Skip to main content

Nutritional and Metabolic Disorders in Dairy Goats

  • Chapter
  • First Online:
Sustainable Goat Production in Adverse Environments: Volume I

Abstract

This chapter aims to describe significant aspects of the most common nutritional/metabolic diseases caused by insufficient or disbalanced nutrients intake, such as carbohydrates, proteins, vitamins, and macro or trace minerals, and their repercussion in goat metabolism. Goats are opportunistic feeding behavior animals, choosing the best nutrients in both hard environments or even in feed availability periods. In some conditions, e.g., poor quality forages in nutrients, and/or when energy or nutrient requirements overpasses their intake capacity and availability, goats may not keep metabolic homeostasis. Pregnant toxemia, urolithiasis, polioencephalomalacia, and selenium or vitamin E deficiency are major diseases with impact in production, reproduction and/or health in both low- and high-producing goats or their kids. İn high-producing dairy goats, due to their higher nutritional demands, increased incidence of the called “production diseases” is observed. Subacute ruminal acidosis, lactational ketosis, hepatic lipidose, hypocalcemia and low milk fat syndrome are also major problem in dairy herds to require special attention. Risk factors of these disorders should be taken into account in nutritional and feed management programs. A holistic approach regarding these programs and herd health management are crucial to control or prevent nutritional and metabolic diseases in farms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdela N (2016) Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: a review of past and recent research at global prospective. Achievem Life Sci 10(2):187–196

    Article  Google Scholar 

  • Aghwan ZA, Alimon AR, Goh YM et al (2014) Fatty acid profiles of supraspinatus, longissimus lumborum and semitendinosus muscles and serum in Kacang goats supplemented with inorganic selenium and iodine. Asian-Australas J Anim Sci 27(4):543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghwan ZA, Sazili AQ, Kadhim KK et al (2016) Effects of dietary supplementation of selenium and iodine on growth performance, carcass characteristics and histology of thyroid gland in goats. Anim Sci 87(5):69–690

    Google Scholar 

  • Albay MK, Karakurum MC, Sahinduran S et al (2014) Selected serum biochemical parameters and acute phase protein levels in a herd of Saanen goats showing signs of pregnancy toxaemia. Vet Med 59(7):336–342

    CAS  Google Scholar 

  • Alves de Oliveira L, Jean-Blain C, Durix A et al (1996) Use of a semi-continuous culture system (RUSITEC) to study the effect of pH on microbial metabolism of thiamin (Vitamin B1). Arch Tierernahr 49(3):193–202

    Article  CAS  PubMed  Google Scholar 

  • Amarpal Kinjavdekar P, Aithal HP, Pawde AM et al (2013) A retrospective study on the prevalence of obstructive urolithiasis in domestic animals during a period of 10 years. Adv Anim Vet Sci 1(3):88–92

    Google Scholar 

  • Amat S, McKinnon JJ, Olkowski AA et al (2013a) Understanding the role of sulfur-thiamine interaction in the pathogenesis of sulfur-induced polioencephalomalacia in beef cattle. Res Vet Sci 95(3):1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Amat S, Olkowski AA, Atila M et al (2013b) A review of polioencephalomalacia in ruminants: is the development of malacic lesions associated with excess sulfur intake independent of thiamine deficiency? Vet Med Anim Sci 1(1):1. https://doi.org/10.7243/2054-3425-1-1

    Article  Google Scholar 

  • Andrews A (1997) Pregnancy toxaemia in the ewe. Practice 19(6):306–314

    Article  Google Scholar 

  • Baciadonna L, McElligott AG, Briefe EF (2013) Goats favour personal over social information in an experimental foraging task. PeerJ 1:e172. https://doi.org/10.7717/peerj.172

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldin M, Dresch R, Souza J et al (2014) CLA induced milk fat depression reduced dry matter intake and improved energy balance in dairy goats. Small Rumin Res 116(1):44–50

    Article  Google Scholar 

  • Bar1owska J, Szwajowska M, Litwinczuk Z et al (2011) Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf 10(6):291–302

    Google Scholar 

  • Barroso FG, Alados CL, Boza J (2000) Social hierarchy in the domestic goat: effect on food habits and production. Appl Anim Behav Sci 69(1):35–53

    Article  CAS  PubMed  Google Scholar 

  • Bauman DE, Griinari JM (2003) Nutritional regulation of milk fat synthesis. Annu Rev Nutr 23:203–227

    Article  CAS  PubMed  Google Scholar 

  • Bickhardt K, Ganter M, Sallmann P et al (1999) Investigations on manifestations of vitamin E and selenium deficiency in sheep and goats. Dtsch Tierarztl Wochenschr 106(6):242–247

    CAS  PubMed  Google Scholar 

  • Bobe G, Young JW, Beitz DC (2004) Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87(10):3105–3124

    Article  CAS  PubMed  Google Scholar 

  • Bousquet CA (2005) Pathologie caprine en deux-sèvres: état des lieux et impact sur les niveaux de réforme et de mortalité. Ph.D. thesis, University of Paul-Sabatier de Toulouse, Toulouse, France

    Google Scholar 

  • Brent BE, Bartley EE (1984) Thiamin and niacin in the rumen. J Anim Sci 59:813–822

    Article  CAS  PubMed  Google Scholar 

  • Brozos C, Mavrogianni VS, Fthenakis GC (2011) Treatment and control of periparturient metabolic diseases: pregnancy toxemia, hypocalcemia, hypomagnesemia. Vet Clin North Am Food Anim Pract 27(1):105–113

    Article  PubMed  Google Scholar 

  • Cebra CK, Cebra ML (2004) Altered mentation caused by polioencephalomalacia, hypernatremia, and lead poisoning. Vet Clin North Am Food Anim Pract 20:287–302

    Article  PubMed  Google Scholar 

  • Chartier C (2009) Pathologie caprine: du diagnostic à la prévention. Les Éd. du Point Vétérinaire, Rueil-Malmaison, France

    Google Scholar 

  • Chigerwe M, Aleman M (2016) Seizure disorders in goats and sheep. Vet Intern Med 30(5):1752–1757

    Article  CAS  Google Scholar 

  • Corbera JA, Morales M, Doreste F et al (2007) Experimental struvite urolithiasis in goats. J Appl Anim Res 32:191–194

    Article  Google Scholar 

  • Cornelius CE, Moulton JE, McGowan B (1959) Ruminant urolithiasis: I. Preliminary observations in experimental ovine calculosis. Am J Vet Res 20:863–871

    CAS  PubMed  Google Scholar 

  • Costello CA, Kelleher NL, Abe M et al (1996) Mechanistic studies on thiaminase I. Overexpression and identification of the active site nucleophile. J Biol Chem 271:3445–3452

    Article  CAS  PubMed  Google Scholar 

  • DeGaris PJ, Lean IJ (2008) Milk fever in dairy cows: a review of pathophysiology and control principles. Vet J 176:58–69

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Wang S, Jia Y et al (2013) Long-term effects of subacute ruminal acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet. PLoS ONE 8(12):e82850. https://doi.org/10.1371/journal.pone.0082850

    Article  PubMed  PubMed Central  Google Scholar 

  • Doré V, Dubuc J, Bélanger AM et al (2015) Definition of prepartum hyperketonemia in dairy goats. J Dairy Sci 98(7):4535–4543

    Article  PubMed  Google Scholar 

  • Edmondson MA, Roberts JF, Baird AN et al (2012) Theriogenology of sheep and goats. In: Pugh DG, Baird AN (eds) Sheep and goat medicine, 2nd edn. Elsevier-Saunders, Maryland Heights, MO, pp 150–231

    Chapter  Google Scholar 

  • Ermilio EM, Smith MC (2011) Treatment of emergency conditions in sheep and goats. Vet Clin North Am Food Anim Pract 27:33–45

    Article  PubMed  Google Scholar 

  • Ewoldt JM, Anderson DE, Miesner MD et al (2006) Short- and longterm outcome and factors predicting survival after surgical tube cystostomy for treatment of obstructive urolithiasis in small ruminants. Vet Surg 35(5):417–422

    Article  PubMed  Google Scholar 

  • Fernandes D, Gama MA, Ribeiro CV et al (2014) Milk fat depression and energy balance in stall-fed dairy goats supplemented with increasing doses of conjugated linoleic acid methyl esters. Animal 8(4):587–595

    Article  CAS  PubMed  Google Scholar 

  • Freeman SR, Poore MH, Young GA et al (2010) Influence of calcium (0.6 or 1.2%) and phosphorus (0.3 or 0.6%) content and ratio on the formation of urolithogenic compounds in the urine of Boer-cross goats fed high-concentrate diets. Small Rum Res 93(2):94–102

    Google Scholar 

  • Ganabadi S Jr, Halimatun Y, Amelia Choong KL et al (2010) Effect of selenium supplementation on spermatogenic cells of goats. Malays J Nutr 16(1):187–193

    PubMed  Google Scholar 

  • George JW, Hird DW, George LW (2007) Serum biochemical abnormalities in goats with uroliths: 107 cases (1992–2003). J Am Vet Med Assoc 230(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Goff JP, Liesegang A, Horst RL (2014) Diet-induced pseudohypoparathyroidism: a hypocalcemia and milk fever risk factor. J Dairy Sci 97(3):1520–1528

    Article  CAS  PubMed  Google Scholar 

  • González FHD, Hernandez F, Madrid J et al (2011) Acute phase proteins in experimentally induced pregnancy toxemia in goats. J Vet Diagn Invest 23(1):57–62

    Article  PubMed  Google Scholar 

  • Gould DH (1998) Polioencephalomalacia. J Anim Sci 76(1):309–314

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez C, Escolar E, Juste MC et al (2000) Severe urolithiasis due to trimagnesium orthophosphate calculi in a goat. Vet Rec 146(18):534

    Article  PubMed  Google Scholar 

  • Halland SK, House JK, George LW (2002) Urethroscopy and laser lithotripsy for the diagnosis and treatment of obstructive urolithiasis in goats and pot-bellied pigs. J Am Vet Med Assoc 220:1831–1834

    Article  PubMed  Google Scholar 

  • Härter CJ, Castagnino DS, Rivera AR et al (2015) Mineral metabolism in singleton and twin-pregnant dairy goats. Asian-Aust J Anim Sci 28(1):37–49

    Article  Google Scholar 

  • Härter CJ, Lima LD, Castagnino DS et al (2017) Net mineral requirements of dairy goats during pregnancy. Animal 13:1–9

    Google Scholar 

  • Hefnawy AE, Youssef S, Shousha S (2010) Some immunohormonal changes in experimentally pregnant toxemic goats. Vet Med Int 2010:768438. https://doi.org/10.4061/2010/768438

    Article  PubMed  PubMed Central  Google Scholar 

  • Hefnawy AE, Shousha S, Youssef S (2011) Hematobiochemical profile of pregnant and experimentally pregnancy toxemic goats. J Basic Appl Chem 1(8):65–69

    Google Scholar 

  • Heitmann RN, Dawes DJ, Sensenig SC (1987) Hepatic ketogenesis and peripheral ketone body utilization in the ruminant. J Nutr 117(6):1174–1180

    Article  CAS  PubMed  Google Scholar 

  • Herdt TH (1988) Fatty liver in dairy cows. Vet Clin North Am Food Anim Pract 4(2):269–287

    Article  CAS  PubMed  Google Scholar 

  • Herm G, Muscher-Banse AS, Breves G et al (2015) Renal mechanisms of calcium homeostasis in sheep and goats. J Anim Sci 93(4):1608–1621

    Article  CAS  PubMed  Google Scholar 

  • Hesse A, Heimbach D (1999) Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol 17(5):308–315

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M, Miller I, Hummel K et al (2013) Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet. PLoS ONE 8(12):e81602. https://doi.org/10.1371/journal.pone.0081602

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo W, Zhu W, Mao S (2013) Effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide in the rumen fluid and the subsequent alterations in immune responses in goats. Asian-Aust J Anim Sci 26(10):1437–1445

    Article  CAS  Google Scholar 

  • Huo W, Zhu W, Mao S (2014) Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J Microbiol Biotechnol 30(2):669–680

    Article  CAS  PubMed  Google Scholar 

  • Ismail ZAB, Al-Majali AM, AMireh F et al (2008) Metabolic profiles in goat does in late pregnancy with and without subclinical pregnancy toxemia. Vet Clin Pathol (37)4:434–437

    Google Scholar 

  • Jacobs D, Heimbach D, Hesse A (2001) Chemolysis of struvite stones by acidification of artificial urine. Scand J Urol Nephrol 35:345–349

    Article  CAS  PubMed  Google Scholar 

  • Jia YY, Wang SQ, Ni YD et al (2014) High concentrate-induced subacute ruminal acidosis (SARA) increases plasma acute phase proteins (APPs) and cortisol in goats. Animal 8(9):1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Johnson EH, Al-Habsi K, Kaplan E et al (2004) Caprine hepatic lipidosis induced through the intake of low levels of dietary cobalt. Vet J 168(2):174–179

    Article  CAS  PubMed  Google Scholar 

  • Jones ML, Streeter RN, Goad CL (2009) Use of dietary cation anion difference for control of urolithiasis risk factors in goats. Am J Vet Res 70(1):149–155

    Article  CAS  PubMed  Google Scholar 

  • Kaneko J, Harvey JW, Bruss ML (1997) Clinical biochemistry of domestic animals, 5th edn. Academic Press, New York, USA

    Google Scholar 

  • Kannan KVA, Lawrence KE (2010) Obstructive urolithiasis in a Saanen goat in New Zealand, resulting in a ruptured bladder. N Z Vet J 58(5):269–271

    Article  CAS  PubMed  Google Scholar 

  • Kevelam SH, Bugiani M, Salomons GS et al (2013) Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 136:1534–1543

    Article  PubMed  Google Scholar 

  • Kleen JL, Upgang L, Rehage J (2013) Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet Scand 55(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleppe BB, Aiello RJ, Grummer RR et al (1988) Triglyceride accumulation and very low-density lipoprotein secretion by rat and goat hepatocytes in vitro. J Dairy Sci 71:1813–1822

    Article  CAS  PubMed  Google Scholar 

  • Kraft CE, Gordon ERL, Angert ER (2014) A rapid method for assaying thiaminase I activity in diverse biological samples. PLoS ONE 9(3):e92688. https://doi.org/10.1371/journal.pone.0092688

    Article  PubMed  PubMed Central  Google Scholar 

  • Liesegang A (2008) Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep. J Dairy Sci 91(6):2449–2460

    Article  CAS  PubMed  Google Scholar 

  • Liesegang A, Risteli J, Wanner M (2006) The effects of first gestation and lactation on bone metabolism in dairy goats and milk sheep. Bone 38(6):794–802

    Article  CAS  PubMed  Google Scholar 

  • Liesegang A, Staub T, Wichert B et al (2008) Effect of vitamin E supplementation of sheep and goats fed diets supplemented with polyunsaturated fatty acids and low in Se. J Anim Physiol Anim Nutr (Berl) 92(3):292–302

    Google Scholar 

  • Lima EF, Riet-Correa FT, Ivon M (2005) Polioencephalomalacia in goats and sheep in the semiarid region of north-eastern Brazil. Pesq Vet Bras 25:9–14

    Article  Google Scholar 

  • Lima MS, Pascoal RA, Stilwell GT et al (2012) Clinical findings, blood chemistry values, and epidemiologic data obtained from dairy goats with pregnancy toxemia (PT). Bov Pract 46(2):102–110

    Google Scholar 

  • Lima MS, Silveira JM, Carolino N et al (2016) Usefulness of clinical observations and blood chemistry values for predicting clinical outcomes in dairy goats with pregnancy toxaemia. Ir Vet J 69:16. https://doi.org/10.1186/s13620-016-0075-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J-H, Bian G-R, Zhu W-Y et al (2015) High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front Microbiol 6:167. https://doi.org/10.3389/fmicb.2015.00167

    PubMed  PubMed Central  Google Scholar 

  • Livingston CW, Calhoun MC, Gauer BB et al (1984) Effect of experimental infection with ovine ureaplasma upon the development of uroliths in feedlot lambs. Israel J Med Sci 20:958–961

    PubMed  Google Scholar 

  • Makhdoomi DM, Gazi MA (2013) Obstructive urolithiasis in ruminants—a review. Vet World 6(4):233–238

    Article  Google Scholar 

  • Malá S, Kovárů F, Misurová L et al (2009) Influence of selenium on innate immune response in kids. Folia Microbiol (Praha) 54(6):545–548

    Article  Google Scholar 

  • Martens H, Schweigel M (2000) Pathophysiology of grass tetany and other hypomagnesemias. Implications for clinical management. Vet Clin North Am Food Anim Pract 16(2):339–368

    Article  CAS  PubMed  Google Scholar 

  • McComb T, Bischoff K, Thompson B et al (2010) An investigation of blood selenium concentrations of goats in New York State. J Vet Diagn Invest 22(5):696–701

    Article  PubMed  Google Scholar 

  • Medina-Escobedo M, Zaidi M, Real-de Leon E et al (2002) Prevalence and risk factors of urinary lithiasis in Yucatan, Mexico. Salud Pública de México 44(6):541–545

    Article  PubMed  Google Scholar 

  • Mellado M (2016) Dietary selection by goats and the implications for range management in the Chihuahuan desert: a review. Rangeland J 38(4):331–341

    Article  Google Scholar 

  • Morand-Fehr P (2003) Dietary choices of goats at the trough. Small Rumin Res 49(3):231–239

    Article  Google Scholar 

  • Morand-Fehr P (2005) Recent developments in goat nutrition and application: a review. Small Rumin Res 60(1–2):25–43

    Article  Google Scholar 

  • Murata K (1982) Actions of two types of thiaminase on thiamin and its analogues. Ann N Y Acad Sci 378:146–156

    Article  CAS  PubMed  Google Scholar 

  • Nwaokorie EE, Osborne CA, Lulich JP et al (2015) Risk factors for calcium carbonate urolithiasis in goats. J Am Vet Med Assoc 247(3):293–299

    Article  CAS  PubMed  Google Scholar 

  • Oetzel GR (1988) Parturient paresis and hypocalcemia in ruminant livestock. Vet Clin North Am Food Anim Pract 4:351–364

    Article  CAS  PubMed  Google Scholar 

  • Olkowski AA (1997) Neurotoxicity and secondary metabolic problems associated with low to moderate levels of exposure to excess dietary sulphur in ruminants: a review. Vet Hum Toxicol 39:355–360

    CAS  PubMed  Google Scholar 

  • Osborne CA, Polzin DJ, Abdullahi SU et al (1985) Struvite urolithiasis in animals and man: formation, detection and dissolution. Adv Vet Sci Comp Med 29:1–45

    CAS  PubMed  Google Scholar 

  • Packett LV, Coburn SP (1965) Urine proteins in nutritionally induced ovine urolithiasis. Am J Vet Res 26(10):112–119

    CAS  PubMed  Google Scholar 

  • Pichler M, Damberger A, Arnholdt T et al (2014) Evaluation of two electronic handheld devices for diagnosis of ketonemia and glycemia in dairy goats. J Dairy Sci 97:7538–7546

    Article  CAS  PubMed  Google Scholar 

  • Radostits OM, Gay CC, Hinchcliff KW et al (2007) Pregnancy toxemia in sheep. In: Radostits OM, Gay CC, Hinchcliff KW et al (eds) Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats and horses, 10th edn, Saunders Elsevier USA, Philadelphia, pp 1668–1671

    Google Scholar 

  • Rook JS (2000) Pregnancy toxemia of ewes, does, and beef cows. Vet Clin North Am Food Anim Pract 16(2):293–317

    Article  CAS  PubMed  Google Scholar 

  • Sadjadian R, Seifi HA, Mohri M et al (2013) Variations of energy biochemical metabolites in periparturient dairy Saanen goats. Comp Clin Pathol 22:449–456

    Google Scholar 

  • Sahinduran S, Buyukoglu T, Gulay MS et al (2007) Increased water hardness and magnesium levels may increase occurrence of urolithiasis in cows from the Burdur region (Turkey). Vet Res Commun 31(6):665–671

    Google Scholar 

  • Sánchez J, Montes P, Jiménez A et al (2007) Prevention of clinical mastitis with barium selenate in dairy goats from a selenium-deficient area. J Dairy Sci 90(5):2350–2354

    Article  PubMed  Google Scholar 

  • Sensenig SC, Dawes DJ, Heitmann RN (1985) Energy metabolite concentrations and net fluxes across splanchnic and peripheral tissues in pregnant ewes. J Anim Sci 61(Suppl. 1):454

    Google Scholar 

  • Sevcikova L, Pechova A, Pavlata L et al (2011) The effect of various forms of selenium supplied to pregnant goats on the levels of selenium in the body of their kids at the time of weaning. Biol Trace Elem Res 143(2):882–892

    Article  CAS  PubMed  Google Scholar 

  • Shokrollahi B, Mansouri M, Amanlou H (2013) The effect of enriched milk with selenium and vitamin E on growth rate, hematology, some blood biochemical factors, and immunoglobulins of newborn goat kids. Biol Trace Elem Res 153(1–3):184–190

    Article  CAS  PubMed  Google Scholar 

  • Stelletta C, Gianesella M, Morgante M (2008) Metabolic and nutritional diseases. İn: Cannas A, Pulina G (eds) Dairy goats feeding and nutrition, CAB International, Bologna, Italy

    Google Scholar 

  • Stewart SR, Emerick RJ, Pritchard RH (1990) High dietary calcium to phosphorus ratio and alkali-forming potential as factors promoting silica urolithiasis in sheep. J Anim Sci 68:498–503

    Article  CAS  PubMed  Google Scholar 

  • Stratton-Phelps M, House JK (2004) Effect of a commercial anion dietary supplement on acid–base balance, urine volume, and urinary ion excretion in male goats fed oat or grass hay diets. Am J Vet Res 65:1391–1397. Erratum in: Am J Vet Res 65:1700

    Google Scholar 

  • Straub M, Hautmann RE, Hesse A et al (2005) Calcium oxalate stones and hyperoxaluria. What is certain? What is new? Der Urologe 44(11):1315–1323

    Google Scholar 

  • Sun F, Cao Y, Yu C et al (2016) 1,25-dihydroxyvitamin D3 modulates calcium transport in goat mammary epithelial cells in a dose- and energy-dependent manner. J Anim Sci Biotechnol 7:41. https://doi.org/10.1186/s40104-016-0101-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Suárez-Vega A, Toral PG, Gutiérrez-Gil B et al (2017) Elucidating fish oil-induced milk fat depression in dairy sheep: milk somatic cell transcriptome analysis. Sci Rep 7:45905. https://doi.org/10.1038/srep45905

  • Thomas KW, Turner DL, Spicer EM (1987) Thiamine, thiaminase and transketolase levels in goats with and without polioencephalomalacia. Aust Vet J 64:126–127

    Article  CAS  PubMed  Google Scholar 

  • Toms AV, Haas AL, Park JH et al (2005) Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II. Biochemistry 44:2319–2329

    Article  CAS  PubMed  Google Scholar 

  • Trevisi E, D’Angelo A, Gaviraghi A et al (2005) Blood inflammatory indices in goats around kidding. Ital J Anim Sci 4(Suppl. 2):404–405

    Google Scholar 

  • Tufarelli V, Laudadio V (2011) Dietary supplementation with selenium and vitamin E improves milk yield, composition and rheological properties of dairy Jonica goats. J Dairy Res 78(2):144–148

    Article  CAS  PubMed  Google Scholar 

  • Urrutia NL, Harvatine KJ (2017) Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J Nutr 147(5):763–769

    Article  CAS  PubMed  Google Scholar 

  • Van Metre DC, Fubini SL (2006) Ovine and caprine urolithiasis: another piece of the puzzle. Vet Surg 35(5):413–416

    Article  PubMed  Google Scholar 

  • Ventto L, Leskinen H, Kairenius P et al (2017) Diet-induced milk fat depression is associated with alterations in ruminal biohydrogenation pathways and formation of novel fatty acid intermediates in lactating cows. Br J Nutr 117(3):364–376

    Google Scholar 

  • Vernon RG, Clegg RA, Flint DJ (1981) Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation. Biochem J 200(2):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner CA, Mohebbi N (2010) Urinary pH and stone formation. J Nephrol 23(Suppl. 16):165–169

    Google Scholar 

  • Wilkens MR, Richter J, Fraser DR et al (2012) In contrast to sheep, goats adapt to dietary calcium restriction by increasing intestinal absorption of calcium. Comp Biochem Physiol A Mol Integr Physiol 163:396–406

    Google Scholar 

  • Wilkens MR, Liesegang A, Richter J et al (2014) Differences in peripartal plasma parameters related to calcium homeostasis of dairy sheep and goats in comparison with cows. J Dairy Res 81(3):325–332

    Google Scholar 

  • Yamagishi N, Oishi A, Sato J, Sato R, Naito Y (1999) Experimental hyocalcemia induced by hemodialysis in goats. J Vet Med Sci 61:1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Zobel G, Leslie K, Weary DM et al (2015) Ketonemia in dairy goats: effect of dry period length and effect on lying behavior. J Dairy Sci 98(9):6128–6138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Simões .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simões, J., Gutiérrez, C. (2017). Nutritional and Metabolic Disorders in Dairy Goats. In: Simões, J., Gutiérrez, C. (eds) Sustainable Goat Production in Adverse Environments: Volume I. Springer, Cham. https://doi.org/10.1007/978-3-319-71855-2_11

Download citation

Publish with us

Policies and ethics