Skip to main content

Toxicity of Metal Oxide Nanoparticles

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

In the recent times, nanomaterials are used in many sectors of science, medicine and industry, without revealing its toxic effects. Thus, it is in urgent need for exploring the toxicity along with the application of such useful nanomaterials. Nanomaterials are categorized with a particle size of 1–100 nm. They have gained increasing attention because of their novel properties, including a large specific surface area and high reaction activity. The various fundamental and practical applications of nanomaterials include drug delivery, cell imaging, and cancer therapy. Nanosized semiconductors have their versatile applications in different areas such as catalysts, sensors, photoelectronic devices, highly functional and effective devices etc. Metal oxides contribute in many areas of chemistry, physics and materials science. Mechanism of toxicity of metal oxide nanoparticles can occur by different methods like oxidative stress, co-ordination effects, non-homeostasis effects, genotoxicity and others. Factors that affect the metal oxide nanoparticles were size, dissolution and exposure routes. This chapter will explain elaborately the toxicity of metal oxide nano structures in living beings and their effect in ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hunter P (2008) A toxic brew we cannot live without. EMBO Rep 9(1):15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cope WG (2004) Exposure classes, toxicants in air, water, soil, domestic and occupational settings. In: A textbook of modern toxicology, p 33

    Google Scholar 

  3. Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruc Mater 6(1–4):3–14

    Article  CAS  Google Scholar 

  4. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez JA, Liu G, Jirsak T et al (2002) Activation of gold on titania: adsorption and reaction of SO2 on Au/TiO2 (110). J Am Chem Soc 124:5242–5247

    Article  CAS  PubMed  Google Scholar 

  6. Bäumer M, Freund H-J (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61(7):127–198

    Article  Google Scholar 

  7. Trudeau ML, Ying JY (1996) Nanocrystalline materials in catalysis and electrocatalysis: structure tailoring and surface reactivity. Nanostruct Mater 7(1):245–258

    Article  CAS  Google Scholar 

  8. Tachikawa S, Noguchi A, Tsuge T et al (2011) Structures and optical properties of ZnO nanoparticles capped with polyethylene glycol. Dent Mater 4:1132–1143

    CAS  Google Scholar 

  9. Amsaveni G, Farook AS, Haribabu V et al (2013) Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv Sci Eng Med 5(12):1340–1348

    Article  CAS  Google Scholar 

  10. Thurn KT, Brown EMB, Wu A et al (2007) Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2(9):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  12. Kühnel D, Marquardt C, Nau K et al (2014) Environmental impacts of nanomaterials: providing comprehensive information on exposure, transport and ecotoxicity-the project DaNa2. 0. Environ Sci Eur 26(1):21

    Article  CAS  Google Scholar 

  13. Noguera C (1996) Physics and chemistry at oxide surfaces. Cambridge University Press, New York

    Book  Google Scholar 

  14. Kung HH (1989) Transition metal oxides: surface chemistry and catalysis, vol 45. Elsevier, Amsterdam

    Google Scholar 

  15. Henrich VE, Cox PA (1996) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  16. Wells AF (1987) Structural inorganic chemistry, 6th edn. Oxford University Press, New York

    Google Scholar 

  17. Rodríguez JA, Fernández-García M (eds) (2007) Synthesis, properties and applications of oxide nanoparticles. Nanomater: inorg & bioinorg perspectives, chapter # 14. Wiley, New Jersey

    Google Scholar 

  18. Fernández-García M, Wang X, Belver C et al (2007) Anatase-TiO2 nanomaterials: morphological/size dependence of the crystallization and phase behavior phenomena. J Phys Chem C 111(2):674–682

    Article  CAS  Google Scholar 

  19. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4(1):95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernández-Garcíaa M, Rodriguez JA (2009) Metal oxide nanoparticles. In: Encyclopedia of inorganic chemistry. Wiley Online Library, Hoboken

    Google Scholar 

  21. Chang Y-N, Zhang M, Zia L et al (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Dent Mater 5(12):2850–2871

    CAS  Google Scholar 

  22. Becheri A, Durr M, Nostro PL et al (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689

    Article  CAS  Google Scholar 

  23. Meruvu H, Vengalapati M, Chippada SM et al (2011) Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against bacillus subtilis and Escherichia coli. Rasayan J Chem 4:217–222

    CAS  Google Scholar 

  24. Lee GH, Kawazoe T, Ohtsu M (2002) Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate. Solid State Commun 124(5):163–165

    Article  CAS  Google Scholar 

  25. Popov AP, Zvyagin AV, Lademann J et al (2010) Designing inorganic light-protective skin nanotechnology products. J Biomed Nanotechnol 6(5):432–451

    Article  CAS  PubMed  Google Scholar 

  26. Gasparro FP, Mitchnick M, Nash JF (1998) A review of sunscreen safety and efficacy. Photochem Photobiol 68(3):243–256

    Article  CAS  PubMed  Google Scholar 

  27. Stamatakis P, Palmer BR, Salzman GC et al (1990) Optimum particle size of titanium dioxide and zinc oxide for attenuation of ultraviolet radiation. JCT J Coat Technol 62(789):95–98

    CAS  Google Scholar 

  28. Using TiO2 and ZnO for balanced UV protection (2009) Jul. http://www.personalcaremagazine.com/Story.aspx?Story=5243

  29. Perez-Lopez OW, Farias AC, Marcilio NR et al (2005) The catalytic behavior of zinc oxide prepared from various precursors and by different methods. Mater Res Bull 40(12):2089–2099

    Article  CAS  Google Scholar 

  30. Fangli Y, Peng H, Chunlei Y et al (2003) Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J Mater Chem 13(3):634–637

    Article  CAS  Google Scholar 

  31. Sahu D, Kannan GM, Vijayaraghavan R (2014) Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. J Toxicol Env Health Part A 77(4):177–191

    Article  CAS  Google Scholar 

  32. Lopes S, Ribeiro F, Wojnarowicz J et al (2014) Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ Toxicol Chem 33(1):190–198

    Article  CAS  PubMed  Google Scholar 

  33. Ose, MAG (2013) Literature review on the safety of titanium dioxide and zinc oxide nanoparticles in sunscreens, pp 1–24 https://www.tga.gov.au/literature-review-safety-titanium-dioxide-and-zinc-oxide-nanoparticles-sunscreens

  34. Tran DT, Salmon R (2011) Potential photocarcinogenic effects of nanoparticle sunscreens. Australas J Dermatol 52(1):1–6

    Article  PubMed  Google Scholar 

  35. Virkutyte J, Al-Abed SR, Dionysiou DD (2012) Depletion of the protective aluminum hydroxide coating in TiO2-based sunscreens by swimming pool water ingredients. Chem Eng J 191:95–103

    Article  CAS  Google Scholar 

  36. Butler MK, Prow TW, Guo YN et al (2012) High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine 7(4):541–551

    Article  CAS  PubMed  Google Scholar 

  37. Schilling K, Bradford B, Castelli D et al (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9(4):495–509

    Article  CAS  PubMed  Google Scholar 

  38. Wang SQ, Tooley IR (2011) Photoprotection in the era of nanotechnology. Seminars Cutaneous Med Surg 30(4):210–213

    Article  CAS  Google Scholar 

  39. Yıldırım ÖA, Durucan C (2010) Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J Alloys Compd 506(2):944–949

    Article  CAS  Google Scholar 

  40. Zhang YW, Tang M, Jin X (2003) Polymeric adsorption behavior of nanoparticulate yttria stabilized zirconia and the deposition of as-formed suspensions on dense α-Al2O3 substrates. Solid State Sci 5(3):435–440

    Article  CAS  Google Scholar 

  41. Girigoswami K, Meenakshi V, Murugesan R et al (2015) Studies on polymer-coated zinc oxide nanoparticles: UV blocking efficacy and in vivo toxicity. Mater Sci Eng C 56:501–510

    Article  CAS  Google Scholar 

  42. Kovrižnych JA, Sotnikova R, Zeljenkova D et al (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages–comparative study. Interdiscip Toxicol 6(2):67–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Xiong D, Fang T, Yu L et al (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  PubMed  Google Scholar 

  44. Van Aerle R, Lange A, Moorhouse A et al (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47(14):8005–8014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bai W, Zhang Z, Tian W et al (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654

    Article  CAS  Google Scholar 

  46. Chen TH, Ling CC, Meng PJ (2014) Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J Hazard Mater 277:134–140

    Article  CAS  PubMed  Google Scholar 

  47. Manzo S, Miglietta ML, Rametta G et al (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445–446:371–376

    Article  PubMed  CAS  Google Scholar 

  48. Mansouri E, Khorsandi L, Orazizadeh M et al (2015) Dose dependent hepatotoxicity effects of zinc oxide nanoparticles. Nanomed J 2(4):273–282

    Google Scholar 

  49. Liu J, Feng X, Wei L et al (2016) The toxicity of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 46(4):348–384

    Article  CAS  PubMed  Google Scholar 

  50. Tanemura S, Miao L, Wunderlich W et al (2005) Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review. Sci Technol Adv Mater 6(1):11–17

    Article  CAS  Google Scholar 

  51. Biola-Cleir M, Beal D, Caillat S et al (2017) Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 32(1):161–172

    Article  Google Scholar 

  52. Wu N, Hong F, Zhou Y et al (2017) Exacerbation of innate immune response in mouse primary cultured sertoli cells caused by nanoparticulate TiO2 involves the TAM/TLR3 signal pathway. J Biomed Mater Res Part A 105(1):198–208

    Article  CAS  Google Scholar 

  53. Strickland JD, Lefew WR, Crooks J et al (2016) In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. Nanotoxicology 10(5):619–628

    Article  CAS  PubMed  Google Scholar 

  54. Bessa MJ, Costa C, Reinosa J et al (2016) Moving into advanced nanomaterials. Toxicity of rutile TiO2 nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line. Toxicol Appl Pharmacol 316:114–122

    Article  PubMed  CAS  Google Scholar 

  55. Samiei M, Ghasemi N, Aghazadeh M et al (2017) Biocompatibility of mineral trioxide aggregate with TiO2 nanoparticles on human gingival fibroblasts. J Clin Exp Dent 9(2):e182–e185

    PubMed  PubMed Central  Google Scholar 

  56. Marucco A, Gazzano E, Ghigo D et al (2016) Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials. J Nanotoxicol 10(1):1–9

    CAS  Google Scholar 

  57. Wright C, Iyer AK, Wang L et al (2017) Effects of titanium dioxide nanoparticles on human keratinocytes. J Drug Chem Toxicol 40:90–100

    Article  CAS  Google Scholar 

  58. Horie M, Sugino S, Kato H et al (2016) Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity. J Toxicol Mech Methods 26(4):284–294

    Article  CAS  Google Scholar 

  59. Nakayama M, Sasaki R, Ogino C et al (2016) Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat Oncol 11:91. https://doi.org/10.1186/s13014-016-0666-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Alinovi R, Goldoni M, Pinelli S et al (2015) Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicol In Vitro 29(3):426–437

    Article  CAS  PubMed  Google Scholar 

  61. George S, Gardner H, Seng EK et al (2014) Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environ Sci Technol 48(11):6374–6382

    Article  CAS  PubMed  Google Scholar 

  62. Ramsden CS, Smith TJ, Shaw BJ et al (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18(7):939–951

    Article  CAS  PubMed  Google Scholar 

  63. Mansouri B, Maleki A, Davari B et al (2016) Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO2 and CuO. Environ Monit Assess 188(10):575

    Article  PubMed  CAS  Google Scholar 

  64. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    Article  CAS  PubMed  Google Scholar 

  65. Ramsden CS, Henry TB, Handy RD (2013) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413

    Article  CAS  PubMed  Google Scholar 

  66. Dalai S, Pakrashi S, Bhuvaneshwari M et al (2014) Toxic effect of Cr (VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol 146:28–37

    Article  CAS  PubMed  Google Scholar 

  67. Bermejo-Nogales A, Connolly M, Rosenkranz P et al (2017) Negligible toxicity induced by different titanium dioxide nanoparticles in fish cell lines. Ecotoxicol Environ Saf 138:309–319

    Article  CAS  PubMed  Google Scholar 

  68. Minetto D, Libralato G, Marcomini A et al (2017) Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Sci Total Environ 579:1379–1386

    Article  CAS  PubMed  Google Scholar 

  69. Wang Q, Chen Q, Zhou P et al (2014) Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology 8(l):196–207

    Article  PubMed  CAS  Google Scholar 

  70. D’Agata A, Fasulo S, Dallas LJ et al (2014) Enhanced toxicity of “bulk” titanium dioxide compared to “fresh” and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 8(5):549–558

    Article  PubMed  CAS  Google Scholar 

  71. Zhu X, Zhu L, Duan Z et al (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subs Environ Eng 43(3):278–284

    Article  CAS  Google Scholar 

  72. Fang Q, Shi X, Zhang L et al (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904

    Article  CAS  PubMed  Google Scholar 

  73. Park H-G, Kim JI, Kang M et al (2014) The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis. Mol Cell Toxicol 10(3):293–301

    Article  CAS  Google Scholar 

  74. Yan J, Lin B, Hu C et al (2014) The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos. Nanoscale Res Lett 9(1):406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sha B, Gao W, Wang S et al (2014) Oxidative stress increased hepatotoxicity induced by nano-titanium dioxide in BRL-3A cells and Sprague-Dawley rats. J Appl Toxicol 34(4):345–356

    Article  CAS  PubMed  Google Scholar 

  76. Li Y, Yan J, Ding W et al (2017) Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles. Mutagenesis 32(1):33–46

    Article  PubMed  Google Scholar 

  77. Yang J, Luo M, Tan Z et al (2017) Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. Environ Toxicol Pharmacol 49:112–118

    Article  CAS  PubMed  Google Scholar 

  78. Osmond-McLeod MJ, Oytam Y, Rowe A et al (2016) Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model. Part Fibre Toxicol 13(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Abu-Zeid EH, Alam RTM, Abd El-Hameed NE (2017) Impact of titanium dioxide on androgen receptors, seminal vesicles and thyroid hormones of male rats: possible protective trial with aged garlic extract. Andrologia 49:e12651. https://doi.org/10.1111/and.12651

    Article  CAS  Google Scholar 

  80. Hassanein KM, El-Amir YO (2016) Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague-Dawley rats. Pathol Res Pract. https://doi.org/10.1016/j.prp.2016.08.002

  81. Rosen JE, Chan L, Shieh D-B et al (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 8(3):275–290

    Article  CAS  PubMed  Google Scholar 

  82. Siddiqi KS, Ur Rahman A, Tajuddin et al (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11(1):498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lei L, Ling-Ling J, Yun Z et al (2013) Toxicity of superparamagnetic iron oxide nanoparticles: research strategies and implications for nanomedicine. Chin Phys B 22(12):127503

    Article  CAS  Google Scholar 

  84. Mahmoudi M, Hofmann H, Rothen-Rutishauser B et al (2011) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338

    Article  PubMed  CAS  Google Scholar 

  85. Singh N, Jenkins GJ, Asadi R et al (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nanotechnol Rev. https://doi.org/10.3402/nano.v1i0.5358

  86. Dissanayake NM, Current KM, Obare SO (2015) Mutagenic effects of iron oxide nanoparticles on biological cells. Int J Mol Sci 16(10):23482–23516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arami H, Khandhar A, Liggitt D et al (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Valdiglesias V, Kilic G, Costa C et al (2015) Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen 56(2):125–148

    Article  CAS  PubMed  Google Scholar 

  89. Singh N, Jenkins GJ, Nelson BC et al (2012) The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 33:163–170

    Article  CAS  PubMed  Google Scholar 

  90. Petters C (2015) Uptake and metabolism of iron oxide nanoparticles in cultured brain cells. Dissertation, doi:elib.suub.uni-bremen.de/edocs/00104261–1.pdf

    Google Scholar 

  91. Rostami AA, Mohseni Kouchesfahani H, Kiani S et al (2015) Iron oxide nanoparticles reduced retinoic acid induced-neuronal differentiation of mouse embryonic stem cells by ROS generation. Arch Iran Med 18(9):586–590

    PubMed  Google Scholar 

  92. Costa C, Brandão S, Bessa MJ et al (2016) In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. J Appl Toxicol 36(3):361–372

    Article  CAS  PubMed  Google Scholar 

  93. Joris F, Valdeperez D, Pelaz B et al (2016) The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J Nanobiotechnology 14(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Coccini T, Caloni F, Ramirez Cando LJ et al (2016) Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 37(3):361–373

    Article  PubMed  CAS  Google Scholar 

  95. Alarifi S, Ali D, Alkahtani S et al (2014) Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res 159(1–3):416–424

    Article  CAS  PubMed  Google Scholar 

  96. Calero M, Chiappi M, Lazaro-Carrillo A et al (2015) Characterization of interaction of magnetic nanoparticles with breast cancer cells. J Nanobiotechnology 13(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Namvar F, Rahman HS, Mohamad R et al (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine 9:2479–2488

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hanot CC, Choi YS, Anani TB et al (2015) Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci 17(1):54

    Article  PubMed Central  CAS  Google Scholar 

  99. Sadeghi L, Tanwir F, Babadi VY (2015) In vitro toxicity of iron oxide nanoparticle: oxidative damages on Hep G2 cells. Exp Toxicol Pathol 67(2):197–203

    Article  CAS  PubMed  Google Scholar 

  100. Sonmez E, Aydin E, Turkez H et al (2016) Cytotoxicity and genotoxicity of iron oxide nanoparticles: an in vitro biosafety study. Arch Biol Sci 68(1):41–50

    Article  Google Scholar 

  101. Rojas JM, Sanz-Ortega L, Mulens-Arias V et al (2015) Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine 12(4):1127–1138

    Article  PubMed  CAS  Google Scholar 

  102. Lee JH, Ju JE, Kim BI et al (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33(12):2759–2766

    Article  CAS  PubMed  Google Scholar 

  103. Luo C, Li Y, Yang L et al (2014) Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Arch Toxicol 89(3):357–369

    Article  PubMed  CAS  Google Scholar 

  104. Ahamed M, Alhadlaq HA, Alam J et al (2013) Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des 19(37):6681–6690

    Article  CAS  PubMed  Google Scholar 

  105. Parsa H, Shamsasenjan K, Movassaghpour A et al (2015) Effect of superparamagnetic iron oxide nanoparticles-labeling on mouse embryonic stem cells. Cell J 17(2):221–230

    PubMed  PubMed Central  Google Scholar 

  106. Giannaccini M, Pedicini L, De Matienzo G et al (2017) Magnetic nanoparticles: a strategy to target the choroidal layer in the posterior segment of the eye. Sci Rep 7:43092

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotech Article ID 398569, https://doi.org/10.1155/2014/398569

  108. Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7(9):e46286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Felix LC, Ortega VA, Ede JD et al (2013) Physicochemical characteristics of polymer-coated metal-oxide nanoparticles and their toxicological effects on zebrafish (Danio rerio) development. Environ Sci Technol 47(12):6589–6596

    Article  CAS  PubMed  Google Scholar 

  110. Remya AS, Ramesh M, Saravanan M et al (2015) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J King Saud Univ Sci 27:151–160

    Article  Google Scholar 

  111. Saravanan M, Suganya R, Ramesh M et al (2015) Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita. J Nanopart Res 17:274

    Article  CAS  Google Scholar 

  112. Keerthika V, Ramesh R, Rajan MR (2016) Impact of iron oxide nanoparticles on behavioural changes in fresh water fish Labeo Rohita. Paripex Ind J Res 5(8):158–160

    Google Scholar 

  113. Taze C, Panetas I, Kalogiannis S et al (2015) Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis. Aquat Toxicol 172:9–20

    Article  PubMed  CAS  Google Scholar 

  114. Reddy UA, Prabhakar PV, Mahboob M (2015) Biomarkers of oxidative stress for in vivo assessment of toxicological effects of iron oxide nanoparticles. Saudi J Biol Sci (in press) https://doi.org/10.1016/j.sjbs.2015.09.029

  115. Sundarraj K, Raghunath A, Paneerselvam L et al (2017) Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicol Appl Pharmacol 317:12–24

    Article  CAS  PubMed  Google Scholar 

  116. Babadi VY, Najafi L, Najafi A et al (2012) Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. J Pharm Biomed Sci 23(23):1–4

    Google Scholar 

  117. Kumari M, Rajak S, Singh SP et al (2013) Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem Toxicol 36(3):296–305

    Article  CAS  PubMed  Google Scholar 

  118. Di Bona KR, Xu Y, Gray M et al (2015) Short-and long-term effects of prenatal exposure to iron oxide nanoparticles: influence of surface charge and dose on developmental and reproductive toxicity. Int J Mol Sci 16(12):30251–30268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Parivar K, Malekvand Fard F, Bayat M et al (2016) Evaluation of iron oxide nanoparticles toxicity on liver cells of BALB/c rats. Iran Red Crescent Med J 18(1):e28939

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sundarraj K, Manickam V, Raghunath A et al (2017) Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ Toxicol 32(2):594–608

    Article  CAS  PubMed  Google Scholar 

  121. Gaharwar US, Paulraj R (2015) Iron oxide nanoparticles induced oxidative damage in peripheral blood cells of rat. J Biomed Sci Eng 8(4):274–286

    Article  CAS  Google Scholar 

  122. Kumari M, Rajak S, Singh SP et al (2012) Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotechnol 12(3):2149–2159

    Article  CAS  PubMed  Google Scholar 

  123. Szalay B, Tátrai E, Nýirő G et al (2012) Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32(6):446–453

    Article  CAS  PubMed  Google Scholar 

  124. Vermeij EA, Koenders MI, Bennink MB et al (2015) The in-vivo use of superparamagnetic iron oxide nanoparticles to detect inflammation elicits a cytokine response but does not aggravate experimental arthritis. PLoS One 10(5):e0126687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Gawande MB, Goswami A, Felpin F-X et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811

    Article  CAS  PubMed  Google Scholar 

  126. Hou J, Wang X, Hayat T et al (2017) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209–217

    Article  CAS  PubMed  Google Scholar 

  127. Fu X (2015) Oxidative stress induced by CuO nanoparticles (CuO NPs) to human hepatocarcinoma (HepG2) cells. J Cancer Ther 6:889–895

    Article  Google Scholar 

  128. Jing X, Park JH, Peters TM et al (2015) Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicol In Vitro 29(3):502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Karlsson HL, Gustafsson J, Cronholm P et al (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  PubMed  Google Scholar 

  130. Boyles MSP, Ranninger C, Reischl R et al (2016) Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part Fibre Toxicol 13(1):49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ryu J, Girigoswami K, Ha C et al (2008) Influence of multiple metal ions on β-amyloid aggregation and dissociation on a solid surface. Biochemistry 47(19):5328–5335

    Article  CAS  PubMed  Google Scholar 

  132. Joshi A, Rastedt W, Faber K et al (2016) Uptake and toxicity of copper oxide nanoparticles in C6 Glioma cells. Neurochem Res 41(11):3004–3019

    Article  CAS  PubMed  Google Scholar 

  133. Bulcke F, Dringen R (2015) Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes. Neurochem Res 40(1):15–26

    Article  CAS  PubMed  Google Scholar 

  134. Manusadzianas L, Caillet C, Fachetti L et al (2012) Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31(1):108–114

    Article  CAS  PubMed  Google Scholar 

  135. Pradhan A, Seena S, Pascoal C et al (2012) Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere 89(9):1142–1150

    Article  CAS  PubMed  Google Scholar 

  136. Blinova I, Ivask A, Heinlaan M et al (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158(1):41–47

    Article  CAS  PubMed  Google Scholar 

  137. Aruoja V, Dubourguier H-C, Kasemets K et al (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  PubMed  Google Scholar 

  138. Thit A, Selck H, Bjerregaard HF (2013) Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death. Toxicol In Vitro 27(5):1596–1601

    Article  CAS  PubMed  Google Scholar 

  139. Jahanbakhshi A, Hedayati A, Pirbeigi A et al (2015) Determination of acute toxicity and the effects of sub-acute concentrations of CuO nanoparticles on blood parameters in Rutilus rutilus. Nanomedicine J 2(3):195–202

    Google Scholar 

  140. Mashock MJ, Zanon T, Kappell AD et al (2016) Copper oxide nanoparticles impact several toxicological endpoints and cause neurodegeneration in Caenorhabditis elegans. PLoS One 11(12):e0167613. doi:https://doi.org/10.1371/journal.pone.0167613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Mohammadyari A, Razavipour ST, Mohammadbeigi M et al (2014) Explore in-vivo toxicity assessment of copper oxide nanoparticle in Wistar rats. J Biol Today’s World 3:124–128

    Google Scholar 

  142. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6(3). https://doi.org/10.1038/am.2013.88

  143. Park E-J, Choi J, Park Y-K et al (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245(1–2):90–100

    Article  CAS  PubMed  Google Scholar 

  144. Celardo I, De Nicola M, Mandoli C et al (2011) Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5(6):4537–4549

    Article  CAS  PubMed  Google Scholar 

  145. Das M, Patil S, Bhargava N et al (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Korsvik C, Patil S, Seal S et al (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10:1056–1058

    Article  CAS  Google Scholar 

  147. Dunnick KM, Pillai R, Pisane KL et al (2015) The effect of cerium oxide nanoparticle valence state on reactive oxygen species and toxicity. Biol Trace Elem Res 166(1):96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wason MS, Colon J, Das S et al (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 4:558–569

    Article  CAS  Google Scholar 

  149. Ali D, Alarifi S, Alkahtani S, AlKahtane AA et al (2015) Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochem Biophys 71(3):1643–1651

    Article  CAS  PubMed  Google Scholar 

  150. Colon J, Hsieh N, Ferguson A et al (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6(5):698–705

    Article  CAS  PubMed  Google Scholar 

  151. Tarnuzzer RW, Colon J, Patil S et al (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5(12):2573–2577

    Article  CAS  PubMed  Google Scholar 

  152. Vinardell MP, Mitjans M (2015) Antitumor activities of metal oxide nanoparticles. Nanomaterials 5(2):1004–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Reed K, Cormack A, Kulkarni A et al (2014) Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ Sci Nano 1(5):390–405

    Article  CAS  Google Scholar 

  154. Ivanov VK, Shcherbakov AB, Usatenko AV (2009) Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ Chem Rev 78(9):855

    Article  CAS  Google Scholar 

  155. Nelson BC, Johnson ME, Walker ML et al (2016) Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 5(2):15

    Article  PubMed Central  CAS  Google Scholar 

  156. Cheng H, Liao Z-L, Ning L-H et al (2017) Alendronate-anchored PEGylation of ceria nanoparticles promotes human hepatoma cell proliferation via AKT/ERK signaling pathways. Cancer Med 6(2):374–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li D, Morishita M, James G et al (2016) In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Part Fibre Toxicol 13(1):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Cordelli E, Keller J, Eleuteri P et al (2017) No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials. Mutagenesis 32(1):13–22

    Article  PubMed  Google Scholar 

  159. Sager TM, Wolfarth M, Leonard SS et al (2016) Role of engineered metal oxide nanoparticle agglomeration in reactive oxygen species generation and cathepsin B release in NLRP3 inflammasome activation and pulmonary toxicity. Inhal Toxicol 228(14):686–697

    Article  CAS  Google Scholar 

  160. DeCoteau W, Heckman KL, Estevez AY et al (2016) Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine 12(8):2311–2320

    Article  CAS  PubMed  Google Scholar 

  161. Hegazy MAE, Maklad HM, Abd Elmonsif DA et al (2016) The possible role of cerium oxide (CeO2) nanoparticles in prevention of neurobehavioral and neurochemical changes in 6-hydroxydopamine-induced parkinsonian disease. Alexandria J Med. doi:https://doi.org/10.1016/j.ajme.2016.12.006

  162. Bailey ZS, Nilson E, Bates JA et al (2016) Cerium oxide nanoparticles improve outcome after in vitro and in vivo mild traumatic brain injury. J Neurotrauma 33:1–11

    Article  Google Scholar 

  163. Krishnan A, Sreeremya TS, Ghosh S (2016) Size-tunable hydrophilic cerium oxide nanoparticles as a ‘turn-on’ fluorescent sensor for the rapid detection of ultralow concentration vitamin C. RSC Adv 6:53550–53559

    Article  CAS  Google Scholar 

  164. Lin W, Huang YW, Zhou XD et al (2006) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25(6):451–457

    Article  CAS  PubMed  Google Scholar 

  165. Song B, Zhou T, Yang W et al (2016) Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity. Environ Toxicol Pharmacol 48:130–140

    Article  CAS  PubMed  Google Scholar 

  166. Czajka M, Sawicki K, Sikorska K et al (2015) Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol In Vitro 29(5):1042–1052

    Article  CAS  PubMed  Google Scholar 

  167. Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5:934–975

    Article  CAS  Google Scholar 

  168. Sarkar A, Ghosh M, Sil PC (2014) Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol 14:730–743

    Article  CAS  PubMed  Google Scholar 

  169. Ivask A, Titma T, Visnapuu M et al (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 15:1914–1929

    Article  CAS  PubMed  Google Scholar 

  170. Wehmas LC, Anders C, Chess J et al (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sabella S, Carney RP, Brunetti V et al (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Huang G, Chen H, Dong Y et al (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2):116–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  174. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  CAS  PubMed  Google Scholar 

  175. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  176. Zhu M-T, Wang B, Wang Y et al (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203:162–171

    Article  CAS  PubMed  Google Scholar 

  177. Chen R, Huo L, Shi X et al (2014) Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8(3):2562–2574

    Article  CAS  PubMed  Google Scholar 

  178. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I am grateful to Chettinad Academy of Research and Education (CARE), Kelambakkam for providing me the infrastructure. My sincere thanks to Mr. Sanjay K Metkar and Ms. Ramalakshmi M, CARE for their immense help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koyeli Girigoswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girigoswami, K. (2018). Toxicity of Metal Oxide Nanoparticles. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_7

Download citation

Publish with us

Policies and ethics