Skip to main content

5-HT2A Receptors and BDNF Regulation: Implications for Psychopathology

  • Chapter
  • First Online:
Book cover 5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

Abstract

Serotonin2A (5-HT2A) receptors are implicated in the pathophysiology of mood disorders and schizophrenia, as well as in mediating the effects of hallucinogens. 5-HT2A receptors also serve as drug targets for specific classes of antidepressants and atypical antipsychotics. Preclinical and clinical studies have identified an important role for brain derived neurotrophic factor (BDNF) in the pathogenesis of depression and schizophrenia, and in the therapeutic actions of antidepressants and antipsychotics. 5-HT2A receptors have been reported to regulate BDNF expression within key limbic neurocircuits, including the prefrontal cortex and hippocampus. Further, alterations in BDNF directly impact 5-HT2A receptor expression, signaling and function. In this book chapter, we have extensively reviewed the current understanding of the regulation of BDNF by 5-HT2A receptors at multiple levels spanning from transcriptional regulation to modulation of BDNF signaling. We have also discussed the impact of perturbations in BDNF on 5-HT2A receptors, primarily focusing on studies from BDNF mouse mutant models. These studies highlight a reciprocal relationship between 5-HT2A receptors and BDNF, and suggest that such a crosstalk may play an important role in the actions of stress, antidepressant and atypical antipsychotic treatments, and in mediating hallucinogenic responses. We also highlight specific open questions hitherto unexplored in understanding the nature of interaction between 5-HT2A receptors and BDNF, and the implications of such a relationship to psychopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artigas F (2013) Future directions for serotonin and antidepressants. ACS Chem Neurosci 4:5–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duman RS, Monteggia LM (2006) A Neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127

    Article  CAS  PubMed  Google Scholar 

  3. Guiard BP, Di Giovanni G (2015) Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol 6:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Petit AC, Quesseveur G, Gressier F et al (2014) Converging translational evidence for the involvement of the serotonin 2A receptor gene in major depressive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry 54:76–82

    Article  CAS  Google Scholar 

  5. Weisstaub NV, Zhou M, Lira A et al (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313:536–540

    Article  CAS  PubMed  Google Scholar 

  6. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ebdrup BH, Rasmussen H, Arnt J, Glenthøj B (2011) Serotonin 2A receptor antagonists for treatment of schizophrenia. Expert Opin Investig Drugs 20:1211–1223

    Article  CAS  PubMed  Google Scholar 

  8. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  9. Chen A, Hough CJ, Li H (2003) Serotonin type II receptor activation facilitates synaptic plasticity via n-methyl-d-aspartate-mediated mechanism in the rat basolateral amygdala. Neuroscience 119:53–63

    Article  CAS  PubMed  Google Scholar 

  10. Edelmann E, Lessmann V, Brigadski T (2014) Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76:610–627

    Article  CAS  PubMed  Google Scholar 

  11. Lesch K-P, Waider J (2012) Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76:175–191

    Article  CAS  PubMed  Google Scholar 

  12. Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  CAS  PubMed  Google Scholar 

  13. Jha S, Rajendran R, Fernandes KA, Vaidya VA (2008) 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett 441:210–214

    Article  CAS  PubMed  Google Scholar 

  14. Klempin F, Babu H, De Pietri Tonelli D et al (2010) Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front Mol Neurosci 3

    Google Scholar 

  15. Sairanen M, Lucas G, Ernfors P et al (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  CAS  PubMed  Google Scholar 

  16. Waterhouse EG, An JJ, Orefice LL et al (2012) BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32:14318–14330

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bekinschtein P, Renner MC, Gonzalez MC, Weisstaub N (2013) Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats. J Neurosci 33:15716–15725

    Article  CAS  PubMed  Google Scholar 

  18. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250

    Article  CAS  PubMed  Google Scholar 

  19. Zhang G, Ásgeirsdóttir HN, Cohen SJ et al (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64:403–413

    Article  CAS  PubMed  Google Scholar 

  20. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    Article  CAS  PubMed  Google Scholar 

  21. Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29:445–453

    Article  CAS  PubMed  Google Scholar 

  22. Lu B, Martinowich K (2008) Cell biology of BDNF and its relevance to schizophrenia. Novartis Found Symp 289:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meltzer HY, Massey BW, Horiguchi M (2012) Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia. Curr Pharm Biotechnol 13:1572–1586

    Article  CAS  PubMed  Google Scholar 

  24. Mestre TA, Zurowski M, Fox SH (2013) 5-Hydroxytryptamine 2A receptor antagonists as potential treatment for psychiatric disorders. Expert Opin Investig Drugs 22:411–421

    Article  CAS  PubMed  Google Scholar 

  25. Notaras M, Hill R, van den Buuse M (2015a) A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev 51:15–30

    Article  CAS  PubMed  Google Scholar 

  26. Daftary SS, Calderon G, Rios M (2012) Essential role of brain-derived neurotrophic factor in the regulation of serotonin transmission in the basolateral amygdala. Neuroscience 224:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Homberg JR, Molteni R, Calabrese F, M a R (2014) The serotonin-BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev 43:35–47

    Article  CAS  PubMed  Google Scholar 

  28. Klein AB, Santini MA, Aznar S et al (2010b) Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice. Neuroscience 169:1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73–83

    Article  CAS  PubMed  Google Scholar 

  30. Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    Article  CAS  PubMed  Google Scholar 

  31. Trajkovska V, Santini M a., Marcussen a. B, et al (2009) BDNF downregulates 5-HT2A receptor protein levels in hippocampal cultures. Neurochem Int 55:697–702

    Google Scholar 

  32. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS (1997) 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17:2785–2795

    CAS  PubMed  Google Scholar 

  33. Vaidya VA, Terwilliger R, Duman R (1999) Role of 5-HT 2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 262:1–4

    Article  CAS  PubMed  Google Scholar 

  34. Turlejski K (1996) Evolutionary ancient roles of serotonin: long-lasting regulation of activity and development. Acta Neurobiol Exp (Wars) 56:619–636

    CAS  Google Scholar 

  35. Weiger WA (1997) Serotonergic modulation of behaviour: a phylogenetic overview. Biol Rev Camb Philos Soc 72:61–95

    Article  CAS  PubMed  Google Scholar 

  36. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  37. Adlersberg M, Arango V, Hsiung S et al (2000) In vitro autoradiography of serotonin 5-HT2A/2C receptor-activated G protein: Guanosine-5′-(g-[ 35S])thiotriphosphate binding in rat brain. J Neurosci Res 61:674–685

    Article  CAS  PubMed  Google Scholar 

  38. Millan MJ, Marin P, Bockaert J, Mannoury la Cour C (2008) Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci 29:454–464

    Article  CAS  PubMed  Google Scholar 

  39. Bohn LM, Schmid CL (2010) Serotonin receptor signaling and regulation via β-arrestins. Crit Rev Biochem Mol Biol 45:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmid CL, Bohn LM (2010) Serotonin , but not N-Methyltryptamines , activates the serotonin 2A receptor via a β-Arrestin2 / Src / Akt Signaling complex in vivo. Drugs 30:13513–13524

    CAS  Google Scholar 

  41. González-Maeso J, Weisstaub NV, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452

    Article  PubMed  CAS  Google Scholar 

  42. Albizu L, Holloway T, González-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61:770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delille HK, Becker JM, Burkhardt S et al (2012) Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 62:2184–2191

    Article  CAS  PubMed  Google Scholar 

  44. Fribourg M, Moreno JL, Holloway T et al (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moreno JL, Miranda-Azpiazu P, García-Bea A et al (2016) Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal 9:ra5. https://doi.org/10.1126/scisignal.aab0467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M et al (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443:278–284

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharyya S, Puri S, Miledi R, Panicker MM (2002) Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms. Proc Natl Acad Sci U S A 99:14470–14475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raote I, Bhattacharyya S, Panicker MM (2013) Functional selectivity in serotonin receptor 2A (5-HT2A) endocytosis, recycling, and phosphorylation. Mol Pharmacol 83:42–50

    Article  CAS  PubMed  Google Scholar 

  49. Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171

    Article  CAS  PubMed  Google Scholar 

  50. Andrade R (2011) Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 61:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martín-Ruiz R, Puig MV, Celada P et al (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866

    PubMed  Google Scholar 

  52. Day M, Olson PA, Platzer J et al (2002) Stimulation of 5-HT(2) receptors in prefrontal pyramidal neurons inhibits Ca(v)1.2 L type Ca(2+) currents via a PLCbeta/IP3/calcineurin signaling cascade. J Neurophysiol 87:2490–2504

    Article  CAS  PubMed  Google Scholar 

  53. Villalobos C, Foehring RC, Lee JC, Andrade R (2011) Essential role for phosphatidylinositol 4,5-Bisphosphate in the expression, regulation, and gating of the slow Afterhyperpolarization current in the cerebral cortex. J Neurosci 31:18303–18312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gresch PJ, Barrett RJ, Sanders-Bush E, Smith RL (2007) 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide. J Pharmacol Exp Ther 320:662–669

    Article  CAS  PubMed  Google Scholar 

  55. Quesseveur G, Nguyen HT, Gardier AM, Guiard BP (2012) 5-HT2A ligands in the treatment of anxiety and depression. Expert Opin Investig Drugs 21:1701–1725

    Article  CAS  PubMed  Google Scholar 

  56. Yadav PN, Kroeze WK, Farrell MS, Roth BL (2011) Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo. J Pharmacol Exp Ther 339:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watanabe N, Omori IM, Nakagawa A, et al (2011) Mirtazapine versus other antidepressive agents for depression. Cochrane database Syst Rev. CD006528

  58. Gray JA, Roth BL (2007) Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 33:1100–1119

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ul Haq R, Anderson ML, Hollnagel J-O et al (2015) Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology 101:188–203

    Article  PubMed  CAS  Google Scholar 

  60. van Wel JHP, Kuypers KPC, Theunissen EL et al (2011) Blockade of 5-HT2 receptor selectively prevents MDMA-induced verbal memory impairment. Neuropsychopharmacology 36:1932–1939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mengod G, Vilaró MT, Raurich A et al (1996) 5-HT receptors in mammalian brain: receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem J 28:747–758

    Article  CAS  PubMed  Google Scholar 

  62. Mengod G, Palacios JM, Cortes R (2015) Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections. ACS Chem Neurosci 6:1089–1098

    Article  CAS  PubMed  Google Scholar 

  63. Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:79–82

    Article  CAS  PubMed  Google Scholar 

  64. Ettrup A, da Cunha-Bang S, McMahon B et al (2014) Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab 34:1188–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanaka KF, Samuels BA, Hen R (2012) Serotonin receptor expression along the dorsal-ventral axis of mouse hippocampus. Philos Trans R Soc B Biol Sci 367:2395–2401

    Article  CAS  Google Scholar 

  66. Szabo ST, Blier P (2001) Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons. Brain Res 922:9–20

    Article  CAS  PubMed  Google Scholar 

  67. Boothman LJ, Sharp T (2005) A role for midbrain raphe gamma aminobutyric acid neurons in 5-hydroxytryptamine feedback control. Neuroreport 16:891–896

    Article  CAS  PubMed  Google Scholar 

  68. Puig MV, Celada P, Díaz-Mataix L, Artigas F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13:870–882

    Article  PubMed  Google Scholar 

  69. Marek GJ, Aghajanian GK (1996) LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther 278:1373–1382

    CAS  PubMed  Google Scholar 

  70. Marek GJ, Aghajanian GK (1994) Excitation of interneurons in piriform cortex by 5-hydroxytryptamine: blockade by MDL 100,907, a highly selective 5-HT2A receptor antagonist. Eur J Pharmacol 259:137–141

    Article  CAS  PubMed  Google Scholar 

  71. Narla C, Dunn HA, Ferguson SSG, Poulter MO (2015) Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors. Front Cell Neurosci 9:200

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sheldon PW, Aghajanian GK (1990) Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2-activated interneuron. Brain Res 506:62–69

    Article  CAS  PubMed  Google Scholar 

  73. Shen RY, Andrade R (1998) 5-Hydroxytryptamine2 receptor facilitates GABAergic neurotransmission in rat hippocampus. J Pharmacol Exp Ther 285:805–812

    CAS  PubMed  Google Scholar 

  74. Sheldon PW, Aghajanian GK (1991) Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons. Synapse 9:208–218

    Article  CAS  PubMed  Google Scholar 

  75. Hamada S, Senzaki K, Hamaguchi-Hamada K et al (1998) Localization of 5-HT2A receptor in rat cerebral cortex and olfactory system revealed by immunohistochemistry using two antibodies raised in rabbit and chicken. Mol Brain Res 54:199–211

    Article  CAS  PubMed  Google Scholar 

  76. Hirst WD, Price GW, Rattray M, Wilkin GP (1998) Serotonin transporters in adult rat brain astrocytes revealed by [3H]5-HT uptake into glial plasmalemmal vesicles. Neurochem Int 33:11–22

    Article  CAS  PubMed  Google Scholar 

  77. Meller R, Harrison PJ, Elliott JM, Sharp T (2002b) In vitro evidence that 5-hydroxytryptamine increases efflux of glial glutamate via 5-HT(2A) receptor activation. J Neurosci Res 67:399–405

    Article  CAS  PubMed  Google Scholar 

  78. Hagberg GB, Blomstrand F, Nilsson M et al (1998) Stimulation of 5-HT2A receptors on astrocytes in primary culture opens voltage-independent Ca2+ channels. Neurochem Int 32:153–162

    Article  CAS  PubMed  Google Scholar 

  79. Jalonen TO, Margraf RR, Wielt DB et al (1997) Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 758:69–82

    Article  CAS  PubMed  Google Scholar 

  80. Glebov K, Löchner M, Jabs R et al (2015) Serotonin stimulates secretion of exosomes from microglia cells. Glia 63:626–634

    Article  PubMed  Google Scholar 

  81. Béïque J-C, Imad M, Mladenovic L et al (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104:9870–9875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Marinova Z, Monoranu C-M, Fetz S et al (2015) Region-specific regulation of the serotonin 2A receptor expression in development and ageing in post mortem human brain. Neuropathol Appl Neurobiol 41:520–532

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Z-W (2003) Serotonin induces tonic firing in layer V pyramidal neurons of rat prefrontal cortex during postnatal development. J Neurosci 23:3373–3384

    CAS  PubMed  Google Scholar 

  84. Zhang L, Ma W, Barker J, Rubinow D (1999) Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: a possible role of testosterone. Neuroscience 94:251–259

    Article  CAS  PubMed  Google Scholar 

  85. Chen M, Russo-Neustadt A (2013) Kinetics of norepinephrine- and serotonin-induced BDNF release in cultured embryonic hippocampal neurons. Neurosci & Med 04:194–207

    Google Scholar 

  86. Meller R, Babity J, Grahame-Smith D (2002a) 5-HT 2A receptor activation leads to increased BDNF mRNA expression in C6 glioma cells. NeuroMolecular Med 1:197–205

    Article  CAS  PubMed  Google Scholar 

  87. Conner JM, Lauterborn JC, Yan Q et al (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    CAS  PubMed  Google Scholar 

  88. Kawamoto Y, Nakamura S, Nakano S et al (1996) Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neuroscience 74:1209–1226

    Article  CAS  PubMed  Google Scholar 

  89. Lewin GR, Barde Y-A (1996) Physiology of the Neurotrophins. Annu Rev Neurosci 19:289–317

    Article  CAS  PubMed  Google Scholar 

  90. Yan Q, Rosenfeld R, Matheson C et al (1997) Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 78:431–448

    Article  CAS  PubMed  Google Scholar 

  91. Benraiss A, Chmielnicki E, Lerner K et al (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731

    CAS  PubMed  Google Scholar 

  92. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717

    CAS  PubMed  Google Scholar 

  93. Scharfman H, Goodman J, Macleod A et al (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348–356

    Article  CAS  PubMed  Google Scholar 

  94. Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143

    Article  CAS  PubMed  Google Scholar 

  95. Barnabé-Heider F, Miller FD (2003) Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 23:5149–5160

    PubMed  Google Scholar 

  96. Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bergami M, Rimondini R, Santi S et al (2008a) Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci U S A 105:15570–15575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Causing CG, Gloster A, Aloyz R et al (1997) Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 18:257–267

    Article  CAS  PubMed  Google Scholar 

  99. Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation. Neuron 39:735–738

    Article  CAS  PubMed  Google Scholar 

  100. Seidah NG, Benjannet S, Pareek S et al (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379:247–250

    Article  CAS  PubMed  Google Scholar 

  101. Yang F, Je H-S, Ji Y et al (2009) Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol 185:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bergami M, Santi S, Formaggio E et al (2008b) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  CAS  PubMed  Google Scholar 

  104. Fayard B, Loeffler S, Weis J et al (2005) The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. J Neurosci Res 80:18–28

    Article  CAS  PubMed  Google Scholar 

  105. Koshimizu H, Hazama S, Hara T et al (2010) Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci Lett 473:229–232

    Article  CAS  PubMed  Google Scholar 

  106. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564

    Article  CAS  Google Scholar 

  107. Taylor AR, Gifondorwa DJ, Robinson MB et al (2012) Motoneuron programmed cell death in response to proBDNF. Dev Neurobiol 72:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Teng HK, Teng KK, Lee R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    Article  CAS  PubMed  Google Scholar 

  109. Adachi N, Kohara K, Tsumoto T (2005) Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging. BMC Neurosci 6:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Jovanovic JN, Czernik AJ, Fienberg AA et al (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 3:323–329

    Article  CAS  PubMed  Google Scholar 

  111. Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729–1734

    Article  CAS  PubMed  Google Scholar 

  112. Fryer RH, Kaplan DR, Kromer LF (1997) Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro. Exp Neurol 148:616–627

    Article  CAS  PubMed  Google Scholar 

  113. Strohmaier C, Carter BD, Urfer R et al (1996) A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO J 15:3332–3337

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Friedman WJ, Black IB, Kaplan DR (1998) Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 84:101–114

    Article  CAS  PubMed  Google Scholar 

  115. Maisonpierre PC, Belluscio L, Friedman B et al (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509

    Article  CAS  PubMed  Google Scholar 

  116. Kim J, Yang M, Kim J et al (2014) Developmental and degenerative modulation of brain-derived neurotrophic factor transcript variants in the mouse hippocampus. Int J Dev Neurosci 38:68–73

    Article  PubMed  CAS  Google Scholar 

  117. Menshanov PN, Lanshakov DA, Dygalo NN (2015) proBDNF is a major product of bdnf gene expressed in the perinatal rat cortex. Physiol Res 64(6):925–934

    CAS  PubMed  Google Scholar 

  118. Zafra F, Hengerer B, Leibrock J et al (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9:3545–3550

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Aid T, Kazantseva A, Piirsoo M et al (2007) Mouse and ratBDNF gene structure and expression revisited. J Neurosci Res 85:525–535

    Article  CAS  PubMed  Google Scholar 

  120. Sathanoori M, Dias BG, Nair AR et al (2004) Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat hippocampus during development, and in response to kainate administration. Mol Brain Res 130:170–177

    Article  CAS  PubMed  Google Scholar 

  121. Liu Q-R, Walther D, Drgon T et al (2005) Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 134B:93–103

    Article  PubMed  Google Scholar 

  122. An JJ, Gharami K, Liao G-Y et al (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baj G, Leone E, Chao MV, Tongiorgi E (2011) Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc Natl Acad Sci U S A 108:16813–16818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Metsis M, Timmusk T, Arenas E, Persson H (1993) Differential usage of multiple brain-derived neurotrophic factor promoters in the rat brain following neuronal activation. Proc Natl Acad Sci U S A 90:8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pruunsild P, Kazantseva A, Aid T et al (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90:397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Timmusk T, Belluardo N, Persson H, Metsis M (1994a) Developmental regulation of brain-derived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain. Neuroscience 60:287–291

    Article  CAS  PubMed  Google Scholar 

  127. Timmusk T, Lendahl U, Funakoshi H et al (1995) Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice. J Cell Biol 128:185–199

    Article  CAS  PubMed  Google Scholar 

  128. Timmusk T, Persson H, Metsis M (1994b) Analysis of transcriptional initiation and translatability of brain-derived neurotrophic factor mRNAs in the rat brain. Neurosci Lett 177:27–31

    Article  CAS  PubMed  Google Scholar 

  129. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  130. Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    Article  CAS  PubMed  Google Scholar 

  131. Bekinschtein P, Oomen CA, Saksida LM, Bussey TJ (2011) Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin Cell Dev Biol 22:536–542

    Article  CAS  PubMed  Google Scholar 

  132. Falkenberg T, Mohammed AK, Henriksson B et al (1992) Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 138:153–156

    Article  CAS  PubMed  Google Scholar 

  133. Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3:533–535

    Article  CAS  PubMed  Google Scholar 

  134. Radecki DT, Brown LM, Martinez J, Teyler TJ (2005) BDNF protects against stress-induced impairments in spatial learning and memory and LTP. Hippocampus 15:246–253

    Article  CAS  PubMed  Google Scholar 

  135. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    CAS  PubMed  Google Scholar 

  136. Casarotto PC, dos Santos PC, Lucas GA et al (2015) BDNF-TRKB signaling system of the dorsal periaqueductal gray matter is implicated in the panicolytic-like effect of antidepressant drugs. Eur Neuropsychopharmacol 25:913–922

    Article  CAS  PubMed  Google Scholar 

  137. Licata SC, Shinday NM, Huizenga MN et al (2013) Alterations in brain-derived neurotrophic factor in the mouse hippocampus following acute but not repeated benzodiazepine treatment. PLoS One 8:e84806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Bai O, Chlan-Fourney J, Bowen R et al (2003) Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 71:127–131

    Article  CAS  PubMed  Google Scholar 

  139. Chlan-Fourney J, Ashe P, Nylen K et al (2002) Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 954:11–20

    Article  CAS  PubMed  Google Scholar 

  140. Braun AA, Herring NR, Schaefer TL et al (2011) Neurotoxic (+)-methamphetamine treatment in rats increases brain-derived neurotrophic factor and tropomyosin receptor kinase B expression in multiple brain regions. Neuroscience 184:164–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schmidt HD, Sangrey GR, Darnell SB et al (2012) Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem 120:202–209

    Article  CAS  PubMed  Google Scholar 

  142. Butovsky E, Juknat A, Goncharov I et al (2005) In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Delta-tetrahydrocannabinol. J Neurochem 93:802–811

    Article  CAS  PubMed  Google Scholar 

  143. Martin DA, Marona-Lewicka D, Nichols DE, Nichols CD (2014) Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology 83:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Caputo V, Sinibaldi L, Fiorentino A et al (2011) Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoS One 6:e28656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fukuchi M, Tsuda M (2010) Involvement of the 3′-untranslated region of the brain-derived neurotrophic factor gene in activity-dependent mRNA stabilization. J Neurochem 115:1222–1233

    Article  CAS  PubMed  Google Scholar 

  146. Hwang JJ, Park M-H, Choi S-Y, Koh J-Y (2005) Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases. J Biol Chem 280:11995–12001

    Article  CAS  PubMed  Google Scholar 

  147. Oe S, Yoneda Y (2010) Cytoplasmic polyadenylation element-like sequences are involved in dendritic targeting of BDNF mRNA in hippocampal neurons. FEBS Lett 584:3424–3430

    Article  CAS  PubMed  Google Scholar 

  148. Wu YC, Williamson R, Li Z et al (2011) Dendritic trafficking of brain-derived neurotrophic factor mRNA: regulation by translin-dependent and -independent mechanisms. J Neurochem 116:1112–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Evans SF, Irmady K, Ostrow K et al (2011) Neuronal brain-derived neurotrophic factor is synthesized in excess, with levels regulated by sortilin-mediated trafficking and lysosomal degradation. J Biol Chem 286:29556–29567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wong Y-H, Lee C-M, Xie W et al (2015) Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci U S A 112:E4475–E4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rohe M, Hartl D, Fjorback AN et al (2013) SORLA-mediated trafficking of TrkB enhances the response of neurons to BDNF. PLoS One 8:e72164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eide FF, Vining ER, Eide BL et al (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23:15–24

    Article  CAS  PubMed  Google Scholar 

  154. Fryer RH, Kaplan DR, Feinstein SC et al (1996) Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J Comp Neurol 374:21–40

    Article  CAS  PubMed  Google Scholar 

  155. Coppell A, Pei Q, Zetterström TS (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44:903–910

    Article  CAS  PubMed  Google Scholar 

  156. Ivy a S, Rodriguez FG, Garcia C et al (2003) Noradrenergic and serotonergic blockade inhibits BDNF mRNA activation following exercise and antidepressant. Pharmacol Biochem Behav 75:81–88

    Article  CAS  PubMed  Google Scholar 

  157. De Foubert G, Carney SL, Robinson CS et al (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128:597–604

    Article  PubMed  CAS  Google Scholar 

  158. Donnici L, Tiraboschi E, Tardito D et al (2008) Time-dependent biphasic modulation of human BDNF by antidepressants in neuroblastoma cells. BMC Neurosci 9:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Khundakar AA, Zetterström TSC (2006) Biphasic change in BDNF gene expression following antidepressant drug treatment explained by differential transcript regulation. Brain Res 1106:12–20

    Article  CAS  PubMed  Google Scholar 

  160. Zetterström TSC, Pei Q, Madhav TR et al (1999) Manipulations of brain 5-HT levels affect gene expression for BDNF in rat brain. Neuropharmacology 38:1063–1073

    Article  PubMed  Google Scholar 

  161. Balu DT, Hoshaw BA, Malberg JE et al (2008) Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 1211:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mannari C, Origlia N, Scatena A et al (2008) BDNF level in the rat prefrontal cortex increases following chronic but not acute treatment with duloxetine, a dual acting inhibitor of noradrenaline and serotonin re-uptake. Cell Mol Neurobiol 28:457–468

    Article  CAS  PubMed  Google Scholar 

  163. Zetterström TSC, A a C, A a K (2014) The role of 5-hydroxytryptamine receptor subtypes in the regulation of brain-derived neurotrophic factor gene expression. J Pharm Pharmacol 66:53–61

    Article  PubMed  CAS  Google Scholar 

  164. Pilar-Cuéllar F, Vidal R, Pazos a (2012) Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects. Br J Pharmacol 165:1046–1057

    Google Scholar 

  165. Musazzi L, Rimland JM, Ieraci a, et al (2014) Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation. Int J Neuropsychopharmacol 17:779–791

    Google Scholar 

  166. Lauterborn JC, Rivera S, Stinis CT et al (1996) Differential effects of protein synthesis inhibition on the activity-dependent expression of BDNF transcripts: evidence for immediate-early gene responses from specific promoters. J Neurosci 16:7428–7436

    CAS  PubMed  Google Scholar 

  167. Nair A, Vadodaria KC, Banerjee SB et al (2007) Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 32:1504–1519

    Article  CAS  PubMed  Google Scholar 

  168. Dias BG, Banerjee SB, Duman RS, V a V (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 45:553–563

    Article  CAS  PubMed  Google Scholar 

  169. Russo-Neustadt A, Beard R, Huang Y, Cotman C (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101:305–312

    Article  CAS  PubMed  Google Scholar 

  170. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zheng F, Zhou X, Moon C, Wang H (2012) Regulation of brain-derived neurotrophic factor expression in neurons. Int J Physiol Pathophysiol Pharmacol 4:188–200

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Cavus I, Duman RS (2003) Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biol Psychiatry 54:59–69

    Article  CAS  PubMed  Google Scholar 

  173. Vaidya VA, Castro ME, Pei Q et al (2001) Influence of thyroid hormone on 5-HT1A and 5-HT2A receptor-mediated regulation of hippocampal BDNF mRNA expression. Neuropharmacology 40:48–56

    Article  CAS  PubMed  Google Scholar 

  174. Morita K, Her S (2008) Progesterone Pretreatment enhances serotonin-stimulated BDNF gene expression in rat C6 Glioma cells through production of 5α-reduced Neurosteroids. J Mol Neurosci 34:193–200

    Article  CAS  PubMed  Google Scholar 

  175. Gewirtz JC, Chen AC, Terwilliger R et al (2002) Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol Biochem Behav 73:317–326

    Article  CAS  PubMed  Google Scholar 

  176. Bombardi C (2012) Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Res Bull 87:259–273

    Article  CAS  PubMed  Google Scholar 

  177. Piguet P, Galvan M (1994) Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. J Physiol 481(Pt 3):629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hayes VY, Towner MD, Isackson PJ (1997) Organization, sequence and functional analysis of a mouse BDNF promoter. Brain Res Mol Brain Res 45:189–198

    Article  CAS  PubMed  Google Scholar 

  179. Tabuchi A, Sakaya H, Kisukeda T et al (2002) Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J Biol Chem 277:35920–35931

    Article  CAS  PubMed  Google Scholar 

  180. Gao X, Daugherty RL, Tourtellotte WG (2007) Regulation of low affinity neurotrophin receptor (p75(NTR)) by early growth response (Egr) transcriptional regulators. Mol Cell Neurosci 36:501–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen A, Xiong L-J, Tong Y, Mao M (2013) Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol Med Rep 8:1011–1016

    Article  CAS  PubMed  Google Scholar 

  182. Lee FS, Rajagopal R, Chao MV (2002) Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled receptors. Cytokine Growth Factor Rev 13:11–17

    Article  CAS  PubMed  Google Scholar 

  183. Rajagopal R, Chen Z-Y, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658

    Article  CAS  PubMed  Google Scholar 

  184. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  185. Shum JKS, Melendez JA, Jeffrey JJ (2002) Serotonin-induced MMP-13 production is mediated via phospholipase C, protein kinase C, and ERK1/2 in rat uterine smooth muscle cells. J Biol Chem 277:42830–42840

    Article  CAS  PubMed  Google Scholar 

  186. Yabanoglu S, Akkiki M, Seguelas M-H et al (2009) Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 46:518–525

    Article  CAS  PubMed  Google Scholar 

  187. Baxter GT, Radeke MJ, Kuo RC et al (1997) Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 17:2683–2690

    CAS  PubMed  Google Scholar 

  188. Michaelsen K, Zagrebelsky M, Berndt-Huch J et al (2010) Neurotrophin receptors TrkB.T1 and p75NTR cooperate in modulating both functional and structural plasticity in mature hippocampal neurons. Eur J Neurosci 32:1854–1865

    Article  CAS  PubMed  Google Scholar 

  189. Rose CR, Blum R, Pichler B et al (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426:74–78

    Article  CAS  PubMed  Google Scholar 

  190. Sherrard RM, Dixon KJ, Bakouche J et al (2009) Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination. Dev Neurobiol 69:647–662

    Article  CAS  PubMed  Google Scholar 

  191. Jang S-W, Liu X, Pradoldej S et al (2010) N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci U S A 107:3876–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kruk JS, Vasefi MS, Heikkila JJ, Beazely MA (2013) Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS One 8:e77027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Overland AC, Insel PA (2015) Heterotrimeric G proteins directly regulate MMP14/membrane type-1 matrix metalloprotease: a novel mechanism for GPCR-EGFR transactivation. J Biol Chem 290:9941–9947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cattaneo F, Guerra G, Parisi M et al (2014) Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 15:19700–19728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Kamato D, Rostam MA, Bernard R et al (2015) The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cell Mol Life Sci 72:799–808

    Article  CAS  PubMed  Google Scholar 

  196. Marinova Z, Walitza S, Grünblatt E (2013) 5-HT2A serotonin receptor agonist DOI alleviates cytotoxicity in neuroblastoma cells: role of the ERK pathway. Prog Neuro-Psychopharmacology Biol Psychiatry 44:64–72

    Article  CAS  Google Scholar 

  197. Seitz PK, Bremer NM, McGinnis AG et al (2012) Quantitative changes in intracellular calcium and extracellular-regulated kinase activation measured in parallel in CHO cells stably expressing serotonin (5-HT) 5-HT2A or 5-HT2C receptors. BMC Neurosci 13:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cavanaugh JE, Ham J, Hetman M et al (2001) Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci 21:434–443

    CAS  PubMed  Google Scholar 

  199. Ying S-W, Futter M, Rosenblum K et al (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of arc synthesis. J Neurosci 22:1532–1540

    CAS  PubMed  Google Scholar 

  200. Jones KA, Srivastava DP, Allen JA et al (2009) Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc Natl Acad Sci U S A 106:19575–19580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ohira K, Homma KJ, Hirai H et al (2006) TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochem Biophys Res Commun 342:867–874

    Article  CAS  PubMed  Google Scholar 

  202. Yoshimura R, Ikenouchi-Sugita A, Hori H et al (2010) Adding a low dose atypical antipsychotic drug to an antidepressant induced a rapid increase of plasma brain-derived neurotrophic factor levels in patients with treatment-resistant depression. Prog Neuro-Psychopharmacology Biol Psychiatry 34:308–312

    Article  CAS  Google Scholar 

  203. Pillai A, Terry AV, Mahadik SP (2006) Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus. Schizophr Res 82:95–106

    Article  PubMed  Google Scholar 

  204. L. Huang T (2013) Effects of antipsychotics on the BDNF in schizophrenia. Curr Med Chem 20:345–350

    Google Scholar 

  205. Benekareddy M, Nair AR, Dias BG et al (2013) Induction of the plasticity-associated immediate early gene arc by stress and hallucinogens: role of brain-derived neurotrophic factor. Int J Neuropsychopharmacol 16:405–415

    Article  CAS  PubMed  Google Scholar 

  206. Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11:642–651

    Article  CAS  PubMed  Google Scholar 

  207. Bland ST, Tamlyn JP, Barrientos RM et al (2007) Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience 144:1219–1228

    Article  CAS  PubMed  Google Scholar 

  208. Lee Y, Duman RS, Marek GJ (2006) The mGlu2/3 receptor agonist LY354740 suppresses immobilization stress-induced increase in rat prefrontal cortical BDNF mRNA expression. Neurosci Lett 398:328–332

    Article  CAS  PubMed  Google Scholar 

  209. Gewirtz J (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  CAS  PubMed  Google Scholar 

  210. Kłodzinska A, Bijak M, Tokarski K, Pilc A (2002) Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of DOI in mice. Pharmacol Biochem Behav 73:327–332

    Article  PubMed  Google Scholar 

  211. Zhang C, Marek GJ (2007) Group III metabotropic glutamate receptor agonists selectively suppress excitatory synaptic currents in the rat prefrontal cortex induced by 5-Hydroxytryptamine2A receptor activation. J Pharmacol Exp Ther 320:437–447

    Article  CAS  PubMed  Google Scholar 

  212. Menezes MM, Santini MA, Benvenga MJ et al (2013) The mGlu2/3 receptor agonists LY354740 and LY379268 differentially regulate restraint-stress-induced expression of c-Fos in rat cerebral cortex. Neurosci J 2013:1–8

    Article  CAS  Google Scholar 

  213. Zhai Y, George CA, Zhai J et al (2003) Group II metabotropic glutamate receptor modulation of DOI-induced c-fos mRNA and excitatory responses in the cerebral cortex. Neuropsychopharmacology 28:45–52

    Article  CAS  PubMed  Google Scholar 

  214. Benekareddy M, Goodfellow NM, Lambe EK, V a V (2010) Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model of psychiatric vulnerability. J Neurosci 30:12138–12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hemmerle AM, Ahlbrand R, Bronson SL et al (2015) Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res 168:411–420

    Article  PubMed  PubMed Central  Google Scholar 

  216. Malkova NV, Gallagher JJ, Yu CZ et al (2014) Manganese-enhanced magnetic resonance imaging reveals increased DOI-induced brain activity in a mouse model of schizophrenia. Proc Natl Acad Sci U S A 111:E2,492–E2,500

    Article  CAS  Google Scholar 

  217. Moreno JL, Kurita M, Holloway T et al (2011) Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring. J Neurosci 31:1863–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Suri D, Bhattacharya A, Vaidya VA (2014) Early stress evokes temporally distinct consequences on the hippocampal transcriptome, anxiety and cognitive behaviour. Int J Neuropsychopharmacol 17:289–301

    Article  CAS  PubMed  Google Scholar 

  219. Wang Q, Shao F, Wang W (2015) Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  220. Rogóz Z, Skuza G, Legutko B (2005) Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol 56:661–671

    PubMed  Google Scholar 

  221. Marek GJ, Martin-Ruiz R, Abo A, Artigas F (2005) The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology 30:2205–2215

    Article  CAS  PubMed  Google Scholar 

  222. Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873:34–45

    Article  CAS  PubMed  Google Scholar 

  223. Abdolmaleky HM, Yaqubi S, Papageorgis P et al (2011) Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res 129:183–190

    Article  PubMed  Google Scholar 

  224. Favalli G, Li J, Belmonte-de-Abreu P et al (2012) The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 46:1–11

    Article  PubMed  Google Scholar 

  225. Golimbet VE, Lavrushina OM, Kaleda VG et al (2007) Supportive evidence for the association between the T102C 5-HTR2A gene polymorphism and schizophrenia: a large-scale case-control and family-based study. Eur Psychiatry 22:167–170

    Article  CAS  PubMed  Google Scholar 

  226. Horacek J, Bubenikova-Valesova V, Kopecek M et al (2006) Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs 20:389–409

    Article  CAS  PubMed  Google Scholar 

  227. Lin P-Y (2012) Increase in brain-derived Neurotrophic factor in patients with schizophrenia treated with olanzapine: a systemic review and meta-analysis. J Exp Clin Med 4:119–124

    Article  CAS  Google Scholar 

  228. Angelucci F (2000) Mathé A a., Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration J Neurosci Res 60:783–794

    CAS  PubMed  Google Scholar 

  229. Park DI, Kim HG, Jung WR et al (2011a) Mecamylamine attenuates dexamethasone-induced anxiety-like behavior in association with brain derived neurotrophic factor upregulation in rat brains. Neuropharmacology 61:276–282

    Article  CAS  PubMed  Google Scholar 

  230. González-Maeso J, Yuen T, Ebersole BJ et al (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23:8836–8843

    PubMed  Google Scholar 

  231. Djalali S, Höltje M, Grosse G et al (2005) Effects of brain-derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development. J Neurochem 92:616–627

    Article  CAS  PubMed  Google Scholar 

  232. Galter D, Unsicker K (1999) Regulation of the transmitter phenotype of rostral and caudal groups of cultured serotonergic raphe neurons. Neuroscience 88:549–559

    Article  CAS  PubMed  Google Scholar 

  233. Galter D, Unsicker K (2000a) Brain-derived neurotrophic factor and trkB are essential for cAMP-mediated induction of the serotonergic neuronal phenotype. J Neurosci Res 61:295–301

    Article  CAS  PubMed  Google Scholar 

  234. Mamounas LA, Altar CA, Blue ME et al (2000) BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20:771–782

    CAS  PubMed  Google Scholar 

  235. Mamounas LA, Blue ME, Siuciak JA, Altar CA (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15:7929–7939

    CAS  PubMed  Google Scholar 

  236. Galter D, Unsicker K (2000b) Sequential activation of the 5-HT1(a) serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol Cell Neurosci 15:446–455

    Article  CAS  PubMed  Google Scholar 

  237. Siuciak JA, Clark MS, Rind HB et al (1998) BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. J Neurosci Res 52:149–158

    Article  CAS  PubMed  Google Scholar 

  238. Celada P, Siuciak JA, Tran TM et al (1996) Local infusion of brain-derived neurotrophic factor modifies the firing pattern of dorsal raphé serotonergic neurons. Brain Res 712:293–298

    Article  CAS  PubMed  Google Scholar 

  239. Deltheil T, Guiard BP, Cerdan J et al (2008) Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Neuropharmacology 55:1006–1014

    Article  CAS  PubMed  Google Scholar 

  240. Naumenko VS, Kondaurova EM, Bazovkina DV et al (2012) Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience 214:59–67

    Article  CAS  PubMed  Google Scholar 

  241. Tsybko AS, Il’chibaeva TV, Kondaurova EM et al (2014) Effect of central administration of the neurotrophic factors BDNF and GDNF on the functional activity and expression of 5-HT2A serotonin receptors in mice genetically predisposed to depressive-like behavior. Mol Biol 48:864–869

    Article  CAS  Google Scholar 

  242. Lyons WE, L a M, G a R et al (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A 96:15239–15244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Hensler JG, Ladenheim EE, Lyons WE (2003) Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/−) mice. J Neurochem 85:1139–1147

    Article  CAS  PubMed  Google Scholar 

  244. Luellen BA, Bianco LE, Schneider LM, Andrews AM (2007) Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. Genes Brain Behav 6:482–490

    Article  CAS  PubMed  Google Scholar 

  245. Rios M, Lambe EK, Liu R et al (2006) Severe deficits in 5-HT2A -mediated neurotransmission in BDNF conditional mutant mice. J Neurobiol 66:408–420

    Article  CAS  PubMed  Google Scholar 

  246. Chan JP, Unger TJ, Byrnes J, Rios M (2006) Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience 142:49–58

    Article  CAS  PubMed  Google Scholar 

  247. Sakata K, Duke SM (2014) Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus. Neuroscience 260:265–275

    Article  CAS  PubMed  Google Scholar 

  248. Maynard KR, Hill JL, Calcaterra NE et al (2015) Functional role of BDNF production from unique promoters in aggression and serotonin Signaling. Neuropsychopharmacology. https://doi.org/10.1038/npp.2015.349

  249. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R (2001) Conditional Deletion Of Brain-Derived Neurotrophic Factor in the Postnatal Brain Leads to Obesity and Hyperactivity. Mol Endocrinol 15:1748–1757

    Article  CAS  PubMed  Google Scholar 

  250. Sakata K, Woo NH, Martinowich K et al (2009) Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. Proc Natl Acad Sci U S A 106:5942–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kim JH, Roberts DS, Hu Y, Lau GC, Brooks-Kayal AR, Farb DH, Russek SJ (2012) Brain-derived neurotrophic factor uses CREB and Egr3 to regulate NMDA receptor levels in cortical neurons. J Neurochem 120:210–219

    Article  CAS  PubMed  Google Scholar 

  252. Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ (2006) Brain-derived Neurotrophic Factor (BDNF)-induced Synthesis of Early Growth Response Factor 3 (Egr3) Controls the Levels of Type A GABA Receptorα4 Subunits in Hippocampal Neurons. J Biol Chem 281:29431–29435

    Article  CAS  PubMed  Google Scholar 

  253. Williams AA, Ingram WM, Levine S et al (2012) Reduced levels of serotonin 2A receptors underlie resistance of Egr3-deficient mice to locomotor suppression by clozapine. Neuropsychopharmacology 37:2285–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Maple AM, Zhao X, Elizalde DI et al (2015) Htr2a expression responds rapidly to environmental stimuli in an Egr3-dependent manner. ACS Chem Neurosci 6:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  CAS  PubMed  Google Scholar 

  256. Henningsson S, Borg J, Lundberg J et al (2009) Genetic variation in brain-derived neurotrophic factor is associated with serotonin transporter but not serotonin-1A receptor availability in men. Biol Psychiatry 66:477–485

    Article  CAS  PubMed  Google Scholar 

  257. Klein AB, Trajkovska V, Erritzoe D et al (2010a) Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels. J Cereb Blood Flow Metab 30:e1–e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    CAS  PubMed  Google Scholar 

  259. Kuribara M, Eijsink VD, Roubos EW et al (2010) BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus Laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. Gen Comp Endocrinol 169:123–129

    Article  CAS  PubMed  Google Scholar 

  260. Li YX, Zhang Y, Lester HA et al (1998) Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J Neurosci 18:10231–10240

    CAS  PubMed  Google Scholar 

  261. Jørgensen H, Knigge U, Kjaer A et al (1998) Serotonergic involvement in stress-induced ACTH release. Brain Res 811:10–20

    Article  PubMed  Google Scholar 

  262. Bath KG, Schilit A, Lee FS (2013) Stress effects on BDNF expression: effects of age, sex, and form of stress. Neuroscience 239:149–156

    Article  CAS  PubMed  Google Scholar 

  263. Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    Article  PubMed  CAS  Google Scholar 

  264. Holloway T, Moreno JL, Umali A et al (2013) Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci 33:1088–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Matuszewich L, Yamamoto BK (2003) Long-lasting effects of chronic stress on DOI-induced hyperthermia in male rats. Psychopharmacology 169:169–175

    Article  CAS  PubMed  Google Scholar 

  266. Harvey ML, Swallows CL, Cooper MA (2012) A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters. Behav Neurosci 126:530–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Benekareddy M, Vadodaria KC, Nair AR, Vaidya VA (2011) Postnatal serotonin type 2 receptor blockade prevents the emergence of anxiety behavior, dysregulated stress-induced immediate early gene responses, and specific transcriptional changes that arise following early life stress. Biol Psychiatry 70:1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Adamec R, Creamer K, Bartoszyk GD, Burton P (2004) Prophylactic and therapeutic effects of acute systemic injections of EMD 281014, a selective serotonin 2A receptor antagonist on anxiety induced by predator stress in rats. Eur J Pharmacol 504:79–96

    Article  CAS  PubMed  Google Scholar 

  269. Beig MI, Baumert M, Walker FR et al (2009) Blockade of 5-HT2A receptors suppresses hyperthermic but not cardiovascular responses to psychosocial stress in rats. Neuroscience 159:1185–1191

    Article  CAS  PubMed  Google Scholar 

  270. Ootsuka Y, Blessing WW, Nalivaiko E (2008) Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress 11:125–133

    Article  CAS  PubMed  Google Scholar 

  271. Pehek EA, Nocjar C, Roth BL et al (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 31:265–277

    Article  CAS  PubMed  Google Scholar 

  272. Grønli J, Bramham C, Murison R et al (2006) Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav 85:842–849

    Article  PubMed  CAS  Google Scholar 

  273. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Lee B-H, Kim Y-K (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 7:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Nowacka M, Obuchowicz E (2013) BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies. Pharmacol Rep 65:535–546

    Article  CAS  PubMed  Google Scholar 

  276. Marmigère F, Givalois L, Rage F et al (2003) Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus 13:646–655

    Article  PubMed  CAS  Google Scholar 

  277. Molteni R, Calabrese F, Cattaneo A et al (2009) Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology 34:1523–1532

    Article  CAS  PubMed  Google Scholar 

  278. Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59:1136–1143

    Article  CAS  PubMed  Google Scholar 

  279. Lu B, Chang JH (2004) Regulation of neurogenesis by neurotrophins: implications in hippocampus-dependent memory. Neuron Glia Biol 1:377–384

    Article  PubMed  Google Scholar 

  280. McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:721–731

    Article  CAS  PubMed  Google Scholar 

  281. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    Article  CAS  PubMed  Google Scholar 

  282. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462

    Article  CAS  PubMed  Google Scholar 

  283. Pavlides C, Nivón LG, McEwen BS (2002) Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12:245–257

    Article  PubMed  Google Scholar 

  284. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99

    Article  CAS  PubMed  Google Scholar 

  285. Govindarajan A, Rao BSS, Nair D et al (2006) Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc Natl Acad Sci U S A 103:13208–13213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Liu R-J, Aghajanian GK (2008) Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A 105:359–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Watanabe Y, Gould E, Daniels DC et al (1992) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222:157–162

    Article  CAS  PubMed  Google Scholar 

  288. Czéh B, Michaelis T, Watanabe T et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 98:12796–12801

    Article  PubMed  PubMed Central  Google Scholar 

  289. Jiang X, Xing G, Yang C et al (2009) Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 34:410–423

    Article  CAS  PubMed  Google Scholar 

  290. Popoli M, Yan Z, McEwen BS, Sanacora G (2012) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37

    Article  CAS  Google Scholar 

  291. Treccani G, Musazzi L, Perego C et al (2014) Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry 19:433–443

    Article  CAS  PubMed  Google Scholar 

  292. Bland ST, Schmid MJ, Der-Avakian A et al (2005) Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Res 1051:90–99

    Article  CAS  PubMed  Google Scholar 

  293. Pandey DK, Bhatt S, Jindal A, Gautam B (2014) Effect of combination of ketanserin and escitalopram on behavioral anomalies after olfactory bulbectomy: prediction of quick onset of antidepressant action. Indian J Pharmacol 46:639–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Quesseveur G, Repérant C, David DJ et al (2013) 5-HT2A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: involvement of the noradrenergic system. Exp Brain Res 226:285–295

    Article  CAS  PubMed  Google Scholar 

  295. Sibille E, Sarnyai Z, Benjamin D et al (1997) Antisense inhibition of 5-hydroxytryptamine2a receptor induces an antidepressant-like effect in mice. Mol Pharmacol 52:1056–1063

    Article  CAS  PubMed  Google Scholar 

  296. Choi M-J, Lee H-J, Lee H-J et al (2004) Association between major depressive disorder and the -1438A/G polymorphism of the serotonin 2A receptor gene. Neuropsychobiology 49:38–41

    Article  CAS  PubMed  Google Scholar 

  297. Jin C, Xu W, Yuan J et al (2013) Meta-analysis of association between the -1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder. Neurol Res 35:7–14

    Article  PubMed  CAS  Google Scholar 

  298. Horstmann S, Lucae S, Menke A et al (2010) Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 35:727–740

    Article  CAS  PubMed  Google Scholar 

  299. Lucae S, Ising M, Horstmann S et al (2010) HTR2A gene variation is involved in antidepressant treatment response. Eur Neuropsychopharmacol 20:65–68

    Article  CAS  PubMed  Google Scholar 

  300. McMahon FJ, Buervenich S, Charney D et al (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 78:804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Viikki M, Huuhka K, Leinonen E et al (2011) Interaction between two HTR2A polymorphisms and gender is associated with treatment response in MDD. Neurosci Lett 501:20–24

    Article  CAS  PubMed  Google Scholar 

  302. Blier P (2003) The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13:57–66

    Article  CAS  PubMed  Google Scholar 

  303. Lopes Rocha F, Fuzikawa C, Riera R et al (2013) Antidepressant combination for major depression in incomplete responders--a systematic review. J Affect Disord 144:1–6

    Google Scholar 

  304. Rocha FL, Fuzikawa C, Riera R, Hara C (2012) Combination of antidepressants in the treatment of major depressive disorder: a systematic review and meta-analysis. J Clin Psychopharmacol 32:278–281

    Article  CAS  PubMed  Google Scholar 

  305. Frokjaer VG, Mortensen EL, Nielsen FA et al (2008) Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol Psychiatry 63:569–576

    Article  CAS  PubMed  Google Scholar 

  306. McKeith IG, Marshall EF, Ferrier IN et al (1987) 5-HT receptor binding in post-mortem brain from patients with affective disorder. J Affect Disord 13:67–74

    Article  CAS  PubMed  Google Scholar 

  307. Oquendo MA, Russo SA, Underwood MD et al (2006) Higher postmortem prefrontal 5-HT2A receptor binding correlates with lifetime aggression in suicide. Biol Psychiatry 59:235–243

    Article  CAS  PubMed  Google Scholar 

  308. Serres F, Azorin JM, Valli M, Jeanningros R (1999) Evidence for an increase in functional platelet 5-HT2A receptors in depressed patients using the new ligand [125I]-DOI. Eur Psychiatry 14:451–457

    Article  CAS  PubMed  Google Scholar 

  309. Li Y, Luikart BW, Birnbaum S et al (2008) TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  PubMed  CAS  Google Scholar 

  311. Kavalali ET, Monteggia LM (2012) Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 169:1150–1156

    Article  PubMed  Google Scholar 

  312. Adachi M, Barrot M, Autry AE et al (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649

    Article  CAS  PubMed  Google Scholar 

  313. Eisch AJ, Bolaños CA, de Wit J et al (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 54:994–1005

    Article  CAS  PubMed  Google Scholar 

  314. Koponen E, Rantamäki T, Voikar V et al (2005) Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 25:973–980

    Article  PubMed  Google Scholar 

  315. Lepack AE, Fuchikami M, Dwyer JM et al (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 18(1):pyu033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Monteggia LM, Barrot M, Powell CM et al (2004) Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A 101:10827–10832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Saarelainen T, Hendolin P, Lucas G et al (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    CAS  PubMed  Google Scholar 

  318. Shirayama Y, Chen AC-H, Nakagawa S et al (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  319. Taliaz D, Nagaraj V, Haramati S et al (2013) Altered brain-derived neurotrophic factor expression in the ventral tegmental area, but not in the hippocampus, is essential for antidepressant-like effects of electroconvulsive therapy. Biol Psychiatry 74:305–312

    Article  CAS  PubMed  Google Scholar 

  320. Björkholm C, Monteggia LM (2016) BDNF- a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    Article  PubMed  CAS  Google Scholar 

  321. Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond Ser B Biol Sci 367:2475–2484

    Article  CAS  Google Scholar 

  322. Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391–418

    Article  CAS  PubMed  Google Scholar 

  323. Wang J-W, Dranovsky A, Hen R (2008) The when and where of BDNF and the antidepressant response. Biol Psychiatry 63:640–641

    Article  PubMed  Google Scholar 

  324. Chiaruttini C, Vicario A, Li Z et al (2009) Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci U S A 106:16481–16486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Colle R, Deflesselle E, Martin S et al (2015) BDNF/TRKB/P75NTR polymorphisms and their consequences on antidepressant efficacy in depressed patients. Pharmacogenomics 16:997–1013

    Article  CAS  PubMed  Google Scholar 

  326. Hosang GM, Shiles C, Tansey KE et al (2014) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 12:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Schumacher J, Jamra RA, Becker T et al (2005) Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 58:307–314

    Article  CAS  PubMed  Google Scholar 

  328. Bath KG, Jing DQ, Dincheva I et al (2012) BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 37:1297–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Chen Z-Y, Jing D, Bath KG et al (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314:140–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Liu R-J, Lee FS, Li X-Y et al (2012) Brain-derived Neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 71:996–1005

    Article  CAS  PubMed  Google Scholar 

  331. Yu H, Wang D-D, Wang Y et al (2012) Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J Neurosci 32:4092–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Masi G, Brovedani P (2011) The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 25:913–931

    Article  CAS  PubMed  Google Scholar 

  333. Marek GJ (2008) Regulation of rat cortical 5-hydroxytryptamine2A receptor-mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine. Eur Neuropsychopharmacol 18:498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Muguruza C, Miranda-Azpiazu P, Díez-Alarcia R et al (2014) Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment. Neuropharmacology 86:311–318

    Article  CAS  PubMed  Google Scholar 

  335. Kusumi I, Boku S, Takahashi Y (2015) Psychopharmacology of atypical antipsychotic drugs: from the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin Neurosci 69:243–258

    Article  CAS  PubMed  Google Scholar 

  336. Nandra KS, Agius M (2012) The differences between typical and atypical antipsychotics: the effects on neurogenesis. Psychiatr Danub 24(Suppl 1):S95–S99

    PubMed  Google Scholar 

  337. Park SW, Phuong VT, Lee CH et al (2011b) Effects of antipsychotic drugs on BDNF, GSK-3β, and β-catenin expression in rats subjected to immobilization stress. Neurosci Res 71:335–340

    Article  CAS  PubMed  Google Scholar 

  338. Buckley PF, Pillai A, Howell KR (2011) Brain-derived neurotrophic factor: findings in schizophrenia. Curr Opin Psychiatry 24:122–127

    Article  PubMed  Google Scholar 

  339. Pandya CD, Kutiyanawalla A, Pillai A (2013) BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr 6:22–28

    Article  PubMed  Google Scholar 

  340. Ray MT, Shannon Weickert C, Webster MJ (2014) Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl Psychiatry 4:e389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Hashimoto T, Bergen SE, Nguyen QL et al (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25:372–383

    Article  CAS  PubMed  Google Scholar 

  342. Pillai A (2008) Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals 16:183–193

    Article  CAS  PubMed  Google Scholar 

  343. Gonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77:1031–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Inan M, Petros TJ, Anderson SA (2013) Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia. Neurobiol Dis 53:36–48

    Article  CAS  PubMed  Google Scholar 

  345. Nakazawa K, Zsiros V, Jiang Z et al (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62:1574–1583

    Article  CAS  PubMed  Google Scholar 

  346. Brown JA, Ramikie TS, Schmidt MJ et al (2015) Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes. Mol Psychiatry 20(12):1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Nakamura T, Matsumoto J, Takamura Y et al (2015) Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice. PLoS One 10:e0119258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Shen S, Lang B, Nakamoto C et al (2008) Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 28:10893–10904

    Article  CAS  PubMed  Google Scholar 

  349. Mellios N, Huang H-S, Baker SP et al (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014

    Article  CAS  PubMed  Google Scholar 

  350. Weber ET, Andrade R (2010) Htr2a gene and 5-HT(2A) receptor expression in the cerebral cortex studied using genetically modified mice. Front Neurosci 4:36

    CAS  PubMed  PubMed Central  Google Scholar 

  351. Seo MK, Lee CH, Cho HY et al (2015) Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress. Psychiatry Res 229:968–974

    Article  CAS  PubMed  Google Scholar 

  352. Angelucci F, Aloe L, Iannitelli A et al (2005) Effect of chronic olanzapine treatment on nerve growth factor and brain-derived neurotrophic factor in the rat brain. Eur Neuropsychopharmacol 15:311–317

    Article  CAS  PubMed  Google Scholar 

  353. Park SW, Lee CH, Cho HY et al (2013) Effects of antipsychotic drugs on the expression of synaptic proteins and dendritic outgrowth in hippocampal neuronal cultures. Synapse 67:224–234

    Article  CAS  PubMed  Google Scholar 

  354. Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21(9):715–725

    Article  CAS  PubMed  Google Scholar 

  355. Halberstadt AL, Nichols DE (2010) Handbook of the Behavioral neurobiology of serotonin. Elsevier 4(7):621

    Google Scholar 

  356. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

    Article  CAS  PubMed  Google Scholar 

  357. Halpern JH, Pope HG (2003) Hallucinogen persisting perception disorder: what do we know after 50 years? Drug Alcohol Depend 69:109–119

    Article  PubMed  Google Scholar 

  358. Guirado R, Perez-Rando M, Sanchez-Matarredona D et al (2014) Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons. Int J Neuropsychopharmacol 17:1635–1646

    Article  CAS  PubMed  Google Scholar 

  359. Kepser LJ, Homberg JR (2015) The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res 277:3–13

    Article  CAS  PubMed  Google Scholar 

  360. Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, Castrén E, Maffei L (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320(5874):385–388

    Google Scholar 

  361. Cabelli RJ, Hohn A, Shatz CJ (1995) Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267:1662–1666

    Article  CAS  PubMed  Google Scholar 

  362. Hata Y, Ohshima M, Ichisaka S et al (2000) Brain-derived neurotrophic factor expands ocular dominance columns in visual cortex in monocularly deprived and nondeprived kittens but does not in adult cats. J Neurosci 20:RC57

    CAS  PubMed  Google Scholar 

  363. Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    Article  CAS  PubMed  Google Scholar 

  364. Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65:760–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Cargnin S, Massarotti A, Terrazzino S (2016) BDNF Val66Met and clinical response to antipsychotic drugs: a systematic review and meta-analysis. Eur Psychiatry Mar:45–53

    Google Scholar 

  366. Notaras M, Hill R, van den Buuse M (2015b) The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 20:916–930

    Article  CAS  PubMed  Google Scholar 

  367. Serretti A, Drago A, De Ronchi D (2007) HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. 14: 2053–2069

    Google Scholar 

  368. Shinozaki G, Romanowicz M, Marek DA, Kung S (2013) HTR2A gene-child abuse interaction and association with a history of suicide attempt among Caucasian depressed psychiatric inpatients. J Affect Disord 150:1200–1203

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidita A. Vaidya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaggar, M., Vaidya, V.A. (2018). 5-HT2A Receptors and BDNF Regulation: Implications for Psychopathology. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_17

Download citation

Publish with us

Policies and ethics