Skip to main content

Advances in Cell Seeding of Tissue Engineered Vascular Grafts

  • Living reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Abstract

From the advent of tissue engineered vascular grafts (TEVG), cells have often been included in the fabrication process in order to provide biological signals to the host and ultimately lead to improved outcomes. How the cells are integrated into the TEVG varies; in this review, we summarize the advances in cell-based TEVG research over the past decade with a focus on cell seeding techniques. In addition to describing methods for cell incorporation, this review will also briefly cover considerations of cell choice, highlighting the use of pluripotent stem cells in TEVGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen JB, Khan S, Lapidos KA, Ameer GA (2010) Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells 28(2):318–328. https://doi.org/10.1002/stem.275. Epub 2009/12/17. PubMed PMID: 20013827

    Article  Google Scholar 

  • Aper T, Wilhelmi M, Gebhardt C, Hoeffler K, Benecke N, Hilfiker A, Haverich A (2016) Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomater 29:21–32. https://doi.org/10.1016/j.actbio.2015.10.012. Epub 2015/10/17. PubMed PMID: 26472610

    Article  Google Scholar 

  • Athanasiou T, Saso S, Rao C, Vecht J, Grapsa J, Dunning J, Lemma M, Casula R (2011) Radial artery versus saphenous vein conduits for coronary artery bypass surgery: forty years of competition-which conduit offers better patency? A systematic review and meta-analysis. Eur J Cardiothorac Surg 40(1):208–220. https://doi.org/10.1016/j.ejcts.2010.11.012. Epub 2010/12/21. PubMed PMID: 21167726

    Article  Google Scholar 

  • Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics C, Stroke Statistics S (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485. Epub 2017/01/27. PubMed PMID: 28122885; PubMed Central PMCID: PMCPMC5408160

    Article  Google Scholar 

  • Benrashid E, McCoy CC, Youngwirth LM, Kim J, Manson RJ, Otto JC, Lawson JH (2016) Tissue engineered vascular grafts: origins, development, and current strategies for clinical application. Methods 99:13–19. https://doi.org/10.1016/j.ymeth.2015.07.014. Epub 2015/07/29. PubMed PMID: 26216054

    Article  Google Scholar 

  • Best C, Strouse R, Hor K, Pepper V, Tipton A, Kelly J, Shinoka T, Breuer C (2018) Toward a patient-specific tissue engineered vascular graft. J Tissue Eng 9. https://doi.org/10.1177/2041731418764709. Epub 2018/03/24. PubMed PMID: 29568478; PubMed Central PMCID: PMCPMC5858675

    Article  Google Scholar 

  • Bowlin GL, Meyer A, Fields C, Cassano A, Makhoul RG, Allen C, Rittgers SE (2001) The persistence of electrostatically seeded endothelial cells lining a small diameter expanded polytetrafluoroethylene vascular graft. J Biomater Appl 16(2):157–173. https://doi.org/10.1106/NCQT-JFV9-2EQ1-EBGU. Epub 2002/01/17. PubMed PMID: 11794725

    Article  Google Scholar 

  • Campagnolo P, Gormley AJ, Chow LW, Guex AG, Parmar PA, Puetzer JL, Steele JA, Breant A, Madeddu P, Stevens MM (2016) Pericyte seeded dual peptide scaffold with improved endothelialization for vascular graft tissue engineering. Adv Healthc Mater 5(23):3046–3055. https://doi.org/10.1002/adhm.201600699. Epub 2016/10/27. PubMed PMID: 27782370; PubMed Central PMCID: PMCPMC5405341

    Article  Google Scholar 

  • Campbell JB, Glover JL, Herring B (1988) The influence of endothelial seeding and platelet inhibition on the patency of ePTFE grafts used to replace small arteries – an experimental study. Eur J Vasc Surg 2(6):365–370. https://doi.org/10.1016/s0950-821x(88)80013-6. Epub 1988/12/01. PubMed PMID: 3253119

    Article  Google Scholar 

  • Chen W, Yang M, Bai J, Li X, Kong X, Gao Y, Bi L, Xiao L, Shi B (2018) Exosome-modified tissue engineered blood vessel for endothelial progenitor cell capture and targeted siRNA delivery. Macromol Biosci 18(2). https://doi.org/10.1002/mabi.201700242. Epub 2017/12/06. PubMed PMID: 29205878

    Article  Google Scholar 

  • Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, Park HY, Jang Y, Chang BC, Choi CY, Hwang KC, Kim BS (2005) Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 241(3):506–515. https://doi.org/10.1097/01.sla.0000154268.12239.ed. Epub 2005/02/25. PubMed PMID: 15729075; PubMed Central PMCID: PMCPMC1356991

    Article  Google Scholar 

  • Cunnane EM, Haskett DG, Luketich SK, D’Amore A, Weinbaum JS, Wagner WR, Vorp DA (2019) Development and evaluation of a device for seeding large tubular scaffolds. (in preparation)

    Google Scholar 

  • Dahan N, Zarbiv G, Sarig U, Karram T, Hoffman A, Machluf M (2012) Porcine small diameter arterial extracellular matrix supports endothelium formation and media remodeling forming a promising vascular engineered biograft. Tissue Eng Part A 18(3–4):411–422. https://doi.org/10.1089/ten.TEA.2011.0173. Epub 2011/09/17. PubMed PMID: 21919798

    Article  Google Scholar 

  • Dahl SL, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3(68):68ra9. https://doi.org/10.1126/scitranslmed.3001426. Epub 2011/02/04. PubMed PMID: 21289273

    Article  Google Scholar 

  • Davis TA, Anam K, Lazdun Y, Gimble JM, Elster EA (2014) Adipose-derived stromal cells promote allograft tolerance induction. Stem Cells Transl Med 3(12):1444–1450. https://doi.org/10.5966/sctm.2014-0131. Epub 2014/11/21. PubMed PMID: 25411475; PubMed Central PMCID: PMCPMC4250215

    Article  Google Scholar 

  • Duncan DR, Breuer CK (2011) Challenges in translating vascular tissue engineering to the pediatric clinic. Vasc Cell 3(1):23. https://doi.org/10.1186/2045-824X-3-23. Epub 2011/10/18. PubMed PMID: 21999145; PubMed Central PMCID: PMCPMC3205017

    Article  Google Scholar 

  • Fields C, Cassano A, Allen C, Meyer A, Pawlowski KJ, Bowlin GL, Rittgers SE, Szycher M (2002a) Endothelial cell seeding of a 4-mm I.D. polyurethane vascular graft. J Biomater Appl 17(1):45–70. https://doi.org/10.1177/0885328202017001861. Epub 2002/09/12. PubMed PMID: 12222757

    Article  Google Scholar 

  • Fields C, Cassano A, Makhoul RG, Allen C, Sims R, Bulgrin J, Meyer A, Bowlin GL, Rittgers SE (2002b) Evaluation of electrostatically endothelial cell seeded expanded polytetrafluoroethylene grafts in a canine femoral artery model. J Biomater Appl 17(2):135–152. https://doi.org/10.1106/088532802030556. Epub 2003/02/01. PubMed PMID: 12557999

    Article  Google Scholar 

  • Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N (2016) Tissue-engineered small diameter arterial Vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS One 11(7):e0158555. https://doi.org/10.1371/journal.pone.0158555. Epub 2016/07/29. PubMed PMID: 27467821; PubMed Central PMCID: PMCPMC4965077

    Article  Google Scholar 

  • Godbey WT, Hindy SB, Sherman ME, Atala A (2004) A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials 25(14):2799–2805. https://doi.org/10.1016/j.biomaterials.2003.09.056. Epub 2004/02/14. PubMed PMID: 14962558

    Article  Google Scholar 

  • Graham LM, Burkel WE, Ford JW, Vinter DW, Kahn RH, Stanley JC (1980) Immediate seeding of enzymatically derived endothelium in Dacron vascular grafts. Early experimental studies with autologous canine cells. Arch Surg 115(11):1289–1294. https://doi.org/10.1001/archsurg.1980.01380110033005. Epub 1980/11/01. PubMed PMID: 6449186

    Article  Google Scholar 

  • Gui L, Niklason LE (2014) Vascular tissue engineering: building perfusable vasculature for implantation. Curr Opin Chem Eng 3:68–74. https://doi.org/10.1016/j.coche.2013.11.004. Epub 2014/02/18. PubMed PMID: 24533306; PubMed Central PMCID: PMCPMC3923579

    Article  Google Scholar 

  • Gui L, Boyle MJ, Kamin YM, Huang AH, Starcher BC, Miller CA, Vishnevetsky MJ, Niklason LE (2014) Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Eng Part A 20(9–10):1499–1507. https://doi.org/10.1089/ten.TEA.2013.0263. Epub 2013/12/11. PubMed PMID: 24320793; PubMed Central PMCID: PMCPMC4011429

    Article  Google Scholar 

  • Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7(5):850–858. https://doi.org/10.1038/nprot.2012.027. Epub 2012/04/07. PubMed PMID: 22481530

    Article  Google Scholar 

  • Haskett DG, Saleh KS, Lorentz KL, Josowitz AD, Luketich SK, Weinbaum JS, Kokai LE, D’Amore A, Marra KG, Rubin JP, Wagner WR, Vorp DA (2018a) An exploratory study on the preparation and evaluation of a “same-day” adipose stem cell-based tissue-engineered vascular graft. J Thorac Cardiovasc Surg 156(5):1814–22 e3. https://doi.org/10.1016/j.jtcvs.2018.05.120. Epub 2018/07/31. PubMed PMID: 30057192; PubMed Central PMCID: PMCPMC6200342

    Article  Google Scholar 

  • Haskett D, Madala S, Cunnane E, Lorentz K, Zhang C, Luketich S, Weinbaum J, D’Amore A, Kokai L, Marra K, Wagner W, Rubin P, Vorp D (eds) (2018b) Development of a seeding device for bulk-seeding of cells into a long “human-sized” scaffold for tissue engineered vascular grafting. 8th World Congress of biomechanics, July 12, 2018. Dublin

    Google Scholar 

  • He W, Nieponice A, Soletti L, Hong Y, Gharaibeh B, Crisan M, Usas A, Peault B, Huard J, Wagner WR, Vorp DA (2010) Pericyte-based human tissue engineered vascular grafts. Biomaterials 31(32):8235–8244. https://doi.org/10.1016/j.biomaterials.2010.07.034. Epub 2010/08/06. PubMed PMID: 20684982; PubMed Central PMCID: PMCPMC3178347

    Article  Google Scholar 

  • He W, Nieponice A, Hong Y, Wagner WR, Vorp DA (2011) Rapid engineered small diameter vascular grafts from smooth muscle cells. Cardiovasc Eng Technol 2(3):149–159. https://doi.org/10.1007/s13239-011-0044-8

    Article  Google Scholar 

  • Herring MB, Dilley R, Jersild RA Jr, Boxer L, Gardner A, Glover J (1979) Seeding arterial prostheses with vascular endothelium. The nature of the lining. Ann Surg 190(1):84–90. https://doi.org/10.1097/00000658-197907000-00019. Epub 1979/07/01. PubMed PMID: 464684; PubMed Central PMCID: PMCPMC1344464

    Article  Google Scholar 

  • Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436.e2. https://doi.org/10.1016/j.jtcvs.2009.09.057. Epub 2010/01/29. PubMed PMID: 20106404. PubMed PMID: ISI:000274014300024.

    Article  Google Scholar 

  • Hibino N, Villalona G, Pietris N, Duncan DR, Schoffner A, Roh JD, Yi T, Dobrucki LW, Mejias D, Sawh-Martinez R, Harrington JK, Sinusas A, Krause DS, Kyriakides T, Saltzman WM, Pober JS, Shin’oka T, Breuer CK (2011a) Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB J 25(8):2731–2739. https://doi.org/10.1096/fj.11-182246. Epub 2011/05/14. PubMed PMID: 21566209; PubMed Central PMCID: PMCPMC3136337

    Article  Google Scholar 

  • Hibino N, Yi T, Duncan DR, Rathore A, Dean E, Naito Y, Dardik A, Kyriakides T, Madri J, Pober JS, Shinoka T, Breuer CK (2011b) A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 25(12):4253–4263. https://doi.org/10.1096/fj.11-186585. Epub 2011/08/26PubMed PMID: 21865316; PubMed Central PMCID: PMCPMC3236622

    Article  Google Scholar 

  • Hibino N, Duncan DR, Nalbandian A, Yi T, Qyang Y, Shinoka T, Breuer CK (2012) Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 143(3):696–703. https://doi.org/10.1016/j.jtcvs.2011.06.046. Epub 2012/01/17. PubMed PMID: 22244569; PubMed Central PMCID: PMCPMC3334339

    Article  Google Scholar 

  • Hjortnaes J, Gottlieb D, Figueiredo JL, Melero-Martin J, Kohler RH, Bischoff J, Weissleder R, Mayer JE, Aikawa E (2010) Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng Part C Methods 16(4):597–607. https://doi.org/10.1089/ten.TEC.2009.0466. Epub 2009/09/16. PubMed PMID: 19751103

    Article  Google Scholar 

  • Hsu SH, Tsai IJ, Lin DJ, Chen DC (2005) The effect of dynamic culture conditions on endothelial cell seeding and retention on small diameter polyurethane vascular grafts. Med Eng Phys 27(3):267–272. https://doi.org/10.1016/j.medengphy.2004.10.008. Epub 2005/02/08. PubMed PMID: 15694611

    Article  Google Scholar 

  • Innes AJ, Milojkovic D, Apperley JF (2016) Allogeneic transplantation for CML in the TKI era: striking the right balance. Nat Rev Clin Oncol 13(2):79–91. https://doi.org/10.1038/nrclinonc.2015.193. Epub 2015/11/18. PubMed PMID: 26573423

    Article  Google Scholar 

  • Inoguchi H, Tanaka T, Maehara Y, Matsuda T (2007) The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials 28(3):486–495. https://doi.org/10.1016/j.biomaterials.2006.09.020. Epub 2006/10/13. PubMed PMID: 17034847

    Article  Google Scholar 

  • Keller JD, Falk J, Bjornson HS, Silberstein EB, Kempczinski RF (1988) Bacterial infectibility of chronically implanted endothelial cell-seeded expanded polytetrafluoroethylene vascular grafts. J Vasc Surg 7(4):524–530. https://doi.org/10.1067/mva.1988.avs0070524. Epub 1988/04/01. PubMed PMID: 3352068

    Article  Google Scholar 

  • Koveker GB, Burkel WE, Graham LM, Wakefield TW, Stanley JC (1988) Endothelial cell seeding of expanded polytetrafluoroethylene vena cava conduits: effects on luminal production of prostacyclin, platelet adherence, and fibrinogen accumulation. J Vasc Surg 7(4):600–605. Epub 1988/04/01. PubMed PMID: 3280836

    Article  Google Scholar 

  • Krawiec JT, Vorp DA (2012) Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33(12):3388–3400. https://doi.org/10.1016/j.biomaterials.2012.01.014. Epub 2012/02/07. PubMed PMID: 22306022

    Article  Google Scholar 

  • Krawiec JT, Weinbaum JS, St. Croix CM, Phillippi JA, Watkins SC, Rubin JP, Vorp DA (2014) A cautionary tale for autologous vascular tissue engineering: impact of human demographics on the ability of adipose-derived mesenchymal stem cells to recruit and differentiate into smooth muscle cells. Tissue Eng Part A 21(3–4):426–437

    Google Scholar 

  • Krawiec JT, Weinbaum JS, Liao HT, Ramaswamy AK, Pezzone DJ, Josowitz AD, D’Amore A, Rubin JP, Wagner WR, Vorp DA (2016) In vivo functional evaluation of tissue-engineered vascular grafts fabricated using human adipose-derived stem cells from high cardiovascular risk populations. Tissue Eng Part A 22(9–10):765–775. https://doi.org/10.1089/ten.TEA.2015.0379. Epub 2016/04/16. PubMed PMID: 27079751; PubMed Central PMCID: PMCPMC4876541

    Article  Google Scholar 

  • Krawiec JT, Liao HT, Kwan LL, D’Amore A, Weinbaum JS, Rubin JP, Wagner WR, Vorp DA (2017) Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg 66(3):883–90 e1. https://doi.org/10.1016/j.jvs.2016.09.034. Epub 2016/12/27. PubMed PMID: 28017585; PubMed Central PMCID: PMCPMC5481505

    Article  Google Scholar 

  • Kuhlen M, Willasch AM, Dalle JH, Wachowiak J, Yaniv I, Ifversen M, Sedlacek P, Guengoer T, Lang P, Bader P, Sufliarska S, Balduzzi A, Strahm B, von Luettichau I, Hoell JI, Borkhardt A, Klingebiel T, Schrappe M, von Stackelberg A, Glogova E, Poetschger U, Meisel R, Peters C (2018) Outcome of relapse after allogeneic HSCT in children with ALL enrolled in the ALL-SCT 2003/2007 trial. Br J Haematol 180(1):82–89. https://doi.org/10.1111/bjh.14965. Epub 2017/12/02. PubMed PMID: 29193007

    Article  Google Scholar 

  • Kurobe H, Maxfield MW, Naito Y, Cleary M, Stacy MR, Solomon D, Rocco KA, Tara S, Lee AY, Sinusas AJ, Snyder EL, Shinoka T, Breuer CK (2015) Comparison of a closed system to a standard open technique for preparing tissue-engineered vascular grafts. Tissue Eng Part C Methods 21(1):88–93. https://doi.org/10.1089/ten.TEC.2014.0160. Epub 2014/05/29. PubMed PMID: 24866863; PubMed Central PMCID: PMCPMC4291206

    Article  Google Scholar 

  • Kwon DJ, Kim DH, Hwang IS, Kim DE, Kim HJ, Kim JS, Lee K, Im GS, Lee JW, Hwang S (2017) Generation of alpha-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res 26(1):153–163. https://doi.org/10.1007/s11248-016-9979-8. Epub 2016/08/25. PubMed PMID: 27554374; PubMed Central PMCID: PMCPMC5243873

    Article  Google Scholar 

  • Lawson J, Dahl S, Prichard H, Manson R, Gage S, Kypson A, Blum J, Pilgrim A, Tente W, Niklason L (2014) VS5 human tissue-engineered grafts for hemodialysis: development, preclinical data, and early investigational human implant experience. J Vasc Surg 59(6):32S–33S

    Article  Google Scholar 

  • Lee YU, Mahler N, Best CA, Tara S, Sugiura T, Lee AY, Yi T, Hibino N, Shinoka T, Breuer C (2016) Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regen Med 11(2):159–167. https://doi.org/10.2217/rme.15.85. Epub 2016/03/02. PubMed PMID: 26925512; PubMed Central PMCID: PMCPMC4817496

    Article  Google Scholar 

  • L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12(3):361–365. https://doi.org/10.1038/nm1364. Epub 2006/02/24. PubMed PMID: 16491087; PubMed Central PMCID: PMCPMC1513140

    Article  Google Scholar 

  • Li Y, Ma T, Kniss DA, Lasky LC, Yang ST (2001) Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol Prog 17(5):935–944. https://doi.org/10.1021/bp0100878. Epub 2001/10/06. PubMed PMID: 11587587

    Article  Google Scholar 

  • Mann BK, Tsai AT, Scott-Burden T, West JL (1999) Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials 20(23–24):2281–2286. https://doi.org/10.1016/s0142-9612(99)00158-1. Epub 1999/12/30. PubMed PMID: 10614934

    Article  Google Scholar 

  • Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051. https://doi.org/10.1016/s0142-9612(01)00051-5. Epub 2001/09/29. PubMed PMID: 11575479

    Article  Google Scholar 

  • Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734. https://doi.org/10.1161/01.CIR.0000092165.32213.61. Epub 2003/09/10. PubMed PMID: 12963635

    Article  Google Scholar 

  • McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’Heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373(9673):1440–1446. https://doi.org/10.1016/S0140-6736(09)60248-8. Epub 2009/04/28. PubMed PMID: 19394535

    Article  Google Scholar 

  • McAllister TN, Audley D, L’Heureux N (2012) Autologous cell therapies: challenges in US FDA regulation. Regen Med 7(6 Suppl):94–97. https://doi.org/10.2217/rme.12.83. Epub 2012/12/19. PubMed PMID: 23210819

    Article  Google Scholar 

  • Meier LA, Syedain ZH, Lahti MT, Johnson SS, Chen MH, Hebbel RP, Tranquillo RT (2014) Blood outgrowth endothelial cells alter remodeling of completely biological engineered grafts implanted into the sheep femoral artery. J Cardiovasc Transl Res 7(2):242–249. https://doi.org/10.1007/s12265-013-9539-z. Epub 2014/01/17. PubMed PMID: 24429838; PubMed Central PMCID: PMCPMC4213739

    Article  Google Scholar 

  • Melchiorri AJ, Bracaglia LG, Kimerer LK, Hibino N, Fisher JP (2016) In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng Part C Methods 22(7):663–670. https://doi.org/10.1089/ten.TEC.2015.0562. Epub 2016/05/22. PubMed PMID: 27206552; PubMed Central PMCID: PMCPMC4943466

    Article  Google Scholar 

  • Nakano-Kurimoto R, Ikeda K, Uraoka M, Nakagawa Y, Yutaka K, Koide M, Takahashi T, Matoba S, Yamada H, Okigaki M, Matsubara H (2009) Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol Heart Circ Physiol 297(5):H1673–H1684. https://doi.org/10.1152/ajpheart.00455.2009. Epub 2009/09/15. PubMed PMID: 19749165

    Article  Google Scholar 

  • Nasseri BA, Pomerantseva I, Kaazempur-Mofrad MR, Sutherland FW, Perry T, Ochoa E, Thompson CA, Mayer JE Jr, Oesterle SN, Vacanti JP (2003) Dynamic rotational seeding and cell culture system for vascular tube formation. Tissue Eng 9(2):291–299. https://doi.org/10.1089/107632703764664756. Epub 2003/05/13. PubMed PMID: 12740091

    Article  Google Scholar 

  • Nelson GN, Mirensky T, Brennan MP, Roh JD, Yi T, Wang Y, Breuer CK (2008) Functional small-diameter human tissue-engineered arterial grafts in an immunodeficient mouse model: preliminary findings. Arch Surg 143(5):488–494. https://doi.org/10.1001/archsurg.143.5.488. Epub 2008/05/21. PubMed PMID: 18490559; PubMed Central PMCID: PMCPMC3974912

    Article  Google Scholar 

  • Nieponice A, Soletti L, Guan J, Deasy BM, Huard J, Wagner WR, Vorp DA (2008) Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 29(7):825–833. https://doi.org/10.1016/j.biomaterials.2007.10.044. Epub 2007/11/24. PubMed PMID: 18035412; PubMed Central PMCID: PMCPMC2354918

    Article  Google Scholar 

  • Nieponice A, Soletti L, Guan J, Hong Y, Gharaibeh B, Maul TM, Huard J, Wagner WR, Vorp DA (2010) In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 16(4):1215–1223. https://doi.org/10.1089/ten.TEA.2009.0427. Epub 2009/11/10. PubMed PMID: 19895206; PubMed Central PMCID: PMCPMC2862609

    Article  Google Scholar 

  • Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N (2017) Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 14(5):383–392. https://doi.org/10.1080/17434440.2017.1324293. Epub 2017/04/28. PubMed PMID: 28447487

    Article  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146. https://doi.org/10.1038/nature06534. Epub 2007/12/25. PubMed PMID: 18157115

    Article  Google Scholar 

  • Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev 22(1):68–100. https://doi.org/10.1089/ten.teb.2015.0100. Epub 2015/10/09. PubMed PMID: 26447530; PubMed Central PMCID: PMCPMC4753638

    Article  Google Scholar 

  • Patterson JT, Gilliland T, Maxfield MW, Church S, Naito Y, Shinoka T, Breuer CK (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7(3):409–419. https://doi.org/10.2217/rme.12.12. Epub 2012/05/19. PubMed PMID: 22594331; PubMed Central PMCID: PMCPMC3384697

    Article  Google Scholar 

  • Pawlowski KJ, Rittgers SE, Schmidt SP, Bowlin GL (2004) Endothelial cell seeding of polymeric vascular grafts. Front Biosci 9:1412–1421. https://doi.org/10.2741/1302. Epub 2004/02/24. PubMed PMID: 14977556

    Article  Google Scholar 

  • Perea H, Aigner J, Hopfner U, Wintermantel E (2006) Direct magnetic tubular cell seeding: a novel approach for vascular tissue engineering. Cells Tissues Organs 183(3):156–165. https://doi.org/10.1159/000095989. Epub 2006/11/17. PubMed PMID: 17108686

    Article  Google Scholar 

  • Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, McKee JA, Klinger RY, Counter CM, Niklason LE (2005) Blood vessels engineered from human cells. Lancet 365(9477):2122–2124. https://doi.org/10.1016/S0140-6736(05)66735-9. Epub 2005/06/21. PubMed PMID: 15964449

    Article  Google Scholar 

  • Prichard HL, Manson RJ, DiBernardo L, Niklason LE, Lawson JH, Dahl SL (2011) An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res 4(5):674–682. https://doi.org/10.1007/s12265-011-9306-y. Epub 2011/07/13. PubMed PMID: 21748530; PubMed Central PMCID: PMCPMC3175038

    Article  Google Scholar 

  • Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE (2011) Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci U S A 108(22):9214–9219. https://doi.org/10.1073/pnas.1019506108. PubMed PMID: 21571635; PubMed Central PMCID: PMCPMC3107282. Epub 2011/05/17

    Article  Google Scholar 

  • Ramalanjaona G, Kempczinski RF, Rosenman JE, Douville EC, Silberstein EB (1986) The effect of fibronectin coating on endothelial cell kinetics in polytetrafluoroethylene grafts. J Vasc Surg 3(2):264–272. https://doi.org/10.1067/mva.1986.avs0030264. Epub 1986/02/01 PubMed PMID: 3944930

    Article  Google Scholar 

  • Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81(3):177–199. Epub 2003/05/07. PubMed PMID: 12732261

    Article  Google Scholar 

  • Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A 107(10):4669–4674. https://doi.org/10.1073/pnas.0911465107. Epub 2010/03/09. PubMed PMID: 20207947; PubMed Central PMCID: PMCPMC2842056

    Article  Google Scholar 

  • Sagnella S, Anderson E, Sanabria N, Marchant RE, Kottke-Marchant K (2005) Human endothelial cell interaction with biomimetic surfactant polymers containing Peptide ligands from the heparin binding domain of fibronectin. Tissue Eng 11(1–2):226–236. https://doi.org/10.1089/ten.2005.11.226. Epub 2005/03/02. PubMed PMID: 15738677; PubMed Central PMCID: PMCPMC1236992

    Article  Google Scholar 

  • Salacinski HJ, Tiwari A, Hamilton G, Seifalian AM (2001) Cellular engineering of vascular bypass grafts: role of chemical coatings for enhancing endothelial cell attachment. Med Biol Eng Comput 39(6):609–618. https://doi.org/10.1007/bf02345431. Epub 2002/01/24. PubMed PMID: 11804165

    Article  Google Scholar 

  • Schmedlen RH, Elbjeirami WM, Gobin AS, West JL (2003) Tissue engineered small-diameter vascular grafts. Clin Plast Surg 30(4):507–517. Epub 2003/11/19. PubMed PMID: 14621299

    Article  Google Scholar 

  • Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316. https://doi.org/10.1016/s0142-9612(03)00110-8. Epub 2003/04/18. PubMed PMID: 12699668

    Article  Google Scholar 

  • Shimizu K, Ito A, Arinobe M, Murase Y, Iwata Y, Narita Y, Kagami H, Ueda M, Honda H (2007) Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J Biosci Bioeng 103(5):472–478. https://doi.org/10.1263/jbb.103.472. Epub 2007/07/05. PubMed PMID: 17609164

    Article  Google Scholar 

  • Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338. https://doi.org/10.1016/j.jtcvs.2004.12.047. Epub 2005/06/09. PubMed PMID: 15942574

    Article  Google Scholar 

  • Shinoka T (2017) What is the best material for extracardiac Fontan operation? J Thorac Cardiovasc Surg 153(6):1551–1552. https://doi.org/10.1016/j.jtcvs.2017.02.023. Epub 2017/03/21. PubMed PMID: 28314526

    Article  Google Scholar 

  • Sodian R, Lemke T, Fritsche C, Hoerstrup SP, Fu P, Potapov EV, Hausmann H, Hetzer R (2002) Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng 8(5):863–870. https://doi.org/10.1089/10763270260424222. Epub 2002/12/03. PubMed PMID: 12459065

    Article  Google Scholar 

  • Soletti L (2008) Development of a stem cell-based tissue engineered vascular graft. University of Pittsburgh, Pittsburgh

    Google Scholar 

  • Soletti L, Nieponice A, Guan J, Stankus JJ, Wagner WR, Vorp DA (2006) A seeding device for tissue engineered tubular structures. Biomaterials 27(28):4863–4870. https://doi.org/10.1016/j.biomaterials.2006.04.042. Epub 2006/06/13. PubMed PMID: 16765436

    Article  Google Scholar 

  • Soletti L, Hong Y, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, Vorp DA (2010) A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater 6(1):110–122. https://doi.org/10.1016/j.actbio.2009.06.026. Epub 2009/06/23. PubMed PMID: 19540370; PubMed Central PMCID: PMCPMC3200232

    Article  Google Scholar 

  • Soletti L, Nieponice A, Hong Y, Ye SH, Stankus JJ, Wagner WR, Vorp DA (2011) In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications. J Biomed Mater Res A 96(2):436–448. https://doi.org/10.1002/jbm.a.32997. Epub 2010/12/21. PubMed PMID: 21171163; PubMed Central PMCID: PMCPMC3178339

    Article  Google Scholar 

  • Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T (2018) Tissue-engineered vascular grafts in children with congenital Heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg 30(2):175–179. https://doi.org/10.1053/j.semtcvs.2018.02.002. Epub 2018/02/11. PubMed PMID: 29427773; PubMed Central PMCID: PMCPMC6380348

    Article  Google Scholar 

  • Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT (2011) Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32(3):714–722. https://doi.org/10.1016/j.biomaterials.2010.09.019. Epub 2010/10/12. PubMed PMID: 20934214; PubMed Central PMCID: PMCPMC3042747

    Article  Google Scholar 

  • Syedain ZH, Meier LA, Lahti MT, Johnson SL, Tranquillo RT (2014) Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A 20(11–12):1726–1734. https://doi.org/10.1089/ten.TEA.2013.0550. Epub 2014/01/15. PubMed PMID: 24417686; PubMed Central PMCID: PMCPMC4029045

    Article  Google Scholar 

  • Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Tranquillo RT (2016) Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 7:12951. https://doi.org/10.1038/ncomms12951. Epub 2016/09/28. PubMed PMID: 27676438; PubMed Central PMCID: PMCPMC5052664

    Article  Google Scholar 

  • Thomson GJ, Vohra R, Walker MG (1989) Cell seeding for small diameter ePTFE vascular grafts: a comparison between adult human endothelial and mesothelial cells. Ann Vasc Surg 3(2):140–145. https://doi.org/10.1016/S0890-5096(06)62007-4. Epub 1989/04/01. PubMed PMID: 2765355

    Article  Google Scholar 

  • Tiwari A, Punshon G, Kidane A, Hamilton G, Seifalian AM (2003) Magnetic beads (Dynabead) toxicity to endothelial cells at high bead concentration: implication for tissue engineering of vascular prosthesis. Cell Biol Toxicol 19(5):265–272. Epub 2004/01/02. PubMed PMID: 14703114

    Article  Google Scholar 

  • Topper JN, Gimbrone MA (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 5(1):40–46. https://doi.org/10.1016/S1357-4310(98)01372-0. PubMed PMID: WOS:000079412300012

    Article  Google Scholar 

  • Udelsman B, Hibino N, Villalona GA, McGillicuddy E, Nieponice A, Sakamoto Y, Matsuda S, Vorp DA, Shinoka T, Breuer CK (2011) Development of an operator-independent method for seeding tissue-engineered vascular grafts. Tissue Eng Part C Methods 17(7):731–736. https://doi.org/10.1089/ten.TEC.2010.0581. Epub 2011/03/18. PubMed PMID: 21410308; PubMed Central PMCID: PMCPMC3124112

    Article  Google Scholar 

  • Udelsman BV, Khosravi R, Miller KS, Dean EW, Bersi MR, Rocco K, Yi T, Humphrey JD, Breuer CK (2014) Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation. J Biomech 47(9):2070–2079. https://doi.org/10.1016/j.jbiomech.2014.03.011. PubMed PMID: 24702863; PubMed Central PMCID: PMCPMC4747059. Epub 2014/04/08

    Article  Google Scholar 

  • van Wachem PB, Stronck JW, Koers-Zuideveld R, Dijk F, Wildevuur CR (1990) Vacuum cell seeding: a new method for the fast application of an evenly distributed cell layer on porous vascular grafts. Biomaterials 11(8):602–606. https://doi.org/10.1016/0142-9612(90)90086-6. Epub 1990/10/01. PubMed PMID: 2279063

    Article  Google Scholar 

  • Villalona GA, Udelsman B, Duncan DR, McGillicuddy E, Sawh-Martinez RF, Hibino N, Painter C, Mirensky T, Erickson B, Shinoka T, Breuer CK (2010) Cell-seeding techniques in vascular tissue engineering. Tissue Eng Part B Rev 16(3):341–350. https://doi.org/10.1089/ten.TEB.2009.0527. Epub 2010/01/21. PubMed PMID: 20085439; PubMed Central PMCID: PMCPMC2946885

    Article  Google Scholar 

  • Waldner M, Zhang W, James IB, Allbright K, Havis E, Bliley JM, Almadori A, Schweizer R, Plock JA, Washington KM, Gorantla VS, Solari MG, Marra KG, Rubin JP (2018) Characteristics and immunomodulating functions of adipose-derived and bone marrow-derived mesenchymal stem cells across defined human leukocyte antigen barriers. Front Immunol 9:1642. https://doi.org/10.3389/fimmu.2018.01642. Epub 2018/08/09. PubMed PMID: 30087676; PubMed Central PMCID: PMCPMC6066508

    Article  Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400. https://doi.org/10.1126/science.2934816. Epub 1986/01/24. PubMed PMID: 2934816

    Article  Google Scholar 

  • West JL (2004) Modification of materials with bioactive peptides. Methods Mol Biol 238:113–122. https://doi.org/10.1385/1-59259-428-x:113. Epub 2004/02/19. PubMed PMID: 14970442

    Article  Google Scholar 

  • Williams C, Wick TM (2004) Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng 10(5–6):930–941. https://doi.org/10.1089/1076327041348536. Epub 2004/07/22. PubMed PMID: 15265311

    Article  Google Scholar 

  • Wystrychowski W, McAllister TN, Zagalski K, Dusserre N, Cierpka L, L’Heureux N (2014) First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J Vasc Surg 60(5):1353–1357. https://doi.org/10.1016/j.jvs.2013.08.018. Epub 2013/10/10. PubMed PMID: 24103406

    Article  Google Scholar 

  • Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H, Shimizu T, Okano T (2006) Cell delivery in regenerative medicine: the cell sheet engineering approach. J Control Release 116(2):193–203. https://doi.org/10.1016/j.jconrel.2006.06.022. Epub 2006/08/08. PubMed PMID: 16890320

    Article  Google Scholar 

  • Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043. https://doi.org/10.1016/j.biomaterials.2007.07.052. Epub 2007/09/01. PubMed PMID: 17761277

    Article  Google Scholar 

  • Yentrapalli R, Azimzadeh O, Kraemer A, Malinowsky K, Sarioglu H, Becker KF, Atkinson MJ, Moertl S, Tapio S (2015) Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. J Proteome 126:12–23. https://doi.org/10.1016/j.jprot.2015.05.023. Epub 2015/05/28. PubMed PMID: 26013412

    Article  Google Scholar 

  • Zhao F, Ma T (2005) Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 91(4):482–493. https://doi.org/10.1002/bit.20532. Epub 2005/05/17. PubMed PMID: 15895382

    Article  Google Scholar 

  • Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Peault B, Rubin JP, Donnenberg AD (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1):22–30. https://doi.org/10.1002/cyto.a.20813. Epub 2009/10/24. PubMed PMID: 19852056; PubMed Central PMCID: PMCPMC4148047

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge their sources of support: NIH Vascular Training Grant to DGH (T32 HL098036; Dr. Edith Tzeng, PI) and NIH grants to DAV (NIH R21 EB016138, R21 HL130784, RO1 HL130077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Vorp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weinbaum, J.S., Haskett, D.G., Mandelkern, T.F., Vorp, D.A. (2020). Advances in Cell Seeding of Tissue Engineered Vascular Grafts. In: Walpoth, B., Bergmeister, H., Bowlin, G., Kong, D., Rotmans, J., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-71530-8_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71530-8_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71530-8

  • Online ISBN: 978-3-319-71530-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics