Skip to main content

Nanoparticles-Caused Oxidative Imbalance

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Abstract

Application of nanomaterials in nearly every single branch of industry results in their accumulation in both abiotic environment and tissues of living organisms. Despite the common use of nanomaterials, we are not able to precisely define their toxicity towards humans and surrounding biota. Although we were able to determine final effects of chronic exposure to nanoparticles which consist of many pathologies such as respiratory diseases, allergies, diseases of cardiovascular system, disorders in embryonic life differentiation and growth disorders, toxic effects on the immune system and cancers. The most predominantly investigated feature of most nanoparticles is their ability to induce oxidative stress on cellular level. Imbalance in redox state of cells can lead to various malfunctions in their internal metabolism, which in turn can lead to mentioned pathologies on the organismal level if the exposure is persistent and spread wide enough. Imbalance in redox state translate into production of reactive oxygen species in amounts impossible to be scavenged in given time. Many reactive oxygen species play crucial role in physiological processes in properly functioning cells. It was proven on numerous occasions that abundance of ROS, aside from oxidative damage, can lead to more subtle adverse effects tied to disturbances in intra- and intercellular signaling pathways. In this chapter we would like to address the nanoparticle-induced redox imbalance in cells and its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  2. M. G (1897) Tetraphenylmethan. Ber Dtsch Chem Ges 30((2)):2043–2047. https://doi.org/10.1002/cber.189703002177

    Google Scholar 

  3. Panday A, Sahoo MK, Osorio D et al (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23. https://doi.org/10.1038/cmi.2014.89

    Article  CAS  PubMed  Google Scholar 

  4. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230

    Article  CAS  PubMed  Google Scholar 

  5. Jensen PK (1966) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. II Steroid effects Biochim Biophys Acta 122(2):167–174

    Article  CAS  PubMed  Google Scholar 

  6. Sohn HY, Krotz F, Zahler S et al (2003) Crucial role of local peroxynitrite formation in neutrophil-induced endothelial cell activation. Cardiovasc Res 57(3):804–815

    Article  CAS  PubMed  Google Scholar 

  7. Taylor BS, Alarcon LH, Billiar TR (1998) Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry (Mosc) 63(7):766–781

    CAS  Google Scholar 

  8. McNeill E, Crabtree MJ, Sahgal N et al (2015) Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic Biol Med 79:206–216. https://doi.org/10.1016/j.freeradbiomed.2014.10.575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ignarro LJ (1990) Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 16(5):477–483

    Article  CAS  PubMed  Google Scholar 

  10. Hermann M, Flammer A, Luscher TF (2006) Nitric oxide in hypertension. J Clin Hypertens (Greenwich) 8(12 Suppl 4):17–29

    Article  CAS  Google Scholar 

  11. Manderscheid M, Messmer UK, Franzen R et al (2001) Regulation of inhibitor of apoptosis expression by nitric oxide and cytokines: relation to apoptosis induction in rat mesangial cells and raw 264.7 macrophages. J Am Soc Nephrol 12(6):1151–1163

    CAS  PubMed  Google Scholar 

  12. Cuzzocrea S, Salvemini D (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 71(4):290–297. https://doi.org/10.1038/sj.ki.5002058

    Article  CAS  PubMed  Google Scholar 

  13. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680. https://doi.org/10.1038/nrd2222

    Article  CAS  PubMed  Google Scholar 

  14. Ischiropoulos H, Al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364(3):279–282

    Article  CAS  PubMed  Google Scholar 

  15. Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14(11):879–897

    Article  CAS  PubMed  Google Scholar 

  16. Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc) 67(3):281–292

    Article  CAS  Google Scholar 

  17. Green RM, Graham M, O’Donovan MR et al (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21(6):383–390. https://doi.org/10.1093/mutage/gel043

    Article  CAS  PubMed  Google Scholar 

  18. England K, Cotter TG (2005) Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 10(5):237–245. https://doi.org/10.1179/135100005X70224

    Article  CAS  PubMed  Google Scholar 

  19. O’Brian CA, Chu F (2005) Post-translational disulfide modifications in cell signaling – role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radic Res 39(5):471–480. https://doi.org/10.1080/10715760500073931

    Article  PubMed  CAS  Google Scholar 

  20. Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Radic Res 39(6):573–580. https://doi.org/10.1080/10715760500072172

    Article  CAS  PubMed  Google Scholar 

  21. Sun J, Steenbergen C, Murphy E (2006) S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 8(9–10):1693–1705. https://doi.org/10.1089/ars.2006.8.1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703(2):121–134. https://doi.org/10.1016/j.bbapap.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  23. Schopfer FJ, Baker PR, Freeman BA (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28(12):646–654. https://doi.org/10.1016/j.tibs.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Nishitoh H, Ichijo H et al (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20(6):2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thevenin AF, Zony CL, Bahnson BJ et al (2011) GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2. Protein Sci 20(5):834–848. https://doi.org/10.1002/pro.609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee S, Das HK (2008) Inhibition of basal activity of c-jun-NH2-terminal kinase (JNK) represses the expression of presenilin-1 by a p53-dependent mechanism. Brain Res 1207:19–31. https://doi.org/10.1016/j.brainres.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  27. Lu MC, Ji JA, Jiang YL et al (2016) An inhibitor of the Keap1-Nrf2 protein-protein interaction protects NCM460 colonic cells and alleviates experimental colitis. Sci Rep 6:26585. https://doi.org/10.1038/srep26585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abed DA, Goldstein M, Albanyan H et al (2015) Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B 5(4):285–299. https://doi.org/10.1016/j.apsb.2015.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  29. Johnson L (2007) Protein kinases and their therapeutic exploitation. Biochem Soc Trans 35(1):7–11. https://doi.org/10.1042/BST0350007

    Article  CAS  PubMed  Google Scholar 

  30. Reinstein E, Ciechanover A (2006) Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med 145(9):676–684

    Article  PubMed  Google Scholar 

  31. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502. https://doi.org/10.1016/j.devcel.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  32. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43(7):995–1022. https://doi.org/10.1016/j.freeradbiomed.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  33. Yapici NB, Mandalapu S, Gibson KM, Bi L (2015) Targeted fluorescent probes for detection of oxidative stress in the mitochondria. Bioorg Med Chem Lett 25(17):3476–3480. https://doi.org/10.1016/j.bmcl.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Zeng L, Xia T et al (2015) Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal Chem 87(16):8052–8056. https://doi.org/10.1021/acs.analchem.5b02032

    Article  CAS  PubMed  Google Scholar 

  35. Gomes A, Fernandes E, Lima JL (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16(1):119–139. https://doi.org/10.1007/s10895-005-0030-3

    Article  CAS  PubMed  Google Scholar 

  36. Zuberek M, Wojciechowska D, Krzyzanowski D et al (2015) Glucose availability determines silver nanoparticles toxicity in HepG2. J Nanobiotechnol 13:72. https://doi.org/10.1186/s12951-015-0132-2

    Article  CAS  Google Scholar 

  37. Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  38. Quinteros MA, Cano Aristizabal V, Dalmasso PR et al (2016) Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro 36:216–223. https://doi.org/10.1016/j.tiv.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  39. Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S et al (2012) Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441(3):813–821. https://doi.org/10.1042/BJ20111252

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharjee S, de Haan LH, Evers NM et al (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:25. https://doi.org/10.1186/1743-8977-7-25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lehman SE, Morris AS, Mueller PS et al (2016) Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ Sci Nano 3(1):56–66. https://doi.org/10.1039/C5EN00179J

    Article  CAS  PubMed  Google Scholar 

  42. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916. https://doi.org/10.1155/2013/942916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kawanishi M, Ogo S, Ikemoto M et al (2013) Genotoxicity and reactive oxygen species production induced by magnetite nanoparticles in mammalian cells. J Toxicol Sci 38(3):503–511

    Article  CAS  PubMed  Google Scholar 

  44. Wu H, Yin JJ, Wamer WG et al (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94. https://doi.org/10.1016/j.jfda.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  45. Strlic M, Kolar J, Selih VS et al (2003) A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH. Acta Chim Slov 50(4):619–632

    CAS  Google Scholar 

  46. Sharma CS, Sarkar S, Periyakaruppan A et al (2007) Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7(7):2466–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffmann MR, Martin ST, Choi WY et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  48. Xia T, Kovochich M, Brant J et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807. https://doi.org/10.1021/nl061025k

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H, Dunphy DR, Jiang X et al (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134(38):15790–15804. https://doi.org/10.1021/ja304907c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  CAS  PubMed  Google Scholar 

  51. Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371. https://doi.org/10.1016/j.tiv.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pujalte I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10. https://doi.org/10.1186/1743-8977-8-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiang HM, Xia Q, Zou X et al (2012) Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 12(3):2126–2135

    Article  CAS  PubMed  Google Scholar 

  54. Siddiqui MA, Ahamed M, Ahmad J et al (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50(3–4):641–647. https://doi.org/10.1016/j.fct.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  55. Di Guglielmo C, De Lapuente J, Porredon C et al (2012) In vitro safety toxicology data for evaluation of gold nanoparticles-chronic cytotoxicity, genotoxicity and uptake. J Nanosci Nanotechnol 12(8):6185–6191

    Article  PubMed  CAS  Google Scholar 

  56. Kruszewski M, Gradzka I, Bartlomiejczyk T et al (2013) Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219(2):151–159. https://doi.org/10.1016/j.toxlet.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  57. Murray AR, Kisin E, Inman A et al (2013) Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys 67(2):461–476. https://doi.org/10.1007/s12013-012-9367-9

    Article  CAS  PubMed  Google Scholar 

  58. Srikanth K, Trindade T, Duarte AC et al (2017) Cytotoxicity and oxidative stress responses of silica-coated iron oxide nanoparticles in CHSE-214 cells. Environ Sci Pollut Res Int 24(2):2055–2064. https://doi.org/10.1007/s11356-016-7870-z

    Article  CAS  PubMed  Google Scholar 

  59. Li JJ, Hartono D, Ong CN et al (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003. https://doi.org/10.1016/j.biomaterials.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  60. Ivask A, Kurvet I, Kasemets K et al (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108. https://doi.org/10.1371/journal.pone.0102108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Khaing Oo MK, Yang Y, Hu Y et al (2012) Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6(3):1939–1947. https://doi.org/10.1021/nn300327c

    Article  CAS  PubMed  Google Scholar 

  62. Laurent S, Burtea C, Thirifays C et al (2012) Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7(1):e29997. https://doi.org/10.1371/journal.pone.0029997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahmoudi M, Laurent S, Shokrgozar MA et al (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5(9):7263–7276. https://doi.org/10.1021/nn2021088

    Article  CAS  PubMed  Google Scholar 

  64. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  PubMed  Google Scholar 

  65. Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

  66. Cui D, Tian F, Ozkan CS et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85. https://doi.org/10.1016/j.toxlet.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  67. Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595. https://doi.org/10.1016/j.biomaterials.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  68. Kim JA, Aberg C, Salvati A et al (2011) Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol 7(1):62–68. https://doi.org/10.1038/nnano.2011.191

    Article  PubMed  CAS  Google Scholar 

  69. Chou LY, Chan WC (2012) Nanotoxicology. No signs of illness. Nat Nanotechnol 7(7):416–417. https://doi.org/10.1038/nnano.2012.110

    Article  CAS  PubMed  Google Scholar 

  70. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. https://doi.org/10.1038/nmeth.1248

    Article  CAS  PubMed  Google Scholar 

  71. Deng ZJ, Liang M, Monteiro M et al (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44. https://doi.org/10.1038/nnano.2010.250

    Article  CAS  PubMed  Google Scholar 

  72. Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4(12):876–883. https://doi.org/10.1038/nnano.2009.313

    Article  CAS  PubMed  Google Scholar 

  73. Peeters S, Kitz M, Preisser S et al (2012) Mechanisms of nanoparticle-mediated photomechanical cell damage. Biomed Opt Express 3(3):435–446. https://doi.org/10.1364/BOE.3.000435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stone V, Donaldson K (2006) Nanotoxicology: signs of stress. Nat Nanotechnol 1(1):23–24. https://doi.org/10.1038/nnano.2006.69

    Article  CAS  PubMed  Google Scholar 

  75. Dobrovolskaia MA, Germolec DR, Weaver JL (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4(7):411–414. https://doi.org/10.1038/nnano.2009.175

    Article  CAS  PubMed  Google Scholar 

  76. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478. https://doi.org/10.1038/nnano.2007.223

    Article  CAS  PubMed  Google Scholar 

  77. Kendall M, Holgate S (2012) Health impact and toxicological effects of nanomaterials in the lung. Respirology 17(5):743–758. https://doi.org/10.1111/j.1440-1843.2012.02171.x

    Article  PubMed  Google Scholar 

  78. Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308(5723):804–806. https://doi.org/10.1126/science.1108752

    Article  CAS  PubMed  Google Scholar 

  79. Xiao GG, Wang M, Li N et al (2003) Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 278(50):50781–50790. https://doi.org/10.1074/jbc.M306423200

    Article  CAS  PubMed  Google Scholar 

  80. Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46. https://doi.org/10.1016/j.addr.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  81. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1(4):313–316. https://doi.org/10.1016/j.nano.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  82. Lidke DS, Arndt-Jovin DJ (2004) Imaging takes a quantum leap. Physiology (Bethesda) 19:322–325. https://doi.org/10.1152/physiol.00030.2004

    CAS  Google Scholar 

  83. Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22(2):198–203. https://doi.org/10.1038/nbt929

    Article  CAS  PubMed  Google Scholar 

  84. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169. https://doi.org/10.1042/BJ20031253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550. https://doi.org/10.1021/nl070363y

    Article  CAS  PubMed  Google Scholar 

  86. Jin H, Heller DA, Sharma R et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1):149–158. https://doi.org/10.1021/nn800532m

    Article  CAS  PubMed  Google Scholar 

  87. Lu F, Wu SH, Hung Y et al (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413. https://doi.org/10.1002/smll.200900005

    Article  CAS  PubMed  Google Scholar 

  88. Dawson KA, Salvati A, Lynch I (2009) Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol 4(2):84–85. https://doi.org/10.1038/nnano.2008.426

    Article  CAS  PubMed  Google Scholar 

  89. Pratten MK, Lloyd JB (1986) Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta 881(3):307–313

    Article  CAS  PubMed  Google Scholar 

  90. Dausend J, Musyanovych A, Dass M et al (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8(12):1135–1143. https://doi.org/10.1002/mabi.200800123

    Article  CAS  PubMed  Google Scholar 

  91. Lorenz MR, Holzapfel V, Musyanovych A et al (2006) Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials 27(14):2820–2828. https://doi.org/10.1016/j.biomaterials.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  92. Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10(9):2379–2400. https://doi.org/10.1021/bm900266r

    Article  PubMed  CAS  Google Scholar 

  93. Marano F, Hussain S, Rodrigues-Lima F et al (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85(7):733–741. https://doi.org/10.1007/s00204-010-0546-4

    Article  CAS  PubMed  Google Scholar 

  94. Bannunah AM, Vllasaliu D, Lord J et al (2014) Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm 11(12):4363–4373. https://doi.org/10.1021/mp500439c

    Article  CAS  PubMed  Google Scholar 

  95. Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270. https://doi.org/10.1073/pnas.0805135105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Asati A, Santra S, Kaittanis C et al (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331. https://doi.org/10.1021/nn100816s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  PubMed  Google Scholar 

  98. Schweiger C, Hartmann R, Zhang F et al (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 10:28. https://doi.org/10.1186/1477-3155-10-28

    Article  CAS  Google Scholar 

  99. Tomita Y, Rikimaru-Kaneko A, Hashiguchi K et al (2011) Effect of anionic and cationic n-butylcyanoacrylate nanoparticles on NO and cytokine production in Raw264.7 cells. Immunopharmacol Immunotoxicol 33(4):730–737. https://doi.org/10.3109/08923973.2011.565345

    Article  CAS  PubMed  Google Scholar 

  100. Arvizo RR, Miranda OR, Thompson MA et al (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10(7):2543–2548. https://doi.org/10.1021/nl101140t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang B, Zhang L, Bae SC et al (2008) Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci U S A 105(47):18171–18175. https://doi.org/10.1073/pnas.0807296105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grecco HE, Schmick M, Bastiaens PI (2011) Signaling from the living plasma membrane. Cell 144(6):897–909. https://doi.org/10.1016/j.cell.2011.01.029

    Article  CAS  PubMed  Google Scholar 

  103. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  CAS  PubMed  Google Scholar 

  104. Jiang W, Kim BY, Rutka JT et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150. https://doi.org/10.1038/nnano.2008.30

    Article  CAS  PubMed  Google Scholar 

  105. Parry MC, Bhabra G, Sood A et al (2010) Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials 31(16):4477–4483. https://doi.org/10.1016/j.biomaterials.2010.02.038

    Article  CAS  PubMed  Google Scholar 

  106. Sood A, Salih S, Roh D et al (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6(12):824–833. https://doi.org/10.1038/nnano.2011.188

    Article  CAS  PubMed  Google Scholar 

  107. Unfried K, Sydlik U, Bierhals K et al (2008) Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Physiol Lung Cell Mol Physiol 294(2):L358–L367. https://doi.org/10.1152/ajplung.00323.2007

    Article  CAS  PubMed  Google Scholar 

  108. Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(Pt 2):159–163. https://doi.org/10.1242/jcs.018093

    Article  CAS  PubMed  Google Scholar 

  109. Auger F, Gendron MC, Chamot C et al (2006) Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 215(3):285–294. https://doi.org/10.1016/j.taap.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  110. Blanchet S, Ramgolam K, Baulig A et al (2004) Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 30(4):421–427. https://doi.org/10.1165/rcmb.2003-0281RC

    Article  CAS  PubMed  Google Scholar 

  111. Rauch J, Kolch W, Mahmoudi M (2012) Cell type-specific activation of AKT and ERK signaling pathways by small negatively-charged magnetic nanoparticles. Sci Rep 2:868. https://doi.org/10.1038/srep00868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Poljak-Blazi M, Jaganjac M, Mustapic M et al (2009) Acute immunomodulatory effects of iron polyisomaltosate in rats. Immunobiology 214(2):121–128. https://doi.org/10.1016/j.imbio.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  113. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20(19):2390–2400. https://doi.org/10.1038/sj.onc.1204383

    Article  CAS  PubMed  Google Scholar 

  114. Ding M, Bowman L, Leonard S et al (2015) ROS generation is involved in titanium dioxide nanoparticle induced MAPKs/AP-1 activation in JB6 cells. FASEB J 29(1):1046. https://doi.org/10.1096/fj.1530-6860

    Google Scholar 

  115. Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342. https://doi.org/10.1021/es1020668

    Article  CAS  PubMed  Google Scholar 

  116. Rinna A, Magdolenova Z, Hudecova A et al (2015) Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 30(1):59–66. https://doi.org/10.1093/mutage/geu057

    Article  CAS  PubMed  Google Scholar 

  117. Byrne JD, Baugh JA (2008) The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med 11(1):43–50

    PubMed  PubMed Central  Google Scholar 

  118. Hubbard AK, Timblin CR, Shukla A et al (2002) Activation of NF-kappaB-dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol Lung Cell Mol Physiol 282(5):L968–L975. https://doi.org/10.1152/ajplung.00327.2001

    Article  CAS  PubMed  Google Scholar 

  119. Murray AR, Kisin ER, Tkach AV et al (2012) Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol 9:10. https://doi.org/10.1186/1743-8977-9-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lai TH, Shieh JM, Tsou CJ et al (2015) Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells. Int J Nanomedicine 10:5925–5939. https://doi.org/10.2147/IJN.S88514

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Zuberek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuberek, M., Grzelak, A. (2018). Nanoparticles-Caused Oxidative Imbalance. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_6

Download citation

Publish with us

Policies and ethics