structural characterization of a specific glycopeptidolipid containing a novel N-acyl-deoxy sugar from Mycobacterium intracellulare serotype 7 and genetic analysis of its glycosylation pathway. J Bacteriol 189:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara N, Nakata N, Naka T, Yano I, Doe M, Chatterjee D, McNeil M, Brennan PJ, Kobayashi K, Makino M, Matsumoto S, Ogura H, Maeda S (2008) Structural analysis and biosynthesis gene cluster of an antigenic glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol 190:3613–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale PH, Arison BH, Trenner NR, Page AC Jr, Folkers K (1963) Characterization of vitamin K9(H2) from Mycobacterium phlei. Biochemistry 2:200–203

    Article  CAS  PubMed  Google Scholar 

  • Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148:2951–2958

    Article  CAS  PubMed  Google Scholar 

  • Gastambide-Odier M (1973) Mycoside variants characterised by glycosidic residues substituted with acyl chains. Mycolic nature of mycoside G. Eur J Biochem 33:81–86

    Article  CAS  PubMed  Google Scholar 

  • Gastambide-Odier M, Sarda P (1970) Studies on the structure and biosynthesis of specific glycolipids isolated from mycobacteria: mycosides A and B. Pneumonologie 142:241–255

    Article  CAS  PubMed  Google Scholar 

  • Gastambide-Odier M, Villé C (1970) Deoxysugars isolated from mycoside A: identification of acetyl derivatives of methyl 2,4-di-O-methyl-rhamnopyranoside, 2-O-methyl-rhamofuranoside, 3-O-methyl-rhamnofuranoside, 2-O-methyl-fucopyranoside and 3-O-methyl-fucofuranoside. Bull Soc Chim Biol (Paris) 52:679–693

    CAS  Google Scholar 

  • Gastambide-Odier M, Delaumeny JM, Lederer E (1964) Mise en evidence de cycles propanique dans divers acides mycoliques de souches humaines et bovines de Mycobacterium tuberculosis. C R Hebd Seances Acad Sci 259:3404–3407

    CAS  PubMed  Google Scholar 

  • Gastambide-Odier M, Lederer E, Sarda P (1965) Structure des aglycones des mycosides A et B. Tetrahedron Lett:3135–3143

    Article  Google Scholar 

  • Gautier N, López-Marín LM, Lanéelle M-A, Daffé M (1992) Structure of mycoside F, a family of trehalose-containing glycolipids of Mycobacterium fortuitum. FEMS Microbiol Lett 98:81–87

    Article  CAS  Google Scholar 

  • Geerdink D, Minnaard AJ (2014) Total synthesis of sulfolipid-1. Chem Commun 50:2286–2288

    Article  CAS  Google Scholar 

  • Geerdink D, ter Horst B, Lepore M, Mori L, Puzo G, Hirsch AKH, Gilleron M, de Libero G, Minnaard AJ (2013) Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chem Sci 4:709–716

    Article  CAS  Google Scholar 

  • Gehringer M, Altmann KH (2017) The chemistry and biology of mycolactones. Beilstein J Org Chem 13:1596–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George KM, Barker LP, Welty DM, Small PLC (1998) Partial purification and characterization of biological effects of a lipid toxin produced by Mycobacterium ulcerans. Infect Immun 66:587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George KM, Chatterjee D, Gunawardana G, Welty DM, Hayman J, Lee RE, Small PL (1999) Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283:854–857

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Puzo G (1995) Lipooligosaccharidic antigens from Mycobacterium kansasii and Mycobacterium gastri. Glycoconj J 12:298–308

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Venisse A, Rivière M, Servin P, Puzo G (1990a) Carbohydrate epitope structural elucidation by 1H-NMR spectroscopy of a new Mycobacterium kansasii phenolic glycolipid antigen. Eur J Biochem 193:449–457

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Venisse A, Fournié JJ, Rivière M, Dupont MA, Gas N, Puzo G (1990b) Structural and immunological properties of the phenolic glycolipids from Mycobacterium gastri and Mycobacterium kansasii. Eur J Biochem 189:167–173

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Vercauteren J, Puzo G (1993) Lipooligosaccharidic antigen containing a novel C4-branched 3,6-dideoxy-alpha-hexopyranose typifies Mycobacterium gastri. J Biol Chem 268:3168–3179

    CAS  PubMed  Google Scholar 

  • Gilleron M, Vercauteren J, Puzo G (1994) Lipo-oligosaccharidic antigen from Mycobacterium gastri. Complete structure of a novel C4-branched 3,6-dideoxy-α-xylo-hexopyranose. Biochemistry 33:1930–1937

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G (2001) Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem 276:34896–34904

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Quesniaux VFJ, Puzo G (2003) Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis Bacillus Calmette Guérin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem 278:29880–29889

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Böhmer G, Prandi J, Mori L, Puzo G, De Libero G (2004) Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilleron M, Lindner B, Puzo G (2006) MS/MS approach for characterization of the fatty acid distribution on mycobacterial phosphatidyl-myo-inositol mannosides. Anal Chem 78:8543–8548

    Article  CAS  PubMed  Google Scholar 

  • Gilleron M, Jackson M, Nigou J, Puzo G (2008) Structure, biosynthesis and activities of the phosphatidyl-myo-inositol-based lipoglycans. In: Daffé M, Reyrat J-M (eds) The mycobacterial cell envelope. American Society for Microbiology, Washington, DC, pp 75–105

    Google Scholar 

  • Ginger LG, Anderson RJ (1945) The chemistry of the lipids of tubercle bacilli. LXXII. Fatty acids occurring in the wax prepared from tuberculin residues. Concerning mycocerosic acid. J Biol Chem 157:203–211

    CAS  Google Scholar 

  • Gobin J, Moore CH, Reeve JR Jr, Wong DK, Gibson BW, Horwitz MA (1995) Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc Natl Acad Sci U S A 92:5189–5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin TW (1972) Carotenoids in fungi and non-photosynthetic bacteria. Prog Ind Microbiol 11:29–88

    CAS  PubMed  Google Scholar 

  • Goren MB (1970a) Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim Biophys Acta 210:116–126

    Article  CAS  PubMed  Google Scholar 

  • Goren MB (1970b) Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. II. Structural studies. Biochim Biophys Acta 210:127–138

    Article  CAS  PubMed  Google Scholar 

  • Goren MB (1972) Mycobacterial lipids: selected topics. Bacteriol Rev 36:33–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goren MB (1975) Cord factor revisited: a tribute to the late Dr Hubert Bloch. Tubercle 56:65–71

    Article  CAS  PubMed  Google Scholar 

  • Goren MB (1984) Biosynthesis and structures of phospholipids and sulfatides. In: Kubica GP, Wayne LG (eds) The mycobacteria-a source book. Marcel Dekker, New York, pp 379–415

    Google Scholar 

  • Goren MB (1990) Mycobacterial fatty acid esters of sugars and sulfosugars. In: Hanahan DJ (ed) Handbook of lipid research, vol 6. Plenum Press, New York, pp 363–461

    Google Scholar 

  • Goren MB, Brennan PJ (1979) Mycobacterial lipids: chemistry and biologic activities. In: Youmans GP (ed) Tuberculosis. WB Saunders, Philadelphia, pp 63–193

    Google Scholar 

  • Goren MB, Brokl O, Das BC, Lederer E (1971) Sulfolipid of Mycobacterium tuberculosis, strain H37Rv. Nature of the acyl substituents. Biochemistry 10:72–81

    Article  CAS  PubMed  Google Scholar 

  • Goren MB, McClatchy KJ, Martens B, Brokl O (1972) Mycosides C: behavior as receptor site substance for mycobacteriophage D4. J Virol 9:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goren MB, Brokl O, Schaefer WB (1974) Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun 9:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goren MB, Brokl O, Das BC (1976) Sulfatides of Mycobacterium tuberculosis: the structure of the principal sulfatide (SL-I). Biochemistry 15:2728–2735

    Article  CAS  PubMed  Google Scholar 

  • Gray GR, Ballou CE (1971) Isolation and characterization of a polysaccharide containing 3-O-methyl-D-mannose from Mycobacterium phlei. J Biol Chem 246:6835–6842

    CAS  PubMed  Google Scholar 

  • Gray GR, Ballou CE (1972) The 6-O-methylglucose-containing lipopolysaccharides of Mycobacterium phlei. Locations of the acyl groups. J Biol Chem 247:8129–8135

    CAS  PubMed  Google Scholar 

  • Guerin ME, Korduláková J, Alzari PM, Brennan PJ, Jackson M (2010) Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J Biol Chem 285:33577–33583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawardana G, Chatterjee D, George KM, Brennan PJ, Whittern D, Small PLC (1999) Characterization of novel macrolide toxins, mycolactones a and b, from a human pathogen, Mycobacterium ulcerans. J Am Chem Soc 121:6092–6093

    Article  CAS  Google Scholar 

  • Gutiérrez AV, Viljoen A, Ghigo E, Herrmann J-L, Kremer L (2018) Glycopeptidolipids, a double-edged sword of the Mycobacterium abscessus complex. Front Microbiol 9:1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamid MEA, Fraser JL, Wallace PA, Besra GS, Goodfellow M, Minnikin DE, Ridell M (1993) Antigenic glycolipids of Mycobacterium fortuitum based on trehalose acylated with 2-methyloctadec-2-enoic acid. Lett Appl Microbiol 16:132–135

    Article  CAS  Google Scholar 

  • Han XY, Seo YH, Sizer KC, Schoberle T, May GS, Spencer JS, Li W, Nair RG (2008) A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol 130:856–864

    Article  CAS  PubMed  Google Scholar 

  • Hande SM, Kazumi Y, Lai WG, Jackson KL, Maeda S, Kishi Y (2012) Synthesis and structure of two new mycolactones isolated from M. ulcerans subsp. shinshuense. Org Lett 14:4618–4621

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg S, Liaaen Jensen S (1967) Bacterial carotenoids XX. The carotenoids of Mycobacterium phlei strain Vera. 2. The structures of the phlei-xanthophylls-two novel tertiary glucosides. Acta Chem Scand 21:15–41

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holsclaw CM, Sogi KM, Gilmore SA, Schelle MW, Leavell MD, Bertozzi CR, Leary JA (2008) Structural characterization of a novel sulfated menaquinone produced by stf3 from Mycobacterium tuberculosis. ACS Chem Biol 3:619–624

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Gates PJ, Staunton J, Stinear T, Cole ST, Leadlay PF, Spencer JB (2003) Identification using LC-MSn of co-metabolites in the biosynthesis of the polyketide toxin mycolactone by a clinical isolate of Mycobacterium ulcerans. Chem Commun:2822–2823

    Google Scholar 

  • Hong H, Spencer JB, Porter JL, Leadlay PF, Stinear T (2005a) A novel mycolactone from a clinical isolate of Mycobacterium ulcerans provides evidence for additional toxin heterogeneity as a result of specific changes in the modular polyketide synthase. Chembiochem 6:643–648

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Stinear T, Skelton P, Spencer JB, Leadlay PF (2005b) Structure elucidation of a novel family of mycolactone toxins from the frog pathogen Mycobacterium sp. MU128FXT by mass spectrometry. Chem Commun:4306–4308

    Google Scholar 

  • Horwitz LD, Horwitz MA (2014) The exochelins of pathogenic mycobacteria: unique, highly potent, lipid- and water-soluble hexadentate iron chelators with multiple potential therapeutic uses. Antioxid Redox Signal 21:2246–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino T, Nakano C, Ootsuka T, Shinohara Y, Hara T (2011) Substrate specificity of Rv3378c, an enzyme from Mycobacterium tuberculosis and the inhibitory activity of the bicyclic diterpenoids against macrophage phagocytosis. Org Biomol Chem 9:2156–2165

    Article  CAS  PubMed  Google Scholar 

  • Howard ST, Rhoades E, Recht J, Pang X, Alsup A, Kolter R, Lyons CR, Byrd TF (2006) Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 152:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Hsu FF, Turk J, Owens RM, Rhoades ER, Russell DG (2007a) Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Guérin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization I. PIMs and lyso-PIMs. J Am Soc Mass Spectrom 18:466–478

    Article  CAS  PubMed  Google Scholar 

  • Hsu FF, Turk J, Owens RM, Rhoades ER, Russell DG (2007b) Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gúerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization II. Monoacyl- and diacyl-PIMs. J Am Soc Mass Spectrom 18:479–492

    Article  CAS  PubMed  Google Scholar 

  • Huet SG, Constant C, Malaga W, Lanéelle M-A, Kremer K, van Soolingen D, Daffé M, Guilhot C (2009) A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis. Identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J Biol Chem 284:27101–27113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SW, Brennan PJ (1981) A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J Bacteriol 147:728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SW, Brennan PJ (1983) Further specific extracellular phenolic glycolipid antigens and a related diacylphthiocerol from Mycobacterium leprae. J Biol Chem 258:7556–7562

    CAS  PubMed  Google Scholar 

  • Hunter SW, Brennan PJ (1990) Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem 265:9272–9279

    CAS  PubMed  Google Scholar 

  • Hunter SW, Fujiwara T, Brennan PJ (1982) Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J Biol Chem 257:15072–15078

    CAS  PubMed  Google Scholar 

  • Hunter SW, Murphy RC, Clay K, Goren MB, Brennan PJ (1983) Trehalose-containing lipooligosaccharides. A new class of species-specific antigens from Mycobacterium. J Biol Chem 258:10481–19487

    CAS  PubMed  Google Scholar 

  • Hunter SW, Fujiwara T, Murphy RC, Brennan PJ (1984) N-Acylkansosamine. A novel N- acylamino sugar from the trehalose-containing lipooligosaccharide antigens of Mycobacterium kansasii. J Biol Chem 259:9729–9734

    CAS  PubMed  Google Scholar 

  • Hunter SW, Jardine I, Yanagihara DL, Brennan PJ (1985) Trehalose-containing lipooligosaccharides from mycobacteria: structures of the oligosaccharide segments and recognition of a unique N-acylkanosamine-containing epitope. Biochemistry 24:2798–2805

    Article  CAS  PubMed  Google Scholar 

  • Hunter SW, McNeil MR, Brennan PJ (1986a) Diglycosyl diacylglycerol of Mycobacterium tuberculosis. J Bacteriol 168:917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SW, Gaylord H, Brennan PJ (1986b) Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem 261:12345–12351

    CAS  PubMed  Google Scholar 

  • Hunter SW, Barr VL, McNeil M, Jardine I, Brennan PJ (1988) Trehalose-containing lipooligosaccharide antigens of Mycobacterium sp.: presence of a mono-O-methyl-tri-O- acyltrehalose “core”. Biochemistry 27:1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama S, Shimokata K, Tsukamura M (1988) Relationship between mycobacterial species and their carotenoid pigments. Microbiol Immunol 32:473–479

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Suzuki T (1974) Fructose-lipids of Arthrobacter, corynebacteria, Nocardia and mycobacteria grown on fructose. Agric Biol Chem 38:1443–1449

    Article  CAS  Google Scholar 

  • Jackson M (2014) The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med 4(10):a021105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson M, Brennan PJ (2009) Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 284:1949–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson M, Stadthagen G, Gicquel B (2007) Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87:78–86

    Article  CAS  PubMed  Google Scholar 

  • Jankute M, Nataraj V, Lee OY-C, Wu HHT, Ridell M, Garton NJ, Barer MR, Minnikin DE, Bhatt A, Besra GS (2017) The role of hydrophobicity in tuberculosis evolution and pathogenicity. Sci Rep 7(1):1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jardine I, Scanlan G, McNeil M, Brennan PJ (1989) Plasma desorption mass spectrometric analysis of mycobacterial glycolipids. Anal Chem 61:416–422

    Article  CAS  PubMed  Google Scholar 

  • Jarnagin JL, Brennan PJ, Harris SK (1983) Rapid identification of Mycobacterium bovis by a thin-layer chromatographic technique. Am J Vet Res 44:1920–1922

    CAS  PubMed  Google Scholar 

  • Jenkins PA (1981) Lipid analysis for the identification of mycobacteria: an appraisal. Rev Infect Dis 3:862–866

    Article  CAS  PubMed  Google Scholar 

  • Jenkins PA (1985) Mycobacterium malmoense. Tubercle 66:193–195

    Article  CAS  PubMed  Google Scholar 

  • Jenkins PA, Marks J (1973) Thin-layer chromatography of mycobacterial lipids as an aid to classification. Ann Soc Belg Méd Trop 53:331–337

    CAS  PubMed  Google Scholar 

  • Jenkins PA, Marks J, Schaefer WB (1971) Lipid chromatography and seroagglutination in the classification of rapidly growing mycobacteria. Am Rev Respir Dis 103:179–187

    CAS  PubMed  Google Scholar 

  • Jenkins PA, Marks J, Schaefer WB (1972) Thin-layer chromatography of mycobacterial lipids as an aid to classification: the scotochromogenic mycobacteria, including Mycobacterium scrofulaceum, M. xenopi, M. aquae, M. gordonae, M. flavescens. Tubercle 53:118–127

    Article  CAS  PubMed  Google Scholar 

  • Johnson MG, Stout JE (2015) Twenty-eight cases of Mycobacterium marinum infection: retrospective case series and literature review. Infection 43:655–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston JC, Chiang L, Elwood K (2017) Mycobacterium kansasii. Microbiol Spectr 5(1):TNMI7-0011-2016

    Google Scholar 

  • Jolles P, Bigler F, Gendre T, Lederer E (1961) On the chemical structure of “mycoside C”, a peptide-glycolipid from Mycobacterium avium. Bull Soc Chim Biol (Paris) 43:177–192

    CAS  Google Scholar 

  • Judd TC, Bischoff A, Kishi Y, Adusumilli S, Small PL (2004) Structure determination of mycolactone C via total synthesis. Org Lett 6:4901–4904

    Article  CAS  PubMed  Google Scholar 

  • Julián E, Roldán M, Sánchez-Chardi A, Astola O, Agustí G, Luquin M (2010) Microscopic cords, a virulence-related characteristic of Mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J Bacteriol 192:1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Fujita Y, Maeda Y, Nakata N, Izumi S, Yano I, Makino M (2007) Identification of trehalose dimycolate (cord factor) in Mycobacterium leprae. FEBS Lett 581:3345–3335

    Article  CAS  PubMed  Google Scholar 

  • Katila ML, Brander E, Jantzen E, Huttunen R, Linkosalo L (1991) Chemotypes of Mycobacterium malmoense based on glycolipid profiles. J Clin Microbiol 29:355–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller J, Ballou CE (1968) The 6-O-methylglucose-containing lipopolysaccharide of Mycobacterium phlei. Identification of the lipid components. J Biol Chem 243:2905–2910

    CAS  PubMed  Google Scholar 

  • Khan AA, Stocker BL, Timmer MS (2012) Trehalose glycolipids-synthesis and biological activities. Carbohydr Res 356:25–36

    Article  CAS  PubMed  Google Scholar 

  • Khoo KH, Chatterjee D, Dell A, Morris HR, Brennan PJ, Draper P (1996) Novel O-methylated terminal glucuronic acid characterizes the polar glycopeptidolipids of “Mycobacterium habana” strain TMC 5135. J Biol Chem 271:12333–12342

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Kishi Y (2008) Total synthesis and stereochemistry of mycolactone F. J Am Chem Soc 130:1842–1844

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Jackson KL, Kishi Y, Williamson HR, Mosi L, Small PL (2009) Heterogeneity in the stereochemistry of mycolactones isolated from M. marinum: toxins produced by fresh vs. saltwater fish pathogens. Chem Commun:7402–7404

    Google Scholar 

  • Kishi Y (2011) Chemistry of mycolactones, the causative toxins of Buruli ulcer. Proc Natl Acad Sci U S A 108:6703–6708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koza G, Theunissen C, Al Dulayymi JR, Baird MS (2009) The synthesis of single enantiomers of mycobacterial ketomycolic acids containing cis-cyclopropanes. Tetrahedron 65:10214–10229

    Article  CAS  Google Scholar 

  • Krembel J, Etémadi AH (1966) Sur la structure d’un nouveau type d’acides mycoliques de Mycobacterium smegmatis. Tetrahedron 22:1113–1119

    Article  CAS  Google Scholar 

  • Kremer L, Besra GS (2005) A waxy tale, by Mycobacterium tuberculosis. In: Cole ST, Eisenach KD, McMurray DN, Jacobs WR (eds) Tuberculosis and the tubercle bacillus. American Society for Microbiology, Washington, DC, pp 287–305

    Google Scholar 

  • Kremer L, de Chastellier C, Dobson G, Gibson KJ, Bifani P, Balor S, Gorvel J-P, Locht C, Minnikin DE, Besra GS (2005) Identification and structural characterization of an unusual mycobacterial monomeromycoloyl diacylglycerol. Mol Microbiol 57:1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N, Malaga W, Constant P, Caws M, Tran TH, Salmons J, Nguyen TN, Nguyen DB, Daffé M, Young DB, Robertson BD, Guilhot C, Thwaites GE (2011) Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One 6:e23870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusaka T, Mori T (1986) Pyrolysis gas chromatography-mass spectrometry of mycobacterial mycolic acid methyl esters and its application to the identification of Mycobacterium leprae. J Gen Microbiol 132:3403–3406

    CAS  PubMed  Google Scholar 

  • Kusaka T, Kohsaka K, Fukunishi Y, Akimori H (1981) Isolation and identification of mycolic acids in Mycobacterium leprae and Mycobacterium lepraemurium. Int J Lepr Other Mycobact Dis 49:406–416

    CAS  PubMed  Google Scholar 

  • Kusunoki S, Ezaki T (1992) Proposal of Mycobacterium peregrinum sp. nov., nom. rev. and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. Int J Syst Bacteriol 42:240–245

    Article  CAS  PubMed  Google Scholar 

  • Lacave C, Lanéelle M-A, Daffé M, Montrozier H, Rols MP, Asselineau C (1987) Etude structurale et métabolique des acides mycoliques de Mycobacterium fortuitum. Eur J Biochem 163:369–378

    Article  CAS  PubMed  Google Scholar 

  • Lane SJ, Marshall PS, Upton RJ, Ratledge C, Ewing M (1995) Novel extracellular mycobactins, the carboxymycobactins from Mycobacterium avium. Tetrahedron Lett 36:4129–4132

    Article  CAS  Google Scholar 

  • Lanéelle G (1966) Sur la présence d’aminoalcools dans une fraction glyco- peptidolipidique isolée d’une souche de mycobactérie atipique. C R Hebd Séances Acad Sci 263C:502–503

    Google Scholar 

  • Lanéelle G, Asselineau J (1962) Isolement de peptido-lipides à partir de Mycobacterium paratuberculosis. Biochim Biophys Acta 59:731–732

    Article  PubMed  Google Scholar 

  • Lanéelle G, Asselineau J (1968) Structure d’un glycoside de peptidolipide isolé d’une mycobactérie. Eur J Biochem 5:487–491

    Article  PubMed  Google Scholar 

  • Lanéelle G, Asselineau J, Chamoiseau G (1971) Presence de mycosides C’ (formes simplifiées de mycoside C) dans les bactéries isolées de bovins atteints du farcin. FEBS Lett 19:109–111

    Article  PubMed  Google Scholar 

  • Lanéelle M-A, Promé D, Lanéelle G, Promé J-C (1990) Ornithine lipid of Mycobacterium tuberculosis: its distribution in some slow- and fast-growing mycobacteria. Microbiology 136:773–778

    Google Scholar 

  • Lanéelle M-A, Silve G, Lopez Marin LM, Daffé M (1996) Structures of the glycolipid antigens of members of the third biovariant complex of Mycobacterium fortuitum. Eur J Biochem 238:270–279

    Article  PubMed  Google Scholar 

  • Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J, Prandi J, Mori L, Stenger S, De Libero G, Puzo G, Gilleron M (2009) Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16:82–92

    Article  CAS  PubMed  Google Scholar 

  • Layre E, Paepe DC, Larrouy-Maumus G, Vaubourgeix J, Mundayoor S, Lindner B, Puzo G, Gilleron M (2011a) Deciphering sulfoglycolipids of Mycobacterium tuberculosis. J Lipid Res 52:1098–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, Cheng TY, Annand JW, Kim K, Shamputa IC, McConnell MJ, Debono CA, Behar SM, Minnaard AJ, Murray M, Barry CE 3rd, Matsunaga I, Moody DB (2011b) A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem Biol 18:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layre E, Lee HJ, Young DC, Martinot AJ, Buter J, Minnaard AJ, Annand JW, Fortune SM, Snider BB, Matsunaga I, Rubin EJ, Alber T, Moody DB (2014) Molecular profiling of Mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proc Natl Acad Sci U S A 111:2978–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lederer E (1967) Glycolipids of mycobacteria and related microorganisms. Chem Phys Lipids 1:294–315

    Article  CAS  Google Scholar 

  • Lederer E (1971) The mycobacterial cell wall. Pure Appl Chem 25:135–165

    Article  CAS  PubMed  Google Scholar 

  • Lee YC (1966) Isolation and characterization of lipopolysaccharides containing 6-O- methyl-D-glucose from Mycobacterium species. J Biol Chem 241:1899–1908

    CAS  PubMed  Google Scholar 

  • Lee YC, Ballou CE (1964a) Structural studies on the myo-inositol mannosides from the glycolipids of Mycobacterium tuberculosis and Mycobacterium phlei. J Biol Chem 239:1316–1327

    CAS  PubMed  Google Scholar 

  • Lee YC, Ballou CE (1964b) 6-O-methyl-D-glucose from mycobacteria. J Biol Chem 239:3602–3603

    Google Scholar 

  • Lee YC, Ballou CE (1965) Complete structures of the glycophospholipids of mycobacteria. Biochemistry 4:1395–1404

    Article  CAS  PubMed  Google Scholar 

  • Liaanen-Jensen S, Andrewes G (1972) Microbial carotenoids. Annu Rev Microbiol 26:225–248

    Article  Google Scholar 

  • Llorens-Fons M, Pérez-Trujillo M, Julián E, Brambilla C, Alcaide F, Byrd TF, Luquin M (2017) Trehalose polyphleates, external cell wall lipids in Mycobacterium abscessus, are associated with the formation of clumps with cording morphology, which have been associated with virulence. Front Microbiol 8:1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Llorens-Fons M, Julián E, Luquin M, Pérez-Trujillo M (2018) Molecule confirmation and structure characterization of pentatriacontatrienyl mycolate in Mycobacterium smegmatis. Chem Phys Lipids 212:138–143

    Article  CAS  PubMed  Google Scholar 

  • Longépé J, Prandi J, Beau J-M (1997) Relative configuration and synthesis of a new C-4 branched sugar, a component of the lipooligosaccharide LOS-III from Mycobacterium gastri. Angew Chem Int Ed 36:72–75

    Article  Google Scholar 

  • López Marín LM, Lanéelle MA, Promé D, Daffé M, Lanéelle G, Promé JC (1991) Glycopeptidolipids from Mycobacterium fortuitum: a variant in the structure of C-mycoside. Biochemistry 30:10536–10542

    Article  PubMed  Google Scholar 

  • López Marín LM, Lanéelle MA, Promé D, Lanéelle G, Promé JC, Daffé M (1992a) Structure of a novel sulfate-containing mycobacterial glycolipid. Biochemistry 31:11106–11111

    Article  PubMed  Google Scholar 

  • López Marín LM, Promé D, Lanéelle MA, Daffé M, Promé JC (1992b) Fast atom bombardment mass spectrometry of mycobacterial glycopeptidolipid antigens: structural characterization by charge remote fragmentation. J Am Soc Mass Spectrom 3:656–661

    Article  PubMed  Google Scholar 

  • López Marín LM, Lanéelle MA, Promé D, Daffé M (1993) Structures of the glycopeptidolipid antigens of two animal pathogens: Mycobacterium senegalense and Mycobacterium porcinum. Eur J Biochem 215:859–866

    Article  PubMed  Google Scholar 

  • López-Marín LM, Gautier N, Laneélle M-A, Silve G, Daffé M (1994) Structures of the glycopeptidolipid antigens of Mycobacterium abscessus and Mycobacterium chelonae and possible chemical basis of the serological cross-reactions in the Mycobacterium fortuitum complex. Microbiology 140:1109–1118

    Article  PubMed  Google Scholar 

  • Lowary TL (2016) Twenty years of mycobacterial glycans: furanosides and beyond. Acc Chem Res 49:1379–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luquín M, Margarit L, Condom MJ, Ausina V (1987) Mycolic acids of Mycobacterium porcinum. Int J Syst Bacteriol 37:75–77

    Article  Google Scholar 

  • Luquín M, Roussel J, Lopez-Calahorra F, Lanéelle G, Ausina V, Lanéelle MA (1990) A novel mycolic acid in a Mycobacterium sp. from the environment. Eur J Biochem 192:753–759

    Article  PubMed  Google Scholar 

  • Luquín M, Lanéelle MA, Ausina V, Garcia Barceló M, Belda F, Alonso C, Prats G (1991) Distribution of a novel mycolic acid in species of the genus Mycobacterium. Int J Syst Bacteriol 41:390–394

    Article  PubMed  Google Scholar 

  • Maitra SK, Ballou CE (1977) Heterogeneity and refined structures of 3-O-methyl-D- mannose polysaccharides from Mycobacterium smegmatis. J Biol Chem 252:2459–2469

    CAS  PubMed  Google Scholar 

  • Mann FM, Peters RJ (2012) Isotuberculosinol: the unusual case of an immunomodulatory diterpenoid from Mycobacterium tuberculosis. Med Chem Commun 3:899–904

    Article  CAS  Google Scholar 

  • Mann FM, Xu M, Chen X, Fulton DB, Russell DG, Peters RJ (2009) Edaxadiene: a new bioactive diterpene from Mycobacterium tuberculosis [correction J Am Chem Soc. 2010 132:10953]. J Am Chem Soc 131:17526–17527

    Google Scholar 

  • Mann FM, Xu M, Davenport EK, Peters RJ (2012) Functional characterization and evolution of the isotuberculosinol operon in Mycobacterium tuberculosis and related mycobacteria. Front Microbiol 3:368

    Article  PubMed  PubMed Central  Google Scholar 

  • Marks GS, Polgar N (1955) Mycoceranic acid. Part II. J Chem Soc:3851–3857

    Google Scholar 

  • Marks J, Jenkins PA, Schaefer WB (1971) Thin-layer chromatography of mycobacterial lipids as an aid to classification: technical improvements: Mycobacterium avium, M. intracellulare (Battey bacilli). Tubercle 52:219–225

    Article  CAS  PubMed  Google Scholar 

  • Marks J, Jenkins PA, Tsukamura M (1972) Mycobacterium szulgai-a new pathogen. Tubercle 53:210–214

    Article  CAS  PubMed  Google Scholar 

  • Marrakchi H, Bardou F, Lanéelle M, Daffé M (2008) A comprehensive overview of mycolic acid structure and biosynthesis. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. American Society for Microbiology, Washington, DC, pp 41–62

    Google Scholar 

  • Marrakchi H, Lanéelle M-A, Daffé M (2014) Mycolic acids: structures, biosynthesis and beyond. Chem Biol 21:67–85

    Article  CAS  PubMed  Google Scholar 

  • Martiniano SL, Nick JA (2015) Nontuberculous mycobacterial infections in cystic fibrosis. Clin Chest Med 36:101–115

    Article  PubMed  Google Scholar 

  • Maskens K, Polgar N (1973a) Studies in the stereochemistry of 2-alkyl-3-hydroxy- and 2-alkyl-3-methoxy-butyric acids. J Chem Soc (Perkin I):109–115

    Google Scholar 

  • Maskens K, Polgar N (1973b) Stereochemistry of the methoxyphthioceranes. J Chem Soc (Perkin I):1117–1121

    Google Scholar 

  • Maskens K, Polgar N (1973c) Absolute configuration of the CH(OMe).CHMe system in the phthiocerols. J Chem Soc (Perkin I):1909–1912

    Google Scholar 

  • Maskens K, Minnikin DE, Polgar N (1966) Studies relating to phthiocerol. Part VI. Stereochemical studies. J Chem Soc (C):2113–2115

    Google Scholar 

  • Matsunaga I, Bhatt A, Young DC, Cheng TY, Eyles SJ, Besra GS, Briken V, Porcelli SA, Costello CE, Jacobs WR Jr, Moody DB (2004) Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200:1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga I, Komori T, Mori N, Sugita M (2012) Identification of a novel tetrapeptide structure of the Mycobacterium avium glycopeptidolipid that functions as a specific target for the host antibody response. Biochem Biophys Res Commun 419:687–691

    Article  CAS  PubMed  Google Scholar 

  • Maugel N, Mann FM, Hillwig ML, Peters RJ, Snider BB (2010) Synthesis of (+/−)-nosyberkol (isotuberculosinol, revised structure of edaxadiene) and (+/−)-tuberculosinol. Org Lett 12:2626–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil MR, Brennan PJ (1991) Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol 142:451–463

    Article  CAS  PubMed  Google Scholar 

  • McNeil M, Tsang AY, McClatchy JK, Stewart C, Jardine I, Brennan PJ (1987a) Definition of the surface antigens of Mycobacterium malmoense and use in studying the etiology of a form of mycobacteriosis. J Bacteriol 169:3312–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil M, Tsang AY, Brennan PJ (1987b) Structure and antigenicity of the specific oligosaccharide hapten from the glycopeptidolipid antigen of Mycobacterium avium serotype 4, the dominant Mycobacterium isolated from patients with acquired immune deficiency syndrome. J Biol Chem 262:2630–2635

    CAS  PubMed  Google Scholar 

  • McNeil M, Gaylord H, Brennan PJ (1988) N-Formylkansosaminyl-(1→3)-2-O-methyl-D-rhamnopyranose: the type-specific determinant of serovariant 14 of the Mycobacterium avium complex. Carbohydr Res 177:185–198

    Article  CAS  PubMed  Google Scholar 

  • McNeil M, Chatterjee D, Hunter SW, Brennan PJ (1989) Mycobacterial glycolipids: isolation, structures, antigenicity and synthesis of neoantigens. Methods Enzymol 179:215–242

    Article  CAS  PubMed  Google Scholar 

  • Mederos LM, Valdivia JA, Sempere MA, Valero-Guillén PL (1998) Analysis of lipids reveals differences between ‘Mycobacterium habana’ and Mycobacterium simiae. Microbiology 144:1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Mederos LM, Valdivia JA, Valero-Guillén PL (2006) Lipids of ‘Mycobacterium habana’, a synonym of Mycobacterium simiae with vaccine potential. Tuberculosis 86:324–329

    Article  CAS  PubMed  Google Scholar 

  • Mederos LM, Valdivia JA, Valero-Guillén PL (2008) New variants of polar glycopeptidolipids detected in Mycobacterium simiae, including ‘habana’ strains, as evidenced by electrospray ionization-ion trap-mass spectrometry. J Appl Microbiol 105:602–614

    Article  CAS  PubMed  Google Scholar 

  • Medjahed H, Gaillard J-L, Reyrat J-M (2010) Mycobacterium abscessus: a new player in the mycobacterial field. Trends Microbiol 18:117–123

    Article  CAS  PubMed  Google Scholar 

  • Melly G, Purdy GE (2019) MmpL proteins in physiology and pathogenesis of M. tuberculosis. Microorganisms 7:70

    Article  CAS  PubMed Central  Google Scholar 

  • Middlebrook G, Coleman CM, Schaefer WB (1959) Sulfolipid from virulent tubercle bacilli. Proc Natl Acad Sci U S A 45:1801–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikušová K, Mikus M, Besra GS, Hancock I, Brennan PJ (1996) Biosynthesis of the linkage region of the mycobacterial cell wall. J Biol Chem 271:7820–7828

    Article  PubMed  Google Scholar 

  • Mikušová K, Huang H, Yagi T, Holsters M, Vereecke D, D’Haeze W, Scherman MS, Brennan PJ, McNeil MR, Crick DC (2005) Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol 187:8020–8025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minnikin DE (1966) Nuclear magnetic resonance spectra of long-chain 1,2-disubstituted cyclopropane esters. Chem Ind:2167

    Google Scholar 

  • Minnikin DE (1982) Lipids: complex lipids, their chemistry, biosynthesis and role. In: Ratledge C, Stanford J (eds) The biology of mycobacteria. Academic Press, London, pp 95–184

    Google Scholar 

  • Minnikin DE (1991) Chemical principles in the organisation of lipid components in the mycobacterial cell envelope. Res Microbiol 142:423–427

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H (1974) Replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorous-free lipid in Pseudomonas fluorescens NCMB129. FEBS Lett 43:257–260

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. In: Board RG, Goodfellow M (eds) Microbiological classification and identification. Academic Press, London, pp 189–256

    Google Scholar 

  • Minnikin DE, Polgar N (1965) Phthiocerol B, a constituent of the lipids of tubercle bacilli. Chem Commun:495–496

    Google Scholar 

  • Minnikin DE, Polgar N (1966a) Stereochemical studies on the mycolic acids. Chem Commun:648–649

    Google Scholar 

  • Minnikin DE, Polgar N (1966b) Studies relating to phthiocerol. Part V. Phthiocerol A and B. J Chem Soc (C) 2107–2112

    Google Scholar 

  • Minnikin DE, Polgar N (1967a) Structural studies on the mycolic acids. Chem Commun:312–314

    Google Scholar 

  • Minnikin DE, Polgar N (1967b) The mycolic acids from human and avian tubercle bacilli. Chem Commun:916–918

    Google Scholar 

  • Minnikin DE, Polgar N (1967c) The methoxymycolic and ketomycolic acids from human tubercle bacilli. Chem Commun:1172–1174

    Google Scholar 

  • Minnikin DE, Polgar N (1967d) Studies relating to phthiocerol. Part VII. Phthiodiolone A. J Chem Soc (C) 803–807

    Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AG, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, Minnikin SM, Goodfellow M, Stanford JL (1982a) Mycolic acids of Mycobacterium chelonei. J Gen Microbiol 128:817–822

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Minnikin SM, Goodfellow M (1982b) The oxygenated mycolic acids of Mycobacterium fortuitum, M. farcinogenes and M. senegalense. Biochim Biophys Acta 712:616–620

    Article  CAS  Google Scholar 

  • Minnikin DE, Dobson G, Hutchinson IG (1983) Characterization of phthiocerol dimycocerosates from Mycobacterium tuberculosis. Biochim Biophys Acta 753:445–449

    Article  CAS  Google Scholar 

  • Minnikin DE, Minnikin SM, Hutchinson IG, Goodfellow M, Grange JM (1984a) Mycolic acid patterns of representative strains of Mycobacterium fortuitum, “Mycobacterium peregrinum” and Mycobacterium smegmatis. J Gen Microbiol 130:363–367

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Parlett JH, Magnusson M, Ridell M, Lind A (1984b) Mycolic acid patterns of representatives of Mycobacterium bovis BCG. J Gen Microbiol 130:2733–2736

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Dobson G, Goodfellow M, Draper P, Magnusson M (1985a) Quantitative comparison of the mycolic and fatty acid composition of Mycobacterium leprae and Mycobacterium gordonae. J Gen Microbiol 131:2013–2021

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Dobson G, Sesardic D, Ridell M (1985b) Mycolipenates and mycolipanolates of trehalose from Mycobacterium tuberculosis. J Gen Microbiol 131:1369–1374

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Dobson G, Goodfellow M, Magnusson M, Ridell M (1985c) Distribution of some mycobacterial waxes based on the phthiocerol family. J Gen Microbiol 131:1375–1381

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Dobson G, Draper P (1985d) The free lipids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. J Gen Microbiol 131:2007–2011

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Ridell M, Wallerström G, Besra GS, Parlett JH, Bolton RC, Magnusson M (1989) Comparative studies of antigenic glycolipids of mycobacteria related to the leprosy bacillus. Acta Leprol 7(Suppl 1):51–54

    PubMed  Google Scholar 

  • Minnikin DE, Ridell M, Bolton RC, Magnusson M (1990) Recognition of novel glycolipid antigens from smooth variants of Mycobacterium tuberculosis. FEMS Microbiol Lett 67:55–57

    Article  CAS  Google Scholar 

  • Minnikin DE, Kremer L, Dover LG, Besra GS (2002) The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9:545–553

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Lee OY-C, Wu HHT, Nataraj V, Donoghue HD, Ridell M, Watanabe M, Alderwick L, Bhatt A, Besra GS (2015) Pathophysiological implications of cell envelope structure in Mycobacterium tuberculosis and related taxa. In: Ribon W (ed) Tuberculosis-expanding knowledge. Intech, Rijeka, pp 145–175

    Google Scholar 

  • Miquel A-M, Ginsburg H, Asselineau J (1963) Composition of waxes C and D from Mycobacterium avium. Bull Soc Chim Biol 45:715–730

    CAS  Google Scholar 

  • Moody DB, Ulrichs T, Mühlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888

    Article  CAS  PubMed  Google Scholar 

  • Morgan ED, Polgar N (1957) Constituents of the lipids of tubercle bacilli. Part VIII. Studies on mycolic acid. J Chem Soc:3779–3786

    Google Scholar 

  • Mukherjee R, Chatterji D (2012) Glycopeptidolipids: Immuno-modulators in greasy mycobacterial cell envelope. IUBMB Life 64:215–225

    Article  CAS  PubMed  Google Scholar 

  • Muñoz M, Lanéelle MA, Luquin M, Torrelles J, Julián E, Ausina V, Daffé M (1997) Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis. FEMS Microbiol Lett 157:251–259

    Article  PubMed  Google Scholar 

  • Muñoz M, Raynaud C, Lanéelle M, Julián E, Marín L, Silve G, Ausina V, Daffé M, Luquin M (1998) Seroreactive species-specific lipooligosaccharides of Mycobacterium mucogenicum sp. nov. (formerly Mycobacterium chelonae-like organisms): identification and chemical characterization. Microbiology 144:137–148

    Article  PubMed  Google Scholar 

  • Mve-Obiang A, Lee RE, Portaels F, Small PLC (2003) Heterogeneity of mycolactones produced by clinical isolates of Mycobacterium ulcerans: implications for virulence. Infect Immun 71:774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mve-Obiang A, Lee RE, Umstot ES, Trott KA, Grammer TC, Parker JM, Ranger BS, Grainger R, Mahrous EA, Small PLC (2005) A newly discovered mycobacterial pathogen isolated from laboratory colonies of Xenopus species with lethal infections produces a novel form of mycolactone, the Mycobacterium ulcerans macrolide toxin. Infect Immun 73:3307–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naka T, Nakata N, Maeda S, Yamamoto R, Doe M, Mizuno S, Niki M, Kobayashi K, Ogura H, Makino M, Fujiwara N (2011) Structure and host recognition of serotype 13 glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol 193:5766–5774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano C, Okamura T, Sato T, Dairi T, Hoshino T (2005) Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun:1016–1018

    Google Scholar 

  • Narumi K, Keller JM, Ballou CE (1973) Biosynthesis of a mycobacterial lipopolysaccharide. Incorporation of (14C) acyl groups by whole cells in vivo. Biochem J 132:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navalkar G, Wiegeshaues E, Kondo E, Kim HK, Smith DW (1965) Mycoside G, a specific glycolipid in Mycobacterium marinum (balnei). J Bacteriol 90:262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Supply P (2014) Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med 4(12):a021188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nigou J, Gilleron M, Puzo G (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85:153–166

    Article  CAS  PubMed  Google Scholar 

  • Nojima S (1959) Studies on the chemistry of wax D of BCG. II. On the chemical structure of oligomannoinositides. J Biochem (Tokyo) 46:607–620

    Article  CAS  Google Scholar 

  • Noll H (1956) The chemistry of cord factor, a toxic glycolipid of M. tuberculosis. Adv Tuberc Res 7:149–164

    Google Scholar 

  • Noll H (1957) The chemistry of some native constituents of the purified wax of Mycobacterium tuberculosis. J Biol Chem 224:149–164

    CAS  PubMed  Google Scholar 

  • Noll H, Bloch H, Asselineau J, Lederer E (1956) The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta 20:299–309

    Article  CAS  PubMed  Google Scholar 

  • Oldfield E (2015) Tuberculosis terpene targets. Chem Biol 22:437–438

    Article  CAS  PubMed  Google Scholar 

  • Onwueme KC, Cheryl J, Vos CJ, Zurita J, Ferreras JA, Quadri LEN (2005) The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 44:259–302

    Article  CAS  PubMed  Google Scholar 

  • Pacheco SA, Hsu FF, Powers KM, Purdy GE (2013) MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis. J Biol Chem 288:24213–24222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang L, Tian X, Pan W, Xie J (2013) Structure and function of Mycobacterium glycopeptidolipids from comparative genomics perspective. J Cell Biochem 114:1705–1713

    Article  CAS  PubMed  Google Scholar 

  • Pangborn MC, McKinney JA (1966) Purification of serologically active phosphoinositides of Mycobacterium tuberculosis. J Lipid Res 7:627–633

    CAS  PubMed  Google Scholar 

  • Papa F, Laszlo A, David HL, Daffé M (1989) Serological specificity of Mycobacterium tuberculosis glycolipids. Acta Leprol 7(Suppl 1):98–101

    PubMed  Google Scholar 

  • Parker BC, Ford MA, Gruft H, Falkinham JO (1983) Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am Rev Respir Dis 128:652–656

    CAS  PubMed  Google Scholar 

  • Parkins MD, Floto RA (2015) Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros 14:293–304

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Butala S, Khan T, Suvarna V, Sherje A, Dravyakar B (2018) Mycobacterial siderophore: a review on chemistry and biology of siderophore and its potential as a target for tuberculosis. Eur J Med Chem 157:783–790

    Article  CAS  PubMed  Google Scholar 

  • Philley JV, DeGroote MA, Honda JR, Chan MM, Kasperbauer S, Walter ND, Chan ED (2016) Treatment of non-tuberculous mycobacterial lung disease. Curr Treat Options Infect Dis 8:275–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Polgar N, Smith W (1963) Mycoceranic acid. Part III. J Chem Soc:3081–3085

    Google Scholar 

  • Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med 36:101–115

    Article  Google Scholar 

  • Promé JC, Asselineau C, Asselineau J (1966) Acides mycobactériques, nouveaux acides isolés des lipids des mycobactéries. C R Hebd Séances Acad Sci 263:448–451

    Google Scholar 

  • Promé JC, Lacave C, Lanéelle MA (1969) Sur les structures de lipides à ornithine de Brucella melitensis et de Mycobacterium bovis (BCG). C R Hebd Séances Acad Sci 269:1664–1667

    Google Scholar 

  • Prout FS, Cason J, Ingersoll AW (1948) Branched-chain fatty acids. V. The synthesis of optically active 10-methyloctadecanoic acids. J Am Chem Soc 70:298–305

    Article  CAS  Google Scholar 

  • Purdy GE, Pacheco S, Turk J, Hsu F-F (2013) Characterization of mycobacterial triacylglycerols and monomeromycoloyl diacylglycerols from Mycobacterium smegmatis biofilm by electrospray ionization multiple-stage and high-resolution mass spectrometry. Anal Bioanal Chem 405:7415–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puzo G (1990) The carbohydrate- and lipid-containing cell wall of mycobacteria, phenolic glycolipids: structure and immunological properties. Crit Rev Microbiol 17:305–327

    Article  CAS  PubMed  Google Scholar 

  • Quadri LEN (2008) Iron uptake in mycobacteria. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. ASM Press, Washington, DC, pp 167–184

    Google Scholar 

  • Quadri LEN (2014) Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 49:179–211

    Article  CAS  PubMed  Google Scholar 

  • Quadri LEN, Ratledge C (2005) Iron metabolism in the tubercle bacillus and other mycobacteria. In: Cole ST, Eisenach KD, McMurray DN, Jacobs WR (eds) Tuberculosis and the tubercle bacillus. ASM Press, Washington, DC, pp 341–357

    Google Scholar 

  • Qureshi N, Takayama K, Jordi HC, Schnoes HK (1978) Characterization of the purified components of a new homologous series of α-mycolic acids from Mycobacterium tuberculosis H37Ra. J Biol Chem 253:5411–5417

    CAS  PubMed  Google Scholar 

  • Qureshi N, Takayama K, Schnoes HK (1980) Purification of C30–C56 fatty acids from Mycobacterium tuberculosis. J Biol Chem 255:182–189

    CAS  PubMed  Google Scholar 

  • Rafidinarivo E, Lanéelle M-A, Montrozier H, Valero-Guillén P, Astola J, Luquin M, Promé J-C, Daffé M (2009) Trafficking pathways of mycolic acids: structures, origin, mechanism of formation and storage form of mycobacteric acids. J Lipid Res 50:477–490

    Article  CAS  PubMed  Google Scholar 

  • Randall HM, Smith DW (1964) Characterization of mycobacteria by infrared spectroscopic examination of their lipid fractions. Zentr Bakteriol Parasit Infekt Hyg (I Abt) 194:190–201

    Google Scholar 

  • Ranger BS, Mahrous EA, Mosi L, Adusumilli S, Lee RE, Colorni A, Small PLC (2006) Globally distributed mycobacterial fish pathogens produce a novel plasmid-encoded toxic macrolide, mycolactone F. Infect Immun 74:6037–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratledge C (1976) The physiology of the mycobacteria. Adv Microb Physiol 13:115–244

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (1982) Nutrition, growth and metabolism. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria. Academic Press, London, pp 185–271

    Google Scholar 

  • Ratledge C (1999) Iron metabolism. In: Ratledge C, Dale J (eds) Mycobacteria: molecular biology and virulence. Blackwell, Oxford, pp 260–286

    Chapter  Google Scholar 

  • Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis 84:110–130

    Article  PubMed  Google Scholar 

  • Ratledge C (2013) A history of iron metabolism in the mycobacteria. In: Byers B (ed) Iron acquisition by the genus Mycobacterium. Springer briefs in molecular science. Springer, Heidelberg, pp 3–39

    Chapter  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Ewing M (1996) The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology 142:2207–2212

    Article  CAS  PubMed  Google Scholar 

  • Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Dover LG, Islam ST, Alexander DC, Chen JM, Besra GS, Liu J (2007) Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Rens C, Laval F, Wattiez R, Lefèvre P, Dufrasne F, Daffé M, Fontaine V (2018) I3-Ag85 effect on phthiodiolone dimycocerosate synthesis. Tuberculosis 108:93–95

    Article  CAS  PubMed  Google Scholar 

  • Rhoades ER, Streeter C, Turk J, Hsu FF (2011) Characterization of sulfolipids of Mycobacterium tuberculosis H37Rv by multiple-stage linear ion-trap high-resolution mass spectrometry with electrospray ionization reveals that the family of sulfolipid II predominates. Biochemistry 50:9135–9147

    Article  CAS  PubMed  Google Scholar 

  • Ridell M, Goodfellow M, Minnikin DE, Minnikin SM, Hutchinson IG (1982) Classification of Mycobacterium farcinogenes and Mycobacterium senegalense by immunodiffusion and thin-layer chromatography of long-chain components. J Gen Microbiol 128:1299–1307

    CAS  PubMed  Google Scholar 

  • Ripoll F, Deshayes C, Pasek S, Laval F, Beretti JL, Biet F, Risler JL, Daffé M, Etienne G, Gaillard JL, Reyrat JM (2007) Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC Genomics 8:114–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivière M, Puzo G (1991) A new type of serine-containing glycopeptidolipid from Mycobacterium xenopi. J Biol Chem 266:9057–9063

    PubMed  Google Scholar 

  • Rivière M, Puzo G (1992) Use of 1H NMR ROESY for structural determination of O-glycosylated amino acids from a serine-containing glycopeptidolipid antigen. Biochemistry 31:3575–3580

    Article  PubMed  Google Scholar 

  • Rivière M, Fournié JJ, Puzo G (1987) A novel mannose containing phenolic glycolipid from Mycobacterium kansasii. J Biol Chem 262:14879–14884

    PubMed  Google Scholar 

  • Rivière M, Augé S, Vercauteren J, Wisingerovà E, Puzo G (1993) Structure of a novel glycopeptidolipid antigen containing a O-methylated serine isolated from Mycobacterium xenopi. Complete 1H-NMR and 13C-NMR assignment. Eur J Biochem 214:395–403

    Article  PubMed  Google Scholar 

  • Rivière M, Puzo G, Wright EL, Barrow WW (1996) A unique phenylalanine-containing lipopeptide isolated from a rough-colony variant of Mycobacterium avium. Eur J Biochem 241:682–690

    Article  PubMed  Google Scholar 

  • Robledo JA, Murillo AM, Rouzaud F (2011) Physiological role and potential clinical interest of mycobacterial pigments. IUBMB Life 63:71–78

    Article  CAS  PubMed  Google Scholar 

  • Rombouts Y, Burguière A, Maes E, Coddeville B, Elass E, Guérardel Y, Kremer L (2009) Mycobacterium marinum lipooligosaccharides are unique caryophyllose-containing cell wall glycolipids that inhibit tumor necrosis factor-α secretion in macrophages. J Biol Chem 284:20975–20988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombouts Y, Elass E, Biot C, Maes E, Coddeville B, Burguière A, Tokarski C, Buisine E, Trivelli X, Kremer L, Guérardel Y (2010) Structural analysis of an unusual bioactive N- acylated lipo-oligosaccharide LOS-IV in Mycobacterium marinum. J Am Chem Soc 132:16073–16084

    Article  CAS  PubMed  Google Scholar 

  • Rombouts Y, Alibaud L, Carrère-Kremer S, Maes E, Tokarski C, Elass E, Kremer L, Guérardel Y (2011) Fatty acyl chains of Mycobacterium marinum lipooligosaccharides: structure, localization and acylation by PapA4 (MMAR_2343) protein. J Biol Chem 286:33678–33688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombouts Y, Brust B, Ojha AK, Maes E, Coddeville B, Elass-Rochard E, Kremer L, Guerardel Y (2012) Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to mycoloyl-arabinogalactan-peptidoglycan metabolism. J Biol Chem 287:11060–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncero AM, Tobal IE, Moro RF, Díez D, Marcos IS (2018) Halimane diterpenoids: sources, structures, nomenclature and biological activities. Nat Prod Rep 35:955–991

    Article  CAS  PubMed  Google Scholar 

  • Ryan K, Byrd TF (2018) Mycobacterium abscessus: Shapeshifter of the mycobacterial world. Front Microbiol 9:2642

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryhage R, Stenhagen E (1960) Mass spectrometry in lipid research. J Lipid Res 1:361–390

    CAS  PubMed  Google Scholar 

  • Saier MH Jr, Ballou CE (1968a) The 6-O-methylglucose-containing lipopolysaccharide of Mycobacterium phlei. Identification of D-glyceric acid and 3-O-methyl-D-glucose in the polysaccharide. J Biol Chem 243:992–1005

    PubMed  Google Scholar 

  • Saier MH Jr, Ballou CE (1968b) The 6-O-methylglucose-containing lipopolysaccharide of Mycobacterium phlei. Structure of the reducing end of the polysaccharide. J Biol Chem 243:4319–4331

    CAS  PubMed  Google Scholar 

  • Saier MH Jr, Ballou CE (1968c) The 6-O-methylglucose-containig lipopolysaccharide of Mycobacterium phlei. Complete structure of the polysaccharide. J Biol Chem 243:4332–4341

    CAS  PubMed  Google Scholar 

  • Sancho-Vaello E, Albesa-Jové D, Rodrigo-Unzueta A, Guerin ME (2017) Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Sarda P, Gastambide-Odier M (1967) Structure chimique de l’aglycone du mycoside G de Mycobacterium marinum. Chem Phys Lipids 1:434–444

    Article  CAS  Google Scholar 

  • Sarkar D, Sidhu M, Singh A, Chen J, Lammas DA, van der Sar AM, Besra GS, Bhatt A (2011) Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides. J Bacteriol 193:2336–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer WB (1965) Serologic identification and classification of the atypical mycobacteria by their agglutination. Am Rev Respir Dis 92:85–93

    CAS  PubMed  Google Scholar 

  • Schaefer WB, Wolinsky E, Jenkins PA, Marks J (1973) Mycobacterium szulgai-a new pathogen. Serologic identification and report of five new cases. Am Rev Respir Dis 108:1320–1326

    CAS  PubMed  Google Scholar 

  • Scharf L, Li NS, Hawk AJ, Garzón D, Zhang T, Fox LM, Kazen AR, Shah S, Haddadian EJ, Gumperz JE, Saghatelian A, Faraldo-Gómez JD, Meredith SC, Piccirilli JA, Adams EJ (2010) The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherman MS, Weston A, Duncan K, Whittington A, Upton R, Deng L, Comber R, Friedrich JD, McNeil M (1995) Biosynthetic origin of mycobacterial cell wall arabinosyl residues. J Bacteriol 177:7125–7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherman MS, Kalbe-Bournonville L, Bush D, Xin Y, Deng L, McNeil M (1996) Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J Biol Chem 271:29652–29658

    Article  CAS  PubMed  Google Scholar 

  • Scherman H, Kaur D, Pham H, Skovierová H, Jackson M, Brennan PJ (2009) Identification of a polyprenylphosphomannosyl synthase involved in the synthesis of mycobacterial mannosides. J Bacteriol 191:6769–6772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherrer F, Anderson HA, Azerad R (1976) Mavioquinone, a new quinone from Mycobacterium avium. Chem Commun:127–128

    Google Scholar 

  • Schinsky MF, Morey RE, Steigerwalt AG, Douglas MP, Wilson RW, Floyd MM, Butler WR, Daneshvar MI, Brown-Elliott BA, Wallace RJ, McNeil MM, Brenner DJ, Brown JM (2004) Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov., Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical isolates. Int J Syst Evol Microbiol 54:1653–1667

    Article  CAS  PubMed  Google Scholar 

  • Schorey JS, Sweet L (2008) The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18:832–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Elbein AD (1974) Biosynthesis of mannosyl- and glucosyl-phosphoryl polyprenols in Mycobacterium smegmatis. Evidence for oligosaccharide-phosphoryl-polyprenols. Arch Biochem Biophys 160:311–322

    Article  CAS  PubMed  Google Scholar 

  • Seeliger JC, Holsclaw CM, Schelle MW, Botyanszki Z, Gilmore SA, Tully SE, Niederweis M, Cravatt BF, Leary JA, Bertozzi CR (2012) Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 287:7990–8000

    Article  CAS  PubMed  Google Scholar 

  • Sempere MA, Valero-Guillen PL, De Godos A, Martin-Luengo F (1993) A triacyltrehalose containing 2-methyl-branched unsaturated fatty acyl groups isolated from Mycobacterium fortuitum. J Gen Microbiol 139:585–590

    Article  CAS  Google Scholar 

  • Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, Nieselt K, Krause J, Vera-Cabrera L, Cole ST (2015) Insight into the evolution and origin of leprosy bacilli from the genome sequence of “Mycobacterium lepromatosis”. Proc Natl Acad Sci U S A 112:4459–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S (2018) Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 13:689–710

    Article  CAS  PubMed  Google Scholar 

  • Sizaire V, Nackers F, Comte E, Portaels F (2006) Mycobacterium ulcerans infection: control, diagnosis and treatment. Lancet Infect Dis 6:288–296

    Article  PubMed  Google Scholar 

  • Skolnik K, Kirkpatrick G, Quon BS (2016) Nontuberculous mycobacteria in cystic fibrosis. Curr Treat Options Infect Dis 8:259–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Škovierová H, Larrouy-Maumus G, Pham H, Belanová M, Barilone N, Dasgupta A, Mikušová K, Gicquel B, Gilleron M, Brennan PJ, Puzo G, Nigou J, Jackson M (2010) Biosynthetic origin of the galactosamine substituent of arabinogalactan in Mycobacterium tuberculosis. J Biol Chem 285:41348–41355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slama N, Jamet S, Frigui W, Pawlik A, Bottai D, Laval F, Constant P, Lemassu A, Cam K, Daffé M, Brosch R, Eynard N, Quémard A (2016) The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis. Mol Microbiol 99:794–807

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, Ballou CE (1973) The 6-O-methylglucose-containing lipopolysaccharides of Mycobacterium phlei. Locations of the neutral and acidic acyl groups. J Biol Chem 248:7118–7125

    CAS  PubMed  Google Scholar 

  • Smith DW, Randall HM (1965) Mycosides of mycobacteria. Am Rev Respir Dis 92:34–41

    CAS  PubMed  Google Scholar 

  • Smith DW, Harrell WK, Randall HM (1954) Correlation of biologic properties of strains of Mycobacterium with their infrared spectrums. III. Differentiation of bovine and human varieties of M. tuberculosis by means of their infrared spectrums. Am Rev Tuberc 69:505–510

    CAS  PubMed  Google Scholar 

  • Smith DW, Randall HM, Gastambide-Odier MM, Koevoet AL (1957) The characterization of mycobacterial strains by the composition of their lipide extracts. Ann N Y Acad Sci 69:145–157

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Randall HM, MacLennan AP, Putney RK, Rao SV (1960a) Detection of specific lipids in mycobacteria by infrared spectroscopy. J Bacteriol 79:217–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DW, Randall HM, MacLennan AP, Lederer E (1960b) Mycosides: a new class of type- specific glycolipids of mycobacteria. Nature 186:887–888

    Article  CAS  PubMed  Google Scholar 

  • Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681

    Article  CAS  PubMed  Google Scholar 

  • Snow GA (1954a) Mycobactin. A growth factor for Mycobacterium johnei. II. Degradation and identification of fragments. J Chem Soc:2588–2596

    Google Scholar 

  • Snow GA (1954b) Mycobactin. A growth factor for Mycobacterium johnei. III. Degradation and tentative structure. J Chem Soc:4080–4093

    Google Scholar 

  • Snow GA (1965a) The structure of mycobactin P, a growth factor for Mycobacterium johnei and the significance of its iron complex. Biochem J 94:160–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow GA (1965b) Isolation and structure of mycobactin T, a growth factor from Mycobacterium tuberculosis. Biochem J 97:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow GA (1970) Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev 34:99–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow GA, White AJ (1969) Chemical and biological properties of mycobactins isolated from various mycobacteria. Biochem J 115:1031–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sogi KM, Holsclaw CM, Fragiadakis GK, Nomura DK, Leary JA, Bertozzi CR (2016) Biosynthesis and regulation of sulfomenaquinone, a metabolite associated with virulence in Mycobacterium tuberculosis. ACS Infect Dis 2:800–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song F, Fidanze S, Benowitz AB, Kishi Y (2002) Total synthesis of the mycolactones. Org Lett 4:647–650

    Article  CAS  PubMed  Google Scholar 

  • Soto CY, Cama M, Gibert I, Luquin M (2000) Application of an easy and reliable method for sulfolipid-I detection in the study of its distribution in Mycobacterium tuberculosis strains. FEMS Microbiol Lett 187:103–107

    Article  CAS  PubMed  Google Scholar 

  • Spangenberg T, Aubry S, Kishi Y (2010) Synthesis and structure assignment of the minor metabolite arising from the frog pathogen Mycobacterium liflandii. Tetrahedron Lett 51:1782–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spangler JE, Carson CA, Sorensen EJ (2010) Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene. Chem Sci 1:202–205

    Article  CAS  PubMed  Google Scholar 

  • Spencer JS, Brennan PJ (2011) The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Lepr Rev 82:344–357

    PubMed  Google Scholar 

  • Spielman MA (1934) The chemistry of the lipids of tubercle bacilli: XXXIX. The constitution of tuberculostearic acid. J Biol Chem 106:87–96

    CAS  Google Scholar 

  • Stendal N (1934) Sur la présence d’un glycol dans la cire du Bacille tuberculeux. C R Hebd Séanc Acad Sci Paris 198:1549–1551

    CAS  Google Scholar 

  • Stinear TP, Small PLC (2008) The mycolactones: biologically active polyketides produced by Mycobacterium ulcerans and related aquatic mycobacteria. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. ASM Press, Washington, DC, pp 367–377

    Google Scholar 

  • Stodola FH, Anderson RJ (1936) The chemistry of the lipids of tubercle bacilli XLVI. Phthiocerol, a new alcohol from the wax of the human tubercle bacillus. J Biol Chem 114:467–472

    CAS  Google Scholar 

  • Stodola FH, Lesuk A, Anderson RJ (1938) The chemistry of the lipids of tubercle bacilli. LIV. The isolation and properties of mycolic acid. J Biol Chem 1126:505–513

    Google Scholar 

  • Stormer RS, Falkinham JO 3rd. (1989) Differences in antimicrobial susceptibility of pigmented and unpigmented colonial variants of Mycobacterium avium. J Clin Microbiol 27:2459–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strain SM, Toubiana R, Ribi E, Parker R (1977) Separation of the mixture of trehalose 6,6′-dimycolates comprising the mycobacterial glycolipid fraction, “P3”. Biochem Biophys Res Commun 77:449–456

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Brosch R (2017) The biology and epidemiology of “Mycobacterium canettii”. Adv Exp Med Biol 1019:27–41

    Article  CAS  PubMed  Google Scholar 

  • Szulga T, Jenkins PA, Marks J (1966) Thin-layer chromatography of mycobacterial lipids as an aid to classification; Mycobacterium kansasii and Mycobacterium marinum (balnei). Tubercle 47:130–136

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Goldman DS (1970) Enzymatic synthesis of mannosyl-1-phosphoryl-decaprenol by a cell-free system of Mycobacterium tuberculosis. J Biol Chem 245:6251–6257

    CAS  PubMed  Google Scholar 

  • Takayama K, Qureshi N (1978) Isolation and characterization of the monounsaturated long chain fatty acids of Mycobacterium tuberculosis. Lipids 13:575–579

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Schnoes HK, Semmler EJ (1973) Characterisation of the alkali-stable mannophospholipids of Mycobacterium smegmatis. Biochim Biophys Acta 316:212–221

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Qureshi N, Jordi HC, Schnoes HK (1979) Separation of homologous series of mycolic acids from Mycobacterium tuberculosis H37Ra by high performance liquid chromatography. In: Hawk GL (ed) Biological biochemical applications of liquid chromatography. Marcel Dekker, New York, pp 91–101

    Google Scholar 

  • Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Horst B, van Wermeskerken J, Feringa BL, Minnaard AJ (2010a) Catalytic asymmetric synthesis of mycolipenic and mycolipanolic acid. Eur J Org Chem:38–41

    Google Scholar 

  • ter Horst B, Seshadri C, Sweet L, Young DC, Feringa BL, Moody DB, Minnaard AJ (2010b) Asymmetric synthesis and structure elucidation of a glycerophospholipid from Mycobacterium tuberculosis. J Lipid Res 51:17–22

    Google Scholar 

  • Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Cardoso-Leão S, Garcia MJ, Vasireddy S, Turenne CY, Griffith DE, Philley JV, Niemann S, Wallace RJ, Cirillo DM (2018) Mycobacterium abscessus, a taxonomic puzzle. Int J Syst Evol Microbiol 68:467–469

    Article  PubMed  Google Scholar 

  • Tsang AY, Drupa I, Goldberg M, McClatchy JK, Brennan PJ (1983) Use of serology and thin-layer chromatography for the assembly of an authenticated collection of serovars within the Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum complex. Int J Syst Bacteriol 33:285–292

    Article  Google Scholar 

  • Tsang AY, Barr VL, McClatchy JK, Goldberg M, Drupa I, Brennan PJ (1984) Antigenic relationships of the Mycobacterium fortuitum-Mycobacterium chelonae complex. Int J Syst Bacteriol 34:35–34

    Article  CAS  Google Scholar 

  • Tsang AY, Denner JC, Brennan PJ, McClatchy JK (1992) Clinical and epidemiological importance of typing of Mycobacterium avium complex isolates. J Clin Microbiol 30:479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamura M, Mizuno S (1969) Comparison between pigments of Mycobacterium and Nocardia. Kekkaku 44:207–210

    CAS  PubMed  Google Scholar 

  • Tsumita T (1956) Studies on the lipids of BCG I. Glyceryl mono-mycolate in wax C fraction of the lipid of BCG. Jpn J Med Sci Biol 9:205–216

    Article  CAS  PubMed  Google Scholar 

  • Tuffal G, Ponthus C, Picard C, Rivière M, Puzo G (1995) Structural elucidation of novel methylglucose-containing polysaccharides from Mycobacterium xenopi. Eur J Biochem 233:377–383

    Article  CAS  PubMed  Google Scholar 

  • Tuffal G, Albigot R, Rivière M, Puzo G (1998a) Newly found 2-N-acetyl-2,6-dideoxy-beta- glucopyranose containing methyl glucose polysaccharides in M. bovis BCG: revised structure of the mycobacterial methyl glucose lipopolysaccharides. Glycobiology 8:675–684

    Article  CAS  PubMed  Google Scholar 

  • Tuffal G, Tuong A, Dhers C, Uzabiaga F, Rivière M, Picard C, Puzo G (1998b) Direct evidence of methylglucose lipopolysaccharides/palmitoyl-CoA noncovalent complexes by capillary zone electrophoresis-electrospray/mass spectrometry. Anal Chem 70:1853–1858

    Article  CAS  PubMed  Google Scholar 

  • Turenne CY (2019) Nontuberculous mycobacteria: insights on taxonomy and evolution. Infect Genet Evol 72:159–168

    Article  PubMed  Google Scholar 

  • Valero-Guillén PL, Martín Luengo F, Larsson L, Jimenez J (1987) Demonstration of some 2-methyl branched-chain fatty acids in some rapid- growing mycobacteria. FEMS Microbiol Lett 44:303–305

    Article  Google Scholar 

  • Valero-Guillén P, Martín-Luengo F, Larsson L, Jimenez J, Juhlin I, Portaels F (1988) Fatty and mycolic acids of Mycobacterium malmoense. J Clin Microbiol 26:153–154

    Article  PubMed  PubMed Central  Google Scholar 

  • van Soolingen D, Hoogenboezem T, de Haas PE, Hermans PW, Koedam MA, Teppema KS, Brennan PJ, Besra GS, Portaels F, Top J, Schouls LM, van Embden JD (1997) A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol 47:1236–1245

    Article  PubMed  Google Scholar 

  • van Summeren RP, Moody DB, Feringa BL, Minnaard AJ (2006) Total synthesis of enantiopure β-D-mannosyl phosphomycoketides from Mycobacterium tuberculosis. J Am Chem Soc 128:4546–4547

    Article  PubMed  CAS  Google Scholar 

  • Vercellone A, Puzo G (1989) New-found phenolic glycolipids in Mycobacterium bovis BCG. Presence of a diglycosylated glycolipid. J Biol Chem 264:7447–7454

    CAS  PubMed  Google Scholar 

  • Vercellone A, Rivière M, Fournié J-J, Puzo G (1988) Structural analogy between the major phenolic glycolipid antigens from two Mycobacterium species: kansasii and gastri. Chem Phys Lipids 48:129–134

    Article  CAS  Google Scholar 

  • Verma D, Stapleton M, Gadwa J, Vongtongsalee K, Schenkel AR, Chan ED, Ordway D (2019) Mycobacterium avium infection in a C3HeB/FeJ mouse model. Front Microbiol 10:693

    Google Scholar 

  • Verschoor JA, Baird MS, Grooten J (2012) Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 51:325–339

    Article  CAS  PubMed  Google Scholar 

  • Viljoen A, Gutiérrez AV, Dupont C, Ghigo E, Kremer L (2018) A simple and rapid gene disruption strategy in Mycobacterium abscessus: on the design and application of glycopeptidolipid mutants. Front Cell Infect Microbiol 8:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilkas E, Lederer E (1960) On the structure of phosphatidylinosito-dimannoside of Mycobacterium tuberculosis. Bull Soc Chim Biol (Paris) 42:1013–1022

    CAS  Google Scholar 

  • Vilkas E, Miquel AM, Lederer E (1963) On the isolation and structure of fortuitine, a peptidolipid from Mycobacterium fortuitum. Biochim Biophys Acta 70:217–218

    Article  CAS  PubMed  Google Scholar 

  • Villé C, Gastambide-Odier M (1970) Le 3-O-méthyl-L- rhamnose, sucre du mycoside G de Mycobacterium marinum. Carbohydr Res 12:97–107

    Article  Google Scholar 

  • Villeneuve M, Kawai M, Kanashima H, Watanabe M, Minnikin DE, Nakahara H (2005) Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. Biochim Biophys Acta Biomembr 1715:71–80

    Article  CAS  Google Scholar 

  • Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H (2007) Conformational behaviour of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta Biomembr 1768:1717–1726

    Article  CAS  Google Scholar 

  • Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H (2010) Differential conformational behaviours of α-mycolic acids in Langmuir monolayers and computer simulations. Chem Phys Lipids 163:569–579

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve M, Kawai M, Horiuchi K, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE (2013) Conformational folding of mycobacterial methoxy and ketomycolic acids facilitated by α-methyl trans-cyclopropane groups rather than cis-cyclopropane units. Microbiology 159:2405–2415

    Article  CAS  PubMed  Google Scholar 

  • Wallace RJ Jr (1994) Recent changes in taxonomy and disease manifestations of the rapidly growing mycobacteria. Eur J Clin Microbiol Infect Dis 13:953–960

    Article  PubMed  Google Scholar 

  • Wallace PA, Minnikin DE, Malin Ridell M (1994) Synthesis and structure of 2,3-di-O-acyl-α,α-trehalose lipid antigens from Mycobacterium fortuitum. J Chem Soc Chem Commun:329–330

    Article  CAS  Google Scholar 

  • Watanabe M, Kudoh S, Yamada Y, Iguchi K, Minnikin DE (1992) A new glycolipid from Mycobacterium avium-Mycobacterium intracellulare complex. Biochim Biophys Acta 1165:53–60

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Yamada Y, Iguchi K, Minnikin DE (1994) Structural elucidation of new phenolic glycolipids from Mycobacterium tuberculosis. Biochim Biophys Acta 1210:174–180

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Aoyagi Y, Ohta A, Minnikin DE (1997) Structures of phenolic glycolipids from Mycobacterium kansasii. Eur J Biochem 248:93–98

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Ohta A, Sasaki S-I, Minnikin DE (1999) Structure of a new glycolipid from the Mycobacterium avium-Mycobacterium intracellulare complex. J Bacteriol 181:2293–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Aoyagi Y, Ridell M, Minnikin DE (2001) Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Aoyagi Y, Mitome H, Fujita T, Naoki H, Ridell M, Minnikin DE (2002) Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology 148:1881–1902

    Article  CAS  PubMed  Google Scholar 

  • Welby-Gieusse M, Tocanne JF (1970) Configuration absolue du phtiocerol A, du phtiotriol a et de la phtiodiolone A. Tetrahedron 26:2875–2882

    Article  Google Scholar 

  • White AJ, Snow GA (1969) Isolation of mycobactins from various mycobacteria. The properties of mycobactins S and H. Biochem J 111:785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolucka BA, de Hoffmann E (1994) Mass spectrometric analysis of prenyl phosphates and their glycosylated forms. Acta Biochim Pol 41:345–349

    Article  CAS  PubMed  Google Scholar 

  • Wolucka BA, de Hoffmann E (1995) The presence of β-D-ribosyl-1-monophosphodecaprenol in mycobacteria. J Biol Chem 270:20151–20155

    Article  CAS  PubMed  Google Scholar 

  • Wolucka BA, de Hoffmann E (1998) Isolation and characterization of the major form of polyprenyl-phospho-mannose from Mycobacterium smegmatis. Glycobiology 8:955–962

    Article  CAS  PubMed  Google Scholar 

  • Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ (1994) Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269:23328–23335

    CAS  PubMed  Google Scholar 

  • Wright CC, Hsu FF, Arnett E, Dunaj JL, Davidson PM, Pacheco SA, Harriff MJ, Lewinsohn DM, Schlesinger LS, Purdy GE (2017) The Mycobacterium tuberculosis MmpL11 cell wall lipid transporter is important for biofilm formation, intracellular growth and non-replicating persistence. Infect Immun 85:e00131–e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabusaki KK, Ballou CE (1979) Effect of polymethylpolysaccharides on the hydrolysis of palmitoyl coenzyme A by a thioesterase from Mycobacterium smegmatis. J Biol Chem 254:12314–12317

    CAS  PubMed  Google Scholar 

  • Yabusaki KK, Cohen RE, Ballou CE (1979) Conformational changes associated with complex formation between a mycobacterial polymethylpolysaccharide and palmitic acid. J Biol Chem 254:7282–7286

    CAS  PubMed  Google Scholar 

  • Yokoyama K, Ballou CE (1989) Synthesis of α1→6-mannooligosaccharides in Mycobacterium smegmatis. Function of β-mannosylphosphoryldecaprenol as the mannosyl donor. J Biol Chem 264:21621–21628

    CAS  PubMed  Google Scholar 

  • Yoshimura J, Aqeel A, Sato K-I, Singh RB, Hashimoto H (1987) Synthesis of novel branched chain amino sugars: methyl-L-sibirosaminide and N-acyl-kansosamine. Carbohydr Res 166:253–262

    Article  CAS  Google Scholar 

  • Young DC, Layre E, Pan SJ, Tapley A, Adamson J, Seshadri C, Wu Z, Buter J, Minnaard AJ, Coscolla M, Gagneux S, Copin R, Ernst JD, Bishai WR, Snider BB, Moody DB (2015) In vivo biosynthesis of terpene nucleosides provides unique chemical markers of Mycobacterium tuberculosis infection. Chem Biol 22:516–526

    Article  CAS  Google Scholar 

  • Ziegler T (1994) Synthesis of 5-aminopentyl mono- to tri-saccharide haptens related to the species-specific glycopeptidolipids of Mycobacterium avium-intracellulare serovars 8 and 21. Carbohydr Res 253:151–166

    Article  CAS  PubMed  Google Scholar 

  • Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Support to PJB from USA NIH/NIAID grants AI018357 and AI064798 and to DEM from UK Medical Research Council Programme Grant MR/S000542/1 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Minnikin .

Editor information

Editors and Affiliations

Additional information

Dedication: To the memory of Philip Draper (1936–2019), a scientist of the highest integrity whose outstanding research in lipid chemistry and biochemistry was fundamental in the characterization of the leprosy bacillus and related mycobacteria.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Minnikin, D.E., Brennan, P.J. (2020). Lipids of Clinically Significant Mycobacteria. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics