Skip to main content

Mechanisms of Irritant and Allergic Contact Dermatitis

  • Living reference work entry
  • First Online:
Contact Dermatitis

Abstract

The skin forms a barrier that protects the organism against infection, UV light, and other challenges. Resident and recruited immune cells maintain the immunologic homeostasis and react to its disturbance by injury, infection, irritant chemicals and contact allergens, and many other challenges. Chemical irritants and contact allergens cause skin inflammation resulting in T cell-independent irritant or T cell-mediated allergic contact dermatitis. Understanding the structure and function of the skin barrier, the role of different immune cell types and the mechanisms of inflammation will promote the development of mechanism-based treatment strategies for contact dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Eyerich S, Eyerich K, Traidl-Hoffmann C, Biedermann T (2018) Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol 39:315–327

    Article  CAS  PubMed  Google Scholar 

  2. Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241

    Article  CAS  PubMed  Google Scholar 

  3. Elias PM (2008) Skin barrier function. Curr Allergy Asthma Rep 8:299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44s–49s

    Article  CAS  PubMed  Google Scholar 

  5. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  6. O’Regan GM, Sandilands A, McLean WHI, Irvine AD (2008) Filaggrin in atopic dermatitis. J Allergy Clin Immunol 122:689–693

    Article  PubMed  CAS  Google Scholar 

  7. Grubauer G, Elias PM, Feingold KR (1989) Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 30:323–333

    CAS  PubMed  Google Scholar 

  8. Di MP, Perera GK, Nestle FO (2011) The multitasking organ: recent insights into skin immune function. Immunity 35:857–869

    Article  CAS  Google Scholar 

  9. Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14:289–301

    Article  CAS  PubMed  Google Scholar 

  10. Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14:978–985

    Article  CAS  PubMed  Google Scholar 

  11. Havran WL, Jameson JM (2010) Epidermal T cells and wound healing. J Immunol 184:5423–5428

    Article  CAS  PubMed  Google Scholar 

  12. Smith HR, Basketter DA, McFadden JP (2002) Irritant dermatitis, irritancy and its role in allergic contact dermatitis. Clin Exp Dermatol 27:138–146

    Article  PubMed  Google Scholar 

  13. Loffler H, Effendy I (1999) Skin susceptibility of atopic individuals. Contact Dermatitis 40:239–242

    Article  CAS  PubMed  Google Scholar 

  14. Klas PA, Corey G, Storrs FJ, Chan SC, Hanifin JM (1996) Allergic and irritant patch test reactions and atopic disease. Contact Dermatitis 34:121–124

    Article  CAS  PubMed  Google Scholar 

  15. de Jongh CM, Khrenova L, Verberk MM, Calkoen F, van Dijk FJ, Voss H, John SM, Kezic S (2008) Loss-of-function polymorphisms in the filaggrin gene are associated with an increased susceptibility to chronic irritant contact dermatitis: a case-control study. Br J Dermatol 159:621–627

    Article  PubMed  CAS  Google Scholar 

  16. Visser MJ, Verberk MM, Campbell LE, McLean WH, Calkoen F, Bakker JG, van Dijk FJ, Bos JD, Kezic S (2014) Filaggrin loss-of-function mutations and atopic dermatitis as risk factors for hand eczema in apprentice nurses: part II of a prospective cohort study. Contact Dermatitis 70:139–150

    Article  PubMed  Google Scholar 

  17. Visser MJ, Landeck L, Campbell LE, McLean WHI, Weidinger S, Calkoen F, John SM, Kezic S (2013) Impact of atopic dermatitis and loss-of-function mutations in the filaggrin gene on the development of occupational irritant contact dermatitis. Br J Dermatol 168:326–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Angelova-Fischer I, Stilla T, Kezic S, Fischer TW, Zillikens D (2016) Barrier function and natural moisturizing factor levels after cumula-tive exposure to short-chain aliphatic alcohols and detergents: results of occlusion-modified tandem repeated irritation test. Acta Derm Venereol 96:880–884

    Article  CAS  PubMed  Google Scholar 

  19. Koppes SA, Ljubojevic HS, Jakasa I, Franceschi N, Riethmuller C, Jurakic TR, Marinovic B, Raj N, Rawlings AV, Voegeli R, Lane ME, Haftek M, Frings-Dresen MH, Rustemeyer T, Kezic S (2017) Effect of allergens and irritants on levels of natural moisturizing factor and corneocyte morphology. Contact Dermatitis 76:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kezic S, O’Regan GM, Lutter R, Jakasa I, Koster ES, Saunders S, Caspers P, Kemperman PM, Puppels GJ, Sandilands A, Chen H, Campbell LE, Kroboth K, Watson R, Fallon PG, McLean WH, Irvine AD (2012) Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol 129:1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS (2011) Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br J Dermatol 165:492–498

    Article  CAS  PubMed  Google Scholar 

  22. Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, Ogg GS (2012) IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol 21:104–110

    Article  CAS  PubMed  Google Scholar 

  23. Kim BE, Howell MD, Guttman-Yassky E, Gilleaudeau PM, Cardinale IR, Boguniewicz M, Krueger JG, Leung DY (2011) TNF-alpha downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-alpha antagonists to improve skin barrier. J Invest Dermatol 131:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim JH, Bae HC, Ko NY, Lee SH, Jeong SH, Lee H, Ryu WI, Kye YC, Son SW (2015) Thymic stromal lymphopoietin downregulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. J Allergy Clin Immunol 136:205–208

    Article  CAS  PubMed  Google Scholar 

  25. Clemmensen A, Andersen KE, Clemmensen O, Tan Q, Petersen TK, Kruse TA, Thomassen M (2010) Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid. J Invest Dermatol 130:2201–2210

    Article  CAS  PubMed  Google Scholar 

  26. Luckett-Chastain LR, Gipson JR, Gillaspy AF, Gallucci RM (2018) Transcriptional profiling of irritant contact dermatitis (ICD) in a mouse model identifies specific patterns of gene expression and immune-regulation. Toxicology 410:1–9

    Article  CAS  PubMed  Google Scholar 

  27. Landsteiner K, Jacobs J (1935) STUDIES ON THE SENSITIZATION OF ANIMALS WITH SIMPLE CHEMICAL COMPOUNDS. J Exp Med 61:643–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Landsteiner K, Chase MW (1939) STUDIES ON THE SENSITIZATION OF ANIMALS WITH SIMPLE CHEMICAL COMPOUNDS : VI. EXPERIMENTS ON THE SENSITIZATION OF GUINEA PIGS TO POISON IVY. J Exp Med 69:767–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller SD, Butler LD (1983) T cell responses induced by the parenteral injection of antigen-modified syngeneic cells. I. Induction, characterization, and regulation of antigen-specific T helper cells involved in delayed-type hypersensitivity responses. J Immunol 131:77–85

    CAS  PubMed  Google Scholar 

  30. Miller SD, Jenkins MK (1985) In vivo effects of GK1.5 (anti-L3T4a) monoclonal antibody on induction and expression of delayed-type hypersensitivity. Cell Immunol 92:414–426

    Article  CAS  PubMed  Google Scholar 

  31. Pouillot A, Dayan N, Polla AS, Polla LL, Polla BS (2008) The stratum corneum: a double paradox. J Cosmet Dermatol 7:143–148

    Article  PubMed  Google Scholar 

  32. Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, Patzelt A (2011) Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm 77:465–468

    Article  CAS  PubMed  Google Scholar 

  33. Novak N, Baurecht H, Schafer T, Rodriguez E, Wagenpfeil S, Klopp N, Heinrich J, Behrendt H, Ring J, Wichmann E, Illig T, Weidinger S (2008) Loss-of-function mutations in the filaggrin gene and allergic contact sensitization to nickel. J Invest Dermatol 128:1430–1435

    Article  CAS  PubMed  Google Scholar 

  34. Thyssen JP, Johansen JD, Linneberg A, Menne T, Nielsen NH, Meldgaard M, Szecsi PB, Stender S, Carlsen BC (2010) The association between null mutations in the filaggrin gene and contact sensitization to nickel and other chemicals in the general population. Br J Dermatol 162:1278–1285

    Article  CAS  Google Scholar 

  35. Moniaga CS, Egawa G, Kawasaki H, Hara-Chikuma M, Honda T, Tanizaki H, Nakajima S, Otsuka A, Matsuoka H, Kubo A, Sakabe J, Tokura Y, Miyachi Y, Amagai M, Kabashima K (2010) Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract. Am J Pathol 176:2385–2393

    Article  PubMed  PubMed Central  Google Scholar 

  36. Scharschmidt TC, Man MQ, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP, Silva KA, Mauro TM, Hupe M, Cho S, Wu Y, Celli A, Schmuth M, Feingold KR, Elias PM (2009) Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol 124:496–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oyoshi MK, Murphy GF, Geha RS (2009) Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol 124:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petersen TH, Jee MH, Gadsboll AO, Schmidt JD, Sloth JJ, Sonnenberg GF, Geisler C, Thyssen JP, Bonefeld CM (2018) Mice with epidermal filaggrin deficiency show increased immune reactivity to nickel. Contact Dermatitis 80:139–148

    Article  PubMed  CAS  Google Scholar 

  39. Kim D, Lee NR, Park SY, Jun M, Lee K, Kim S, Park CS, Liu KH, Choi EH (2017) As in atopic dermatitis, nonlesional skin in allergic contact dermatitis displays abnormalities in barrier function and ceramide content. J Invest Dermatol 137:748–750

    Article  CAS  PubMed  Google Scholar 

  40. Martin SF (2012) Contact dermatitis: from pathomechanisms to immunotoxicology. Exp Dermatol 21:382–389

    Article  CAS  PubMed  Google Scholar 

  41. Martin SF (2015) New concepts in cutaneous allergy. Contact Dermatitis 72:2–10

    Article  PubMed  Google Scholar 

  42. Martin SF, Esser PR, Schmucker S, Dietz L, Naisbitt DJ, Park BK, Vocanson M, Nicolas JF, Keller M, Pichler WJ, Peiser M, Luch A, Wanner R, Maggi E, Cavani A, Rustemeyer T, Richter A, Thierse HJ, Sallusto F (2010) T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 67:4171–4184

    Article  CAS  PubMed  Google Scholar 

  43. Hoper T, Mussotter F, Haase A, Luch A, Tralau T (2017) Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res (Camb) 6:595–610

    Article  Google Scholar 

  44. Gouin O, L’Herondelle K, Lebonvallet N, Le Gall-Ianotto C, Sakka M, Buhe V, Plee-Gautier E, Carre JL, Lefeuvre L, Misery L, Le GR (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8:644–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A, Peschke K, Vohringer D, Waskow C, Krieg T, Muller W, Waisman A, Hartmann K, Gunzer M, Roers A (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34:973–984

    Article  CAS  PubMed  Google Scholar 

  46. Weber FC, Nemeth T, Csepregi JZ, Dudeck A, Roers A, Ozsvari B, Oswald E, Puskas LG, Jakob T, Mocsai A, Martin SF (2015) Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J Exp Med 212:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sapoznikov A, Jung S (2008) Probing in vivo dendritic cell functions by conditional cell ablation. Immunol Cell Biol 86:409–415

    Article  CAS  PubMed  Google Scholar 

  48. Dudeck J, Ghouse SM, Lehmann CH, Hoppe A, Schubert N, Nedospasov SA, Dudziak D, Dudeck A (2015) Mast-cell-derived TNF amplifies CD8(+) dendritic cell functionality and CD8(+) T cell priming. Cell Rep 13:399–411

    Article  CAS  PubMed  Google Scholar 

  49. Dudeck J, Froebel J, Kotrba J, Lehmann CHK, Dudziak D, Speier S, Nedospasov SA, Schraven B, Dudeck A (2018) Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. J Allergy Clin Immunol 143:1849–1864

    Article  CAS  Google Scholar 

  50. Engeman T, Gorbachev AV, Kish DD, Fairchild RL (2004) The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol 76:941–949

    Article  CAS  PubMed  Google Scholar 

  51. Gimenez-Rivera VA, Siebenhaar F, Zimmermann C, Siiskonen H, Metz M, Maurer M (2016) Mast cells limit the exacerbation of chronic allergic contact dermatitis in response to repeated allergen exposure. J Immunol 197:4240–4246

    Article  CAS  PubMed  Google Scholar 

  52. Antonopoulos C, Cumberbatch M, Dearman RJ, Daniel RJ, Kimber I, Groves RW (2001) Functional caspase-1 is required for Langerhans cell migration and optimal contact sensitization in mice. J Immunol 166:3672–3677

    Article  CAS  PubMed  Google Scholar 

  53. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW, Flavell RA (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe H, Gaide O, Petrilli V, Martinon F, Contassot E, Roques S, Kummer JA, Tschopp J, French LE (2007) Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 127:1956–1963

    Article  CAS  PubMed  Google Scholar 

  55. Esser PR, Wolfle U, Durr C, von Loewenich FD, Schempp CM, Freudenberg MA, Jakob T, Martin SF (2012) Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PLoS One 7:e41340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin SF (2012) Allergic contact dermatitis: xenoinflammation of the skin. Curr Opin Immunol 24:720–729

    Article  CAS  PubMed  Google Scholar 

  57. Luis A, Martins JD, Silva A, Ferreira I, Cruz MT, Neves BM (2014) Oxidative stress-dependent activation of the eIF2alpha-ATF4 unfolded protein response branch by skin sensitizer 1-fluoro-2,4-dinitrobenzene modulates dendritic-like cell maturation and inflammatory status in a biphasic manner [corrected]. Free Radic Biol Med 77:217–229

    Article  CAS  PubMed  Google Scholar 

  58. Adam C, Wohlfarth J, Haussmann M, Sennefelder H, Rodin A, Maler M, Martin SF, Goebeler M, Schmidt M (2017) Allergy-inducing chromium compounds trigger potent innate immune stimulation via ROS-dependent Inflammasome activation. J Invest Dermatol 137:367–376

    Article  CAS  PubMed  Google Scholar 

  59. Nakamura N, Tamagawa-Mineoka R, Ueta M, Kinoshita S, Katoh N (2015) Toll-like receptor 3 increases allergic and irritant contact dermatitis. J Invest Dermatol 135:411–417

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt M, Raghavan B, Muller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen PJ, Galanos C, Roth J, Skerra A, Martin SF, Freudenberg MA, Goebeler M (2010) Crucial role for human toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11:814–819

    Article  CAS  PubMed  Google Scholar 

  61. Raghavan B, Martin SF, Esser PR, Goebeler M, Schmidt M (2012) Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep 13:1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BM, Scheper RJ, van Hoogstraten IM (2013) Transition metal sensing by toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis 68:331–338

    Article  CAS  PubMed  Google Scholar 

  63. Bechara R, Antonios D, Azouri H, Pallardy M (2017) Nickel sulfate promotes IL-17A producing CD4+ T cells by an IL-23-dependent mechanism regulated by TLR4 and Jak-STAT pathways. J Invest Dermatol 137:2140–2148

    Article  CAS  PubMed  Google Scholar 

  64. Hacini-Rachinel F, Gomez de AM, Kanjarawi R, Moro-Sibilot L, Le Luduec JB, Macari C, Boschetti G, Bardel E, Langella P, Dubois B, Kaiserlian D (2018) Intestinal dendritic cell licensing through toll-like receptor 4 is required for oral tolerance in allergic contact dermatitis. J Allergy Clin Immunol 141:163–170

    Article  CAS  PubMed  Google Scholar 

  65. Petersen B, Wolf M, Austermann J, van Lent P, Foell D, Ahlmann M, Kupas V, Loser K, Sorg C, Roth J, Vogl T (2013) The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J 32:100–111

    Article  CAS  PubMed  Google Scholar 

  66. Uzi D, Barda L, Scaiewicz V, Mills M, Mueller T, Gonzalez-Rodriguez A, Valverde AM, Iwawaki T, Nahmias Y, Xavier R, Chung RT, Tirosh B, Shibolet O (2013) CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol 59:495–503

    Article  CAS  PubMed  Google Scholar 

  67. Toksoy A, Sennefelder H, Adam C, Hofmann S, Trautmann A, Goebeler M, Schmidt M (2017) Potent NLRP3 inflammasome activation by the HIV reverse transcriptase inhibitor Abacavir. J Biol Chem 292:2805–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nooka S, Ghorpade A (2017) HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 3:17061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin SF (2014) Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 71:4115–4130

    Article  CAS  PubMed  Google Scholar 

  70. Pedersen LK, Johansen JD, Held E, Agner T (2004) Augmentation of skin response by exposure to a combination of allergens and irritants – a review. Contact Dermatitis 50:265–273

    Article  CAS  PubMed  Google Scholar 

  71. Bonefeld CM, Nielsen MM, Rubin IM, Vennegaard MT, Dabelsteen S, Gimenez-Arnau E, Lepoittevin JP, Geisler C, Johansen JD (2011) Enhanced sensitization and elicitation responses caused by mixtures of common fragrance allergens. Contact Dermatitis 65:336–342

    Article  CAS  PubMed  Google Scholar 

  72. Bonefeld CM, Geisler C, Gimenez-Arnau E, Lepoittevin JP, Uter W, Johansen JD (2017) Immunological, chemical and clinical aspects of exposure to mixtures of contact allergens. Contact Dermatitis 77:133–142

    Article  PubMed  Google Scholar 

  73. Schutte RJ, Sun Y, Li D, Zhang F, Ostrov DA (2018) Human leukocyte antigen associations in drug hypersensitivity reactions. Clin Lab Med 38:669–677

    Article  PubMed  Google Scholar 

  74. Pichler WJ, Adam J, Watkins S, Wuillemin N, Yun J, Yerly D (2015) Drug hypersensitivity: how drugs stimulate T cells via pharmacological interaction with immune receptors. Int Arch Allergy Immunol 168:13–24

    Article  CAS  PubMed  Google Scholar 

  75. Deckers J, Hammad H, Hoste E (2018) Langerhans cells: sensing the environment in health and disease. Front Immunol 9:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Clausen BE, Stoitzner P (2015) Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front Immunol 6:534

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dudda JC, Lembo A, Bachtanian E, Huehn J, Siewert C, Hamann A, Kremmer E, Forster R, Martin SF (2005) Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. Eur J Immunol 35:1056–1065

    Article  CAS  PubMed  Google Scholar 

  78. Kim JH, Hu Y, Yongqing T, Kim J, Hughes VA, Le NJ, Marquez EA, Purcell AW, Wan Q, Sugita M, Rossjohn J, Winau F (2016) CD1a on Langerhans cells controls inflammatory skin disease. Nat Immunol 17:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Betts RJ, Perkovic A, Mahapatra S, Del BA, Camara K, Howell AR, Martinozzi TS, De LG, Mori L (2017) Contact sensitizers trigger human CD1-autoreactive T-cell responses. Eur J Immunol 47:1171–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Balato A, Zhao Y, Harberts E, Groleau P, Liu J, Fishelevich R, Gaspari AA (2012) CD1d-dependent, iNKT-cell cytotoxicity against keratinocytes in allergic contact dermatitis. Exp Dermatol 21:915–920

    Article  CAS  PubMed  Google Scholar 

  81. Goubier A, Vocanson M, Macari C, Poyet G, Herbelin A, Nicolas JF, Dubois B, Kaiserlian D (2013) Invariant NKT cells suppress CD8(+) T-cell-mediated allergic contact dermatitis independently of regulatory CD4(+) T cells. J Invest Dermatol 133:980–987

    Article  CAS  PubMed  Google Scholar 

  82. Nielsen MM, Lovato P, MacLeod AS, Witherden DA, Skov L, Dyring-Andersen B, Dabelsteen S, Woetmann A, Odum N, Havran WL, Geisler C, Bonefeld CM (2014) IL-1beta-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Immunol 192:2975–2983

    Article  CAS  PubMed  Google Scholar 

  83. Nielsen MM, Dyring-Andersen B, Schmidt JD, Witherden D, Lovato P, Woetmann A, Odum N, Poulsen SS, Havran WL, Geisler C, Bonefeld CM (2015) NKG2D-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Invest Dermatol 135:1311–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adams EJ, Gu S, Luoma AM (2015) Human gamma delta T cells: evolution and ligand recognition. Cell Immunol 296:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deniger DC, Moyes JS, Cooper LJ (2014) Clinical applications of gamma delta T cells with multivalent immunity. Front Immunol 5:636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    Article  CAS  PubMed  Google Scholar 

  87. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  88. Muller G, Saloga J, Germann T, Schuler G, Knop J, Enk AH (1995) IL-12 as mediator and adjuvant for the induction of contact sensitivity in vivo. J Immunol 155:4661–4668

    CAS  PubMed  Google Scholar 

  89. Riemann H, Schwarz A, Grabbe S, Aragane Y, Luger TA, Wysocka M, Kubin M, Trinchieri G, Schwarz T (1996) Neutralization of IL-12 in vivo prevents induction of contact hypersensitivity and induces hapten-specific tolerance. J Immunol 156:1799–1803

    CAS  PubMed  Google Scholar 

  90. Liu B, Tai Y, Achanta S, Kaelberer MM, Caceres AI, Shao X, Fang J, Jordt SE (2016) IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci U S A 113:E7572–E7579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suto H, Nambu A, Morita H, Yamaguchi S, Numata T, Yoshizaki T, Shimura E, Arae K, Asada Y, Motomura K, Kaneko M, Abe T, Matsuda A, Iwakura Y, Okumura K, Saito H, Matsumoto K, Sudo K, Nakae S (2018) IL-25 enhances TH17 cell-mediated contact dermatitis by promoting IL-1beta production by dermal dendritic cells. J Allergy Clin Immunol 142:1500–1509

    Article  CAS  PubMed  Google Scholar 

  92. Shigeno T, Katakuse M, Fujita T, Mukoyama Y, Watanabe H (2009) Phthalate ester-induced thymic stromal lymphopoietin mediates allergic dermatitis in mice. Immunology 128:e849–e857

    Article  PubMed  PubMed Central  Google Scholar 

  93. Larson RP, Zimmerli SC, Comeau MR, Itano A, Omori M, Iseki M, Hauser C, Ziegler SF (2010) Dibutyl phthalate-induced thymic stromal lymphopoietin is required for Th2 contact hypersensitivity responses. J Immunol 184:2974–2984

    Article  CAS  PubMed  Google Scholar 

  94. Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R (2018) Insights into the molecular mechanisms of T follicular helper-mediated immunity and pathology. Front Immunol 9:1884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Larsen JM, Bonefeld CM, Poulsen SS, Geisler C, Skov L (2008) IL-23 and Th17 mediated inflammation in human allergic contact dermatitis. J Allergy Clin Immunol 123:486–492

    Article  CAS  Google Scholar 

  97. Annunziato F, Romagnani C, Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 135:626–635

    Article  CAS  PubMed  Google Scholar 

  98. Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370:650–652

    Article  CAS  PubMed  Google Scholar 

  99. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  PubMed  Google Scholar 

  100. Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161

    Article  CAS  PubMed  Google Scholar 

  101. Gebhardt T, Mueller SN, Heath WR, Carbone FR (2013) Peripheral tissue surveillance and residency by memory T cells. Trends Immunol 34:27–32

    Article  CAS  PubMed  Google Scholar 

  102. Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S, Desmarais C, Robins H, Krueger JG, Clark RA, Kupper TS (2015) Common clonal origin of central and resident memory T cells following skin immunization. Nat Med 21:647–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmidt JD, Ahlstrom MG, Johansen JD, Dyring-Andersen B, Agerbeck C, Nielsen MM, Poulsen SS, Woetmann A, Odum N, Thomsen AR, Geisler C, Bonefeld CM (2017) Rapid allergen-induced interleukin-17 and interferon-gamma secretion by skin-resident memory CD8(+) T cells. Contact Dermatitis 76:218–227

    Article  CAS  PubMed  Google Scholar 

  104. Gamradt P, Laoubi L, Nosbaum A, Mutez V, Lenief V, Grande S, Redoules D, Schmitt AM, Nicolas JF, Vocanson M (2019) Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J Allergy Clin Immunol 143:2147–2157

    Article  CAS  Google Scholar 

  105. Gocinski BL, Tigelaar RE (1990) Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J Immunol 144:4121–4128

    CAS  PubMed  Google Scholar 

  106. Kondo S, Beissert S, Wang B, Fujisawa H, Kooshesh F, Stratigos A, Granstein RD, Mak TW, Sauder DN (1996) Hyporesponsiveness in contact hypersensitivity and irritant contact dermatitis in CD4 gene targeted mouse. J Invest Dermatol 106:993–1000

    Article  CAS  PubMed  Google Scholar 

  107. Wang B, Fujisawa H, Zhuang L, Freed I, Howell BG, Shahid S, Shivji GM, Mak TW, Sauder DN (2000) CD4+ Th1 and CD8+ type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity. J Immunol 165:6783–6790

    Article  CAS  PubMed  Google Scholar 

  108. Akiba H, Kehren J, Ducluzeau MT, Krasteva M, Horand F, Kaiserlian D, Kaneko F, Nicolas JF (2002) Skin inflammation during contact hypersensitivity is mediated by early recruitment of CD8+ T cytotoxic 1 cells inducing keratinocyte apoptosis. J Immunol 168:3079–3087

    Article  CAS  PubMed  Google Scholar 

  109. Kehren J, Desvignes C, Krasteva M, Ducluzeau MT, Assossou O, Horand F, Hahne M, Kagi D, Kaiserlian D, Nicolas JF (1999) Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity. J Exp Med 189:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu H, DiIulio NA, Fairchild RL (1996) T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (Il) 4/Il-10-producing (Th2) negative regulatory CD4+ T cells. J Exp Med 183:1001–1012

    Article  CAS  PubMed  Google Scholar 

  111. Xu H, Banerjee A, Dilulio NA, Fairchild RL (1997) Development of effector CD8+ T cells in contact hypersensitivity occurs independently of CD4+ T cells. J Immunol 158:4721–4728

    CAS  PubMed  Google Scholar 

  112. Albanesi C, Cavani A, Girolomoni G (1999) IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 162:494–502

    CAS  PubMed  Google Scholar 

  113. Cavani A, Mei D, Guerra E, Corinti S, Giani M, Pirrotta L, Puddu P, Girolomoni G (1998) Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J Invest Dermatol 111:621–628

    Article  CAS  PubMed  Google Scholar 

  114. Sinigaglia F, Scheidegger D, Garotta G, Scheper R, Pletscher M, Lanzavecchia A (1985) Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis. J Immunol 135:3929–3932

    CAS  PubMed  Google Scholar 

  115. Moed H, Boorsma DM, Stoof TJ, von Blomberg BM, Bruynzeel DP, Scheper RJ, Gibbs S, Rustemeyer T (2004) Nickel-responding T cells are CD4+ CLA+ CD45RO+ and express chemokine receptors CXCR3, CCR4 and CCR10. Br J Dermatol 151:32–41

    Article  CAS  PubMed  Google Scholar 

  116. Dyring-Andersen B, Skov L, Lovendorf MB, Bzorek M, Sondergaard K, Lauritsen JP, Dabelsteen S, Geisler C, Bonefeld CM (2013) CD4(+) T cells producing interleukin (IL)-17, IL-22 and interferon-gamma are major effector T cells in nickel allergy. Contact Dermatitis 68:339–347

    Article  CAS  PubMed  Google Scholar 

  117. Kalish RS, Johnson KL (1990) Enrichment and function of urushiol (poison ivy)-specific T lymphocytes in lesions of allergic contact dermatitis to urushiol. J Immunol 145:3706–3713

    CAS  PubMed  Google Scholar 

  118. Coulter EM, Jenkinson C, Farrell J, Lavergne SN, Pease C, White A, Aleksic M, Basketter D, Williams DP, King C, Pirmohamed M, Park BK, Naisbitt DJ (2010) Measurement of CD4+ and CD8+ T-lymphocyte cytokine secretion and gene expression changes in p-phenylenediamine allergic patients and tolerant individuals. J Invest Dermatol 130:161–174

    Article  CAS  PubMed  Google Scholar 

  119. Albanesi C, Cavani A, Girolomoni G (1998) Interferon-gamma-stimulated human keratinocytes express the genes necessary for the production of peptide-loaded MHC class II molecules. J Invest Dermatol 110:138–142

    Article  CAS  PubMed  Google Scholar 

  120. Ju ST, Panka DJ, Cui H, Ettinger R, el-Khatib M, Sherr DH, Stanger BZ, Marshak-Rothstein A (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448

    Article  CAS  PubMed  Google Scholar 

  121. Stalder T, Hahn S, Erb P (1994) Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol 152:1127–1133

    CAS  PubMed  Google Scholar 

  122. Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, Noll M, Brocker EB, Blaser K, Akdis CA (2000) T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Brocker EB, Blaser K, Akdis CA (2001) Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol 108:839–846

    Article  CAS  PubMed  Google Scholar 

  124. Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G (2000) Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol 115:81–87

    Article  CAS  PubMed  Google Scholar 

  125. Barker JN, Sarma V, Mitra RS, Dixit VM, Nickoloff BJ (1990) Marked synergism between tumor necrosis factor-alpha and interferon-gamma in regulation of keratinocyte-derived adhesion molecules and chemotactic factors. J Clin Invest 85:605–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li J, Ireland GW, Farthing PM, Thornhill MH (1996) Epidermal and oral keratinocytes are induced to produce RANTES and IL-8 by cytokine stimulation. J Invest Dermatol 106:661–666

    Article  CAS  PubMed  Google Scholar 

  127. Asada H, Linton J, Katz SI (1997) Cytokine gene expression during the elicitation phase of contact sensitivity: regulation by endogenous IL-4. J Invest Dermatol 108:406–411

    Article  CAS  PubMed  Google Scholar 

  128. Gautam SC, Chikkala NF, Hamilton TA (1992) Anti-inflammatory action of IL-4. Negative regulation of contact sensitivity to trinitrochlorobenzene. J Immunol 148:1411–1415

    CAS  PubMed  Google Scholar 

  129. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095

    Article  CAS  PubMed  Google Scholar 

  130. Peleman R, Wu J, Fargeas C, Delespesse G (1989) Recombinant interleukin 4 suppresses the production of interferon gamma by human mononuclear cells. J Exp Med 170:1751–1756

    Article  CAS  PubMed  Google Scholar 

  131. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17:375–387

    Article  CAS  PubMed  Google Scholar 

  132. van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC (2007) Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 7:374–381

    Article  PubMed  Google Scholar 

  133. Pennino D, Eyerich K, Scarponi C, Carbone T, Eyerich S, Nasorri F, Garcovich S, Traidl-Hoffmann C, Albanesi C, Cavani A (2010) IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol 184:4880–4888

    Article  CAS  PubMed  Google Scholar 

  134. He D, Wu L, Kim HK, Li H, Elmets CA, Xu H (2006) CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol 177:6852–6858

    Article  CAS  PubMed  Google Scholar 

  135. He D, Wu L, Kim HK, Li H, Elmets CA, Xu H (2009) IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol 183:1463–1470

    Article  CAS  PubMed  Google Scholar 

  136. Kish DD, Gorbachev AV, Fairchild RL (2005) CD8+ T cells produce IL-2, which is required for CD(4+)CD25+ T cell regulation of effector CD8+ T cell development for contact hypersensitivity responses. J Leukoc Biol 78:725–735

    Article  CAS  PubMed  Google Scholar 

  137. Ptak W, Askenase PW (1992) Gamma delta T cells assist alpha beta T cells in adoptive transfer of contact sensitivity. J Immunol 149:3503–3508

    CAS  PubMed  Google Scholar 

  138. Cruz PD Jr, Nixon-Fulton J, Tigelaar RE, Bergstresser PR (1989) Disparate effects of in vitro low-dose UVB irradiation on intravenous immunization with purified epidermal cell subpopulations for the induction of contact hypersensitivity. J Invest Dermatol 92:160–165

    Article  PubMed  Google Scholar 

  139. Dieli F, Ptak W, Sireci G, Romano GC, Potestio M, Salerno A, Asherson GL (1998) Cross-talk between V beta 8+ and gamma delta+ T lymphocytes in contact sensitivity. Immunology 93:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dieli F, Asherson GL, Sireci G, Dominici R, Gervasi F, Vendetti S, Colizzi V, Salerno A (1997) gamma delta cells involved in contact sensitivity preferentially rearrange the Vgamma3 region and require interleukin-7. Eur J Immunol 27:206–214

    Article  CAS  PubMed  Google Scholar 

  141. Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC, Tigelaar RE (2002) Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 195:855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Guan H, Zu G, Slater M, Elmets C, Xu H (2002) GammadeltaT cells regulate the development of hapten-specific CD8+ effector T cells in contact hypersensitivity responses. J Invest Dermatol 119:137–142

    Article  CAS  PubMed  Google Scholar 

  143. Huber H, Descossy P, van Brandwijk R, Knop J (1995) Activation of murine epidermal TCR-gamma delta+ T cells by keratinocytes treated with contact sensitizers. J Immunol 155:2888–2894

    CAS  PubMed  Google Scholar 

  144. Sullivan S, Bergstresser PR, Tigelaar RE, Streilein JW (1986) Induction and regulation of contact hypersensitivity by resident, bone marrow-derived, dendritic epidermal cells: Langerhans cells and Thy-1+ epidermal cells. J Immunol 137:2460–2467

    CAS  PubMed  Google Scholar 

  145. Welsh EA, Kripke ML (1990) Murine Thy-1+ dendritic epidermal cells induce immunologic tolerance in vivo. J Immunol 144:883–891

    CAS  PubMed  Google Scholar 

  146. Jiang X, Park CO, Geddes SJ, Yoo MJ, Gaide O, Kupper TS (2017) Dermal gammadelta T cells do not freely re-circulate out of skin and produce IL-17 to promote neutrophil infiltration during primary contact hypersensitivity. PLoS One 12:e0169397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Grolnick M (1941) The spontaneous flare-up of negative test-sites in experimental sensitization in Man. J Immunol 41:127–142

    Google Scholar 

  148. Jacob SE, Barland C, ElSaie ML (2008) Patch-test-induced “flare-up” reactions to neomycin at prior biopsy sites. Dermatitis 19:E46–E48

    Article  PubMed  Google Scholar 

  149. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS (2006) The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176:4431–4439

    Article  CAS  PubMed  Google Scholar 

  150. Cavani A, Nasorri F, Ottaviani C, Sebastiani S, De PO, Girolomoni G (2003) Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol 171:5760–5768

    Article  CAS  PubMed  Google Scholar 

  151. Fjelbye J, Antvorskov JC, Buschard K, Issazadeh-Navikas S, Engkilde K (2015) CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells. Exp Dermatol 24:853–856

    Article  CAS  PubMed  Google Scholar 

  152. Schmidt T, Lorenz N, Raker VK, Schmidgen MI, Mahnke K, Enk A, Roth J, Steinbrink K (2018) Allergen-specific low zone tolerance is independent of MRP8/14-, TLR4-, TLR7-, and TLR9-mediated immune processes. J Invest Dermatol 138:452–455

    Article  CAS  PubMed  Google Scholar 

  153. Kim BS (2015) Innate lymphoid cells in the skin. J Invest Dermatol 135:673–678

    Article  CAS  PubMed  Google Scholar 

  154. Bonefeld CM, Geisler C (2016) The role of innate lymphoid cells in healthy and inflamed skin. Immunol Lett 179:25–28

    Article  CAS  PubMed  Google Scholar 

  155. Rafei-Shamsabadi DA, van de Poel S, Dorn B, Kunz S, Martin SF, Klose CSN, Arnold SJ, Tanriver Y, Ebert K, Diefenbach A, Halim TYF, McKenzie ANJ, Jakob T (2018) Lack of type 2 innate lymphoid cells promotes a type I-driven enhanced immune response in contact hypersensitivity. J Invest Dermatol 138:1962–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dolch A, Kunz S, Dorn B, Roers A, Martin SF, Jakob T (2017) Contact allergens induce CD8(+) T cell-derived interleukin 10 that appears dispensable for regulation of contact hypersensitivity. Exp Dermatol 26:449–451

    Article  CAS  PubMed  Google Scholar 

  157. Sun J, Cardani A, Sharma AK, Laubach VE, Jack RS, Muller W, Braciale TJ (2011) Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus. PLoS Pathog 7:e1002173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bryniarski K, Ptak W, Jayakumar A, Pullmann K, Caplan MJ, Chairoungdua A, Lu J, Adams BD, Sikora E, Nazimek K, Marquez S, Kleinstein SH, Sangwung P, Iwakiri Y, Delgato E, Redegeld F, Blokhuis BR, Wojcikowski J, Daniel AW, Groot KT, Askenase PW (2013) Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol 132:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98:1169–1203

    Article  CAS  PubMed  Google Scholar 

  160. Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18:295–317

    Article  CAS  PubMed  Google Scholar 

  161. Ade N, Leon F, Pallardy M, Peiffer JL, Kerdine-Romer S, Tissier MH, Bonnet PA, Fabre I, Ourlin JC (2009) HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway. Toxicol Sci 107:451–460

    Article  CAS  PubMed  Google Scholar 

  162. El AZ, Gerbeix C, Hemon P, Esser PR, Martin SF, Pallardy M, Kerdine-Romer S (2013) Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2. Toxicol Sci 134:39–48

    Article  CAS  Google Scholar 

  163. Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen ML, Hummler E, Jakasa I, Jurakic-Toncic R, John SM, Khnykin D, Molin S, Holm JO, Suomela S, Thierse HJ, Kezic S, Martin SF, Thyssen JP (2017) Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis 77:1–16

    Article  PubMed  Google Scholar 

  164. Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, Andres C, Traidl-Hoffmann C, Cavani A, Theis FJ, Ring J, Schmidt-Weber CB, Eyerich S, Eyerich K (2014) Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 6:244ra90

    Article  PubMed  CAS  Google Scholar 

  165. Dhingra N, Shemer A, Correa da RJ, Rozenblit M, Fuentes-Duculan J, Gittler JK, Finney R, Czarnowicki T, Zheng X, Xu H, Estrada YD, Cardinale I, Suarez-Farinas M, Krueger JG, Guttman-Yassky E (2014) Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol 134:362–372

    Article  CAS  PubMed  Google Scholar 

  166. Leonard A, Guttman-Yassky E (2018) The unique molecular signatures of contact dermatitis and implications for treatment. Clin Rev Allergy Immunol 56:1–8

    Article  CAS  Google Scholar 

  167. Kimber I, Maxwell G, Gilmour N, Dearman RJ, Friedmann PS, Martin SF (2012) Allergic contact dermatitis: a commentary on the relationship between T lymphocytes and skin sensitising potency. Toxicology 291:18–24

    Article  CAS  PubMed  Google Scholar 

  168. Esser PR, Kimber I, Martin SF (2014) Correlation of contact sensitizer potency with T cell frequency and TCR repertoire diversity. Exp Suppl 104:101–114

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan F. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martin, S.F., Bonefeld, C.M. (2020). Mechanisms of Irritant and Allergic Contact Dermatitis. In: Johansen, J., Mahler, V., Lepoittevin, JP., Frosch, P. (eds) Contact Dermatitis. Springer, Cham. https://doi.org/10.1007/978-3-319-72451-5_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72451-5_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72451-5

  • Online ISBN: 978-3-319-72451-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics