Skip to main content

Cellular and Molecular Toxicity of Iron Oxide Nanoparticles

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Abstract

Iron oxide nanoparticles (ION) have attracted much attention because of their particular physico-chemical properties, including superparamagnetism. These features make them suitable for many purposes and several interesting biomedical applications, such as to increase contrast in magnetic resonance imaging (MRI), as drug delivery systems and as hyperthermia agents. However, they have also shown to be easily accumulated in diverse tissues and induce toxicity at different levels. This chapter reviews the different cellular and molecular effects induced by ION reported from in vitro studies with human and non-human cell lines. Those effects are mainly dependent on ION type and concentration, time of exposure, presence and nature of coating, and cell type evaluated. They include decreases in viability, plasmatic membrane disruption, oxidative damage, mitochondrial alterations, cell cycle impairments, cytoskeleton disruption, cell death, and alterations in cell motility, and in cell integrity. Despite these negative effects, the numerous advantages of ION together with their promising applications in biomedicine, make it necessary to clearly define their toxicity in order to discard potential health risks and to reach optimal benefits of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dissanayake NM, Current KM, Obare SO (2015) Mutagenic effects of Iron oxide nanoparticles on biological cells. Int J Mol Sci 16:23482–23516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168

    Article  CAS  Google Scholar 

  3. Lin MM, Kim DK, El Haj AJ et al (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobioscience 7:298–305

    Article  PubMed  Google Scholar 

  4. Rosen JE, Chan L, Shieh D-B et al (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 8:275–290

    Article  CAS  PubMed  Google Scholar 

  5. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29

    PubMed  PubMed Central  Google Scholar 

  6. Ittrich H, Peldschus K, Raabe N et al (2013) Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. RöFo Fortschritte Auf Dem Gebiete Der Röntgenstrahlen Und Der Nukl 185:1149–1166

    Article  CAS  Google Scholar 

  7. Kim JE, Shin JY, Cho MH (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86:685–700

    Article  CAS  PubMed  Google Scholar 

  8. Mok H, Zhang M (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10:73–87

    Article  CAS  PubMed  Google Scholar 

  9. Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laurent S, Dutz S, Häfeli UO et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23

    Article  CAS  Google Scholar 

  11. Wang YXJ, Xuan S, Port M et al (2013) Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 19:6575–6593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres-Lugo M, Rinaldi C (2013) Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine (London) 8:1689–1707

    Article  CAS  Google Scholar 

  13. Grüttner C, Müller K, Teller J et al (2013) Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperth 29:777–789

    Article  Google Scholar 

  14. Estelrich J, Escribano E, Queralt J et al (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu XM, Wang YXJ, Cham-Fai Leung K et al (2012) Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int J Nanomedicine 7:953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahdavi M, Bin AM, Haron MJ et al (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548

    Article  CAS  PubMed  Google Scholar 

  17. Mahmoudi M, Simchi A, Milani AS et al (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518

    Article  CAS  PubMed  Google Scholar 

  18. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjørnerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17:465–477

    Article  PubMed  Google Scholar 

  20. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  21. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–3402

    Article  CAS  PubMed  Google Scholar 

  22. Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336:8–17

    Article  CAS  PubMed  Google Scholar 

  23. Petters C, Bulcke F, Thiel K et al (2014) Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells. Neurochem Res 39:372–383

    Article  CAS  PubMed  Google Scholar 

  24. Yu M, Huang S, Yu KJ et al (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alwi R, Telenkov S, Mandelis A et al (2012) Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 3:2500–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tong L, Zhao M, Zhu S et al (2011) Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer. Front Med 5:379–387

    Article  PubMed  Google Scholar 

  27. Xia T, Kovochich M, Liong M et al (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Figuerola A, Di Corato R, Manna L et al (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Article  CAS  PubMed  Google Scholar 

  29. Jin R, Lin B, Li D et al (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  CAS  PubMed  Google Scholar 

  30. Bertorelle F, Wilhelm C, Roger J et al (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir ACS J Surf Colloids 22:5385–5391

    Article  CAS  Google Scholar 

  31. Ge Y, Zhang Y, He S et al (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petters C, Irrsack E, Koch M et al (2014) Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 39:1648–1660

    Article  CAS  PubMed  Google Scholar 

  33. Yan F, Wang Y, He S et al (2013) Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier. J Mater Sci Mater Med 24:2371–2379

    Article  CAS  PubMed  Google Scholar 

  34. Agemy L, Friedmann-Morvinski D, Kotamraju VR et al (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108:17450–17455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar M, Singh G, Arora V et al (2012) Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomedicine 7:3503–3516

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hassan EE, Gallo JM (1993) Targeting anticancer drugs to the brain. I: enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J Drug Target 1:7–14

    Article  CAS  PubMed  Google Scholar 

  37. Jenkins SI, Pickard MR, Granger N et al (2011) Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano 5:6527–6538

    Article  CAS  PubMed  Google Scholar 

  38. Choi JW, Park JW, Na Y et al (2015) Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials 65:163–174

    Article  CAS  PubMed  Google Scholar 

  39. Krötz F, de Wit C, Sohn HY et al (2003) Magnetofection – a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther J Am Soc Gene Ther 7:700–710

    Article  CAS  Google Scholar 

  40. Kumar M, Yigit M, Dai G et al (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358

    Google Scholar 

  42. Kumari M, Rajak S, Singh SP et al (2012) Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem Toxicol 36:1–10

    Google Scholar 

  43. Radu M, Din I, Hermenean A et al (2015) Exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles induces biochemical and histopathological pulmonary changes in mice. Int J Mol Sci 16:29417–29435

    Article  CAS  Google Scholar 

  44. Sadeghi L, Yousefi Babadi V, Espanani HR (2015) Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy 116:373–378

    CAS  PubMed  Google Scholar 

  45. Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  PubMed  Google Scholar 

  46. Jeng H, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Heal Part A Toxic/Hazard Subst Environ Eng 4112:2699–2711

    Article  CAS  Google Scholar 

  47. Karlsson HL, Gustafsson J, Cronholm P et al (2009) Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  PubMed  Google Scholar 

  48. Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  49. Kunzmann A, Andersson B, Vogt C et al (2011) Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253:81–93

    Article  CAS  PubMed  Google Scholar 

  50. Cromer Berman SM, Kshitiz CJ, Wang CJ et al (2013) Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn Reson Med 69:255–262

    Article  CAS  PubMed  Google Scholar 

  51. Wu X, Tan Y, Mao H et al (2010) Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine 5:385–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patil US, Adireddy S, Jaiswal A et al (2015) In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci 16:24417–24450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu Y, Xia Q, Liu Y et al (2014) Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology 25:425101

    Article  PubMed  CAS  Google Scholar 

  54. Soenen SJH, Himmelreich U, Nuytten N et al (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32:195–205

    Article  CAS  PubMed  Google Scholar 

  55. Rivet CJ, Yuan Y, Borca-Tasciuc DA et al (2012) Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol 25:153–161

    Article  CAS  PubMed  Google Scholar 

  56. Magdolenova Z, Drlickova M, Henjum K et al (2013) Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology 5390:1–13

    Google Scholar 

  57. Sun Z, Yathindranath WM et al (2013) Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 8:961–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Couto D, Freitas M, Vilas-Boas V et al (2014) Interaction of polyacrylic acid coated and non-coated iron oxide nanoparticles with human neutrophils. Toxicol Lett 225:57–65

    Article  CAS  PubMed  Google Scholar 

  59. Schütz CA, Staedler D, Crosbie-Staunton K et al (2014) Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles. Int J Nanomedicine 9:3481–3498

    PubMed  PubMed Central  Google Scholar 

  60. Hong SC, Lee JH, Lee J et al (2011) Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine 6:3219–3231

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng Z, Al Zaki A, Hui JZ et al (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Geppert M, Hohnholt MC, Thiel K et al (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    Article  PubMed  CAS  Google Scholar 

  63. Geppert M, Hohnholt MC, Nürnberger S et al (2012) Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8:3832–3839

    Article  CAS  PubMed  Google Scholar 

  64. Petters C, Dringen R (2015) Uptake, metabolism and toxicity of iron oxide nanoparticles in cultured microglia, astrocytes and neurons. Springerplus 4:L32

    Article  PubMed  PubMed Central  Google Scholar 

  65. Couto D, Sousa R, Andrade L et al (2015) Polyacrylic acid coated and non-coated iron oxide nanoparticles are not genotoxic to human T lymphocytes. Toxicol Lett 234:67–73

    Article  CAS  PubMed  Google Scholar 

  66. Xu Y, Sherwood JA, Lackey KH et al (2016) The responses of immune cells to iron oxide nanoparticles. J Appl Toxicol 36:543–553

    Article  CAS  PubMed  Google Scholar 

  67. Bigini P, Diana V, Barbera S et al (2012) Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease. PLoS One 7:e32326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bin NH, Palui G, Rosenberg JT et al (2012) Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6:389–399

    Article  CAS  Google Scholar 

  69. Rosenberg JT, Sachi-Kocher A, Davidson MW et al (2012) Intracellular SPIO labeling of microglia: high field considerations and limitations for MR microscopy. Contrast Media Mol Imaging 7:121–129

    Article  CAS  PubMed  Google Scholar 

  70. Jarockyte G, Daugelaite E, Stasys M et al (2016) Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. Int J Mol Sci 17:1193

    Article  PubMed Central  CAS  Google Scholar 

  71. Rojas JM, Sanz-Ortega L, Mulens-Arias V et al (2016) Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine Nanotechnol Biol Med 12:1127–1138

    Article  CAS  Google Scholar 

  72. Szalay B, Tátrai E, Nyírő G et al (2012) Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32:446–453

    Article  CAS  PubMed  Google Scholar 

  73. Paolini A, Guarch CP, Ramos-López D et al (2016) Rhamnose-coated superparamagnetic iron-oxide nanoparticles: an evaluation of their in vitro cytotoxicity, genotoxicity and carcinogenicity. J Appl Toxicol 36:510–520

    Article  CAS  PubMed  Google Scholar 

  74. Schaub NJ, Rende D, Yuan Y et al (2014) Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 27:2023–2035

    Article  CAS  PubMed  Google Scholar 

  75. Ahamed M, Akhtar MJ, Khan MAM et al (2016) Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf B: Biointerfaces 148:665–673

    Article  CAS  PubMed  Google Scholar 

  76. Ying E, Hwang H-M (2010) In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci Total Environ 408:4475–4481

    Article  CAS  PubMed  Google Scholar 

  77. Costa C, Brandão F, Bessa MJ et al (2016) In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. J Appl Toxicol 36:361–372

    Article  CAS  PubMed  Google Scholar 

  78. Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  79. Unfried K, Albrecht C, Klotz L-O et al (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71

    Article  CAS  Google Scholar 

  80. Liu G, Gao J, Ai H et al (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small Weinh Bergstr Ger 9:1533–1545

    Article  CAS  Google Scholar 

  81. Pisanic TR, Jin S, Shubayev VI 2009 Iron oxide magnetic nanoparticle nanotoxicity: incidence and mechanisms. In: Sahu SC, Casciano DA (eds) Nanotoxicity. Wiley, New York, pp 397–425

    Google Scholar 

  82. Hanot CC, Choi YS, Anani TB et al (2015) Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci 17:E54

    Article  PubMed  CAS  Google Scholar 

  83. Naqvi S, Samim M, Abdin MZ et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hanini A, Schmitt A, Kacem K et al (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine 6:787–794

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu M-T, Wang B, Wang Y et al (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203:162–171

    Article  CAS  PubMed  Google Scholar 

  86. Zhang T, Qian L, Tang M et al (2012) Evaluation on cytotoxicity and genotoxicity of the L-glutamic acid coated iron oxide nanoparticles. J Nanosci Nanotechnol 12:2866–2873

    Article  CAS  PubMed  Google Scholar 

  87. Watanabe M, Yoneda M, Morohashi A et al (2013) Effects of Fe3O4 magnetic nanoparticles on A549 cells. Int J Mol Sci 14:15546–15560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Könczöl M, Ebeling S, Goldenberg E et al (2011) Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 24:1460–1475

    Article  PubMed  CAS  Google Scholar 

  89. Du S, Li J, Du C et al (2017) Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 8:9410–9424

    PubMed  Google Scholar 

  90. Petters C, Thiel K, Dringen R (2015) Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 10:1743–5390

    Google Scholar 

  91. Wu J, Wang C, Sun J et al (2011) Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5:4476–4489

    Article  CAS  PubMed  Google Scholar 

  92. Wang Y, Wang B, Zhu MT et al (2011) Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett 205:26–37

    Article  CAS  PubMed  Google Scholar 

  93. Kenzaoui BH, Bernasconi CC, Hofmann H et al (2012) Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine 7:39–53

    Article  CAS  PubMed  Google Scholar 

  94. Pongrac IM, Dobrivojevi M, Ahmed LB et al (2016) Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein J Nanotechnol 7:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hildebrand H, Kühnel D, Potthoff A et al (2010) Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. 158:65–73

    Google Scholar 

  96. Hohnholt M, Geppert M, Dringen R (2010) Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res 35:1259–1268

    Article  CAS  PubMed  Google Scholar 

  97. Hohnholt MC, Geppert M, Dringen R (2011) Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7:3946–3954

    Article  CAS  PubMed  Google Scholar 

  98. Lindemann A, Fraederich BM, Pries R et al (2014) Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 9:5025–5040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Remya NS, Syama S, Sabareeswaran A et al (2016) Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm 511:586–598

    Article  CAS  PubMed  Google Scholar 

  100. Khan MI, Mohammad A, Patil G et al (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488

    Article  CAS  PubMed  Google Scholar 

  101. Mukhopadhyay A, Joshi N, Chattopadhyay K et al (2012) A facile synthesis of PEG-coated magnetite (Fe 3O 4) nanoparticles and their prevention of the reduction of cytochrome C. ACS Appl Mater Interfaces 4:142–149

    Article  CAS  PubMed  Google Scholar 

  102. Sarkar A, Ghosh M, Sil PC (2014) Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol 14:730–743

    Article  CAS  PubMed  Google Scholar 

  103. Ding FA, Li YP, Liu J et al (2014) Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells. Int J Nanomedicine 9:4317–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baratli Y, Charles AL, Wolff V et al (2014) Age modulates Fe3O4 nanoparticles liver toxicity: dose-dependent decrease in mitochondrial respiratory chain complexes activities and coupling in middle-aged as compared to young rats. Biomed Res Int 2014:474081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhang X, Zhang H, Liang X et al (2016) Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage, and ER stress. Mol Pharm 13:2578–2587

    Article  CAS  PubMed  Google Scholar 

  106. Coccini T, Caloni F, Ramírez Cando LJ et al (2017) Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 37:361–373

    Article  CAS  PubMed  Google Scholar 

  107. Lee JH, Ju JE, Kim BI et al (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33:2759–2766

    Article  CAS  PubMed  Google Scholar 

  108. Dönmez Güngüneş Ç, Şeker Ş, Elçin AE et al (2017) A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol:1–13

    Google Scholar 

  109. Kiliç G, Costa C, Fernández-Bertólez N et al (2016) In vitro toxicity evaluation of silica-coated iron oxide nanoparticles in human SHSY5Y neuronal cells. Toxicol Res 5:235–247

    Article  CAS  Google Scholar 

  110. Berry CC, Wells S, Charles S et al (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  CAS  PubMed  Google Scholar 

  111. Li L, Mak KY, Shi J et al (2012) Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J Nanosci Nanotechnol 12:9010–9017

    Article  CAS  PubMed  Google Scholar 

  112. Bhattacharya K, Davoren M, Boertz J et al (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Singh N, Jenkins GJS, Nelson BC et al (2012) The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 33:163–170

    Article  CAS  PubMed  Google Scholar 

  114. Guichard Y, Schmit J, Darne C et al (2012) Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 56:631–644

    CAS  PubMed  Google Scholar 

  115. Rajiv S, Jerobin J, Saranya V et al (2016) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 35:170–183

    Article  CAS  PubMed  Google Scholar 

  116. Cicha I, Scheffler L, Ebenau A et al (2016) Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: uptake and toxicity in primary human tubular epithelial cells. Nanotoxicology 5390:1–10

    Google Scholar 

  117. Valdiglesias V, Laffon B, Pásaro E et al (2011) Evaluation of okadaic acid-induced genotoxicity in human cells using the micronucleus test and γH2AX analysis. J Toxicol Environ Health A 74(15–16):980–992

    Article  CAS  PubMed  Google Scholar 

  118. Wu J, Sun J (2011) Investigation on mechanism of growth arrest induced by iron oxide nanoparticles in PC12 cells. J Nanosci Nanotechnol 11:11079–11083

    Article  CAS  PubMed  Google Scholar 

  119. Augustin E, Czubek B, Nowicka AM et al (2016) Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol In Vitro 33:45–53

    Article  CAS  PubMed  Google Scholar 

  120. Periasamy VS, Athinarayanan J, Alhazmi M et al (2016) Fe 3 O 4 nanoparticle redox system modulation via cell-cycle progression and gene expression in human mesenchymal stem cells. Environ Toxicol 31:901–912

    Article  CAS  PubMed  Google Scholar 

  121. Lai X, Wei Y, Zhao H et al (2015) The effect of Fe 2 O 3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells. J Appl Toxicol 35:651–664

    Article  CAS  PubMed  Google Scholar 

  122. Berry CC, Wells S, Charles S et al (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413

    Article  CAS  PubMed  Google Scholar 

  123. Kim JH, Sanetuntikul J, Shanmugam S et al (2015) Necrotic cell death caused by exposure to graphitic carbon-coated magnetic nanoparticles. J Biomed Mater Res – Part A 103:2875–2887

    Article  CAS  Google Scholar 

  124. Shi M, Cheng L, Zhang Z et al (2015) Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPs34 complex. Int J Nanomedicine 10:207–216

    CAS  PubMed  Google Scholar 

  125. Park EJ, Choi DH, Kim Y et al (2014) Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol In Vitro 28:1402–1412

    Article  CAS  PubMed  Google Scholar 

  126. Buyukhatipoglu K, Clyne AM (2011) Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96:186–195

    Article  PubMed  CAS  Google Scholar 

  127. Gonnissen D, Qu Y, Langer K et al (2016) Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. Int J Nanomedicine 11:5221–5236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kalive M, Zhang W, Chen Y et al (2012) Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol 28:343–368

    Article  CAS  PubMed  Google Scholar 

  129. Kedziorek DA, Muja N, Walczak P et al (2010) Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 63:1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alarifi S, Ali D, Alkahtani S et al (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Liu Y, Wang J (2013) Effects of DMSA-Coated Fe3O4 nanoparticles on the transcription of genes related to iron and osmosis homeostasis. Toxicol Sci 131:521–536

    Article  CAS  PubMed  Google Scholar 

  132. Könczöl M, Weiss A, Stangenberg E et al (2013) Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chem Res Toxicol 26:693–702

    Article  PubMed  CAS  Google Scholar 

  133. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Soenen SJH, De Cuyper M (2009) Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 4:207–219

    Article  CAS  PubMed  Google Scholar 

  135. Stroh A, Zimmer C, Gutzeit C et al (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984

    Article  CAS  PubMed  Google Scholar 

  136. Shander A, Cappellini MD, Goodnough LT (2009) Iron overload and toxicity: the hidden risk of multiple blood transfusions. Vox Sang 97:185–197

    Article  CAS  PubMed  Google Scholar 

  137. Geppert M, Hohnholt M, Gaetjen L et al (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5:285–293

    Article  CAS  PubMed  Google Scholar 

  138. Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566

    Article  CAS  PubMed  Google Scholar 

  139. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Xunta de Galicia (grant number ED431B 2016/013) and the projects NanoToxClass (ERA-SIINN/001/2013) funded by FCT/MCTES (PIDDAC) and co-funded by the European Regional Development Fund (ERDF) through the COMPETE Programme, and CERASAFE (SIINN/0004/2014) funded by FCT (national funds of MES) and co-funded by the European Union (ERA-NET SIINN programme). V. Valdiglesias was supported by a Xunta de Galicia postdoctoral fellowship (reference ED481B 2016/190-0). N. Fernández-Bertólez was supported by an INDITEX-UDC fellowship. F. Brandão was supported by the grant SFRH/BD/101060/2014, funded by FCT (financing subsided by national fund of MES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Laffon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laffon, B. et al. (2018). Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_12

Download citation

Publish with us

Policies and ethics