Skip to main content

Convection-Diffusion Model of Lithium-Bismuth Liquid Metal Batteries

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

The liquid metal battery is composed of two liquid metals with different electronegativity separated by molten salt. The three layers self-segregate based on density allowing for easy manufacturing and scaling. Lithium (Li) is one of the most widely researched anode materials, and when coupled with bismuth (Bi) cathodes, it gives a liquid metal battery that has an open circuit voltage of 0.9 V. Such a system has demonstrated impressive rate capabilities, ultra-long life cycle, and low energy cost. Here we present a two-dimensional physics-based model for Lithium-Bismuth liquid metal batteries. The model takes into account dynamical changes in the battery, including surface concentration and fluid flow. By solving the convection-diffusion equation in Bi electrodes, we are able to investigate the effect fluid flow on kinetic losses and concentration profiles in real time. The outcome of this work allows us to link electrochemistry and fluid dynamics in liquid metal batteries. Moreover, the model can also be used to guide future development of battery management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Energy, Grid Energy Storage, 2013. http://energy.gov/sites/prod/files/2014/09/f18/GridEnergyStorageDecember2013.pdf

  2. Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ et al (2013) Liquid metal batteries: past, present, and future. Chem Rev:2075–2099

    Google Scholar 

  3. Wang K, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA et al (2014) Lithium–antimony–lead liquid metal battery for grid-level energy storage. Nature. 514:348–350. https://doi.org/10.1038/nature13700

    Article  Google Scholar 

  4. Ning X, Phadke S, Chung B, Yin H, Burke P, Sadoway DR (2015) Self-healing Li–Bi liquid metal battery for grid-scale energy storage. J Power Sources 275:370–376. https://doi.org/10.1016/j.jpowsour.2014.10.173

    Article  Google Scholar 

  5. Ashour RF, Yin H, Ouchi T, Kelley DH, Sadoway DR (2017) Molten amide-hydroxide-iodide electrolyte for a low-temperature sodium-based liquid metal battery. J Electrochem Soc 164:A535–A537. https://doi.org/10.1149/2.1451702jes

    Article  Google Scholar 

  6. Spatocco BL, Ouchi T, Lambotte G, Burke PJ, Sadoway DR (2015) Low-temperature molten salt electrolytes for membrane-free sodium metal batteries. J Electrochem Soc 162:A2729–A2736. https://doi.org/10.1149/2.0441514jes

    Article  Google Scholar 

  7. Ouchi T, Kim H, Spatocco BL, Sadoway DR (2016) Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat Commun 7:1–5. https://doi.org/10.1038/ncomms10999

    Article  Google Scholar 

  8. Kim H, Boysen DA, Ouchi T, Sadoway DR (2013) Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries). J. Power Sources 241:239–248. https://doi.org/10.1016/j.jpowsour.2013.04.052

    Article  Google Scholar 

  9. Xu J, Sigmund O, Sende K, Maria A, Edvard O, Martin G (2016) Na-Zn liquid metal battery. J. Power Sources. 332:274–280. https://doi.org/10.1016/j.jpowsour.2016.09.125

    Article  Google Scholar 

  10. Weier T, Bund A, El-Mofid W, Horstmann GM, Lalau C-C, Landgraf S et al (2017) Liquid metal batteries—materials selection and fluid dynamics. Mater Sci Eng 228

    Google Scholar 

  11. Masset P, Schoeffert S, Poinso J-Y, Poignet J-C (2005) LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries. J Electrochem Soc 152:A405–A410. https://doi.org/10.1149/1.1850861

    Article  Google Scholar 

  12. Weppner W, Huggins RA (1978) Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth. J Electrochem Soc 125:7–14. https://doi.org/10.1149/1.2131401

    Article  Google Scholar 

  13. Newhouse JM (2014) Modeling the operating voltage of liquid metal battery cells by, Massachusetts Institute of Technology

    Google Scholar 

  14. Newhouse JM, Poizeau S, Kim H, Spatocco BL, Sadoway DR (2013) Thermodynamic properties of calcium-magnesium alloys determined by emf measurements. Electrochim Acta 91:293–301. https://doi.org/10.1016/j.electacta.2012.11.063

    Article  Google Scholar 

  15. Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Kelley DH, Sadoway DR (2014) Mixing in a liquid metal electrode. Phys Fluids 26 https://doi.org/10.1063/1.4875815

  17. Davidson PA, He X, Lowe AJ (2000) Flow transitions in vacuum arc remelting. Mater Sci Technol 16:55–64. https://doi.org/10.1179/026708300773002663

    Article  Google Scholar 

  18. Shen Y, Zikanov O (2016) Thermal convection in a liquid metal battery. Theor Comput Fluid Dyn 30:275–294. https://doi.org/10.1007/s00162-015-0378-1

    Article  Google Scholar 

  19. Thomas K, Boeck T (2016) Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model, pp 1–26

    Google Scholar 

  20. Masset P, Guidotti RA (2007) Thermal activated (thermal) battery technology. Part II. Molten salt electrolytes. J Power Sources 164:397–414. https://doi.org/10.1016/j.jpowsour.2006.10.080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakan F. Ashour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashour, R.F., Kelley, D.H. (2018). Convection-Diffusion Model of Lithium-Bismuth Liquid Metal Batteries. In: Lambotte, G., Lee, J., Allanore, A., Wagstaff, S. (eds) Materials Processing Fundamentals 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72131-6_4

Download citation

Publish with us

Policies and ethics