Skip to main content

Nanotechnology in the Food Industry

  • Chapter
  • First Online:
Nanotechnology, Food Security and Water Treatment

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

Nanotechnology delivers emerging applications in functional food by engineering biological and synthetic molecules toward functions that are exceptionally changed from those they have originally. Nanotechnology has enhanced the superiority of foods by making them flavoured, nutritive and more healthier. Nanotechnology generates also novel food products, better packaging, coating and shelf storage techniques. Applications in food also improve shelf life, food quality, safety and fortification. Biosensors in food packaging are designed to detect contaminated or spoiled food. Nanotechnology improve food processes that use enzymes to confer nutrition and health benefits. This report reviews applications of nanotechnology in agriculture, and food science and technology. Furthermore, risk assessment, safety concerns and social implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso MD, Ferrer J, Bórquez R (2004) An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends Food Sci Technol 15(10):506–512

    Article  CAS  Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43:837–842

    Article  CAS  Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley-VCH, Weinheim. ISBN: 978-3-527-30359-5

    Book  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcuminloaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79(3):330–338

    Article  CAS  Google Scholar 

  • Anarjan N, Mirhosseini H, Baharin BS, Tan CP (2011) Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT Food Sci Technol 44(7):1658–1665

    Article  CAS  Google Scholar 

  • Anker M, Berntsen J, Hermansson AM, Stading M (2001) Improved water vapour barrier of whey protein films by addition of an acetylated monoglyceride. Innovative Food Sci Emerg Technol 3:81–92

    Article  Google Scholar 

  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852

    Article  CAS  Google Scholar 

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):43–49

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS (2008) The use of chitin and chitosan for food packaging applications. In: Chiellini E (ed) Environmentally compatible food packaging. Cambridge, CRC Wood head Publishing, pp 137–158

    Chapter  Google Scholar 

  • Auweter H, Bohn H, Haberkorn H, Horn D, Luddecke E, Rauschenberger V (1999) Production of carotenoid preparations in the form of coldwater-dispersible powders and the use of the novel carotenoid preparations. US Patent 5968251 (in English)

    Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch or clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  • Ayranci E, Tunc S (2003) A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem 80:423–431

    Article  CAS  Google Scholar 

  • Bejrapha P, Min SG, Surassmo S, Choi MJ (2010) Physicothermal properties of freeze-dried fish oil nanocapsules frozen under different conditions. Dry Technol 28(4):481–489

    Article  CAS  Google Scholar 

  • Bejrapha P, Surassmo S, Choi M, Nakagawa K, Min S (2011) Studies on the role of gelatin as a cryo- and lyo-protectant in the stability of capsicum oleoresin nanocapsules in gelatin matrix. J Food Eng 105(2):320–331

    Article  CAS  Google Scholar 

  • Belhaj N, Arab-Tehrany E, Linder M (2010) Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem 45(2):187–195

    Google Scholar 

  • Benichou A, Aserin A, Garti N, (2004) Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Adv Colloid Interf Sci 108–109:29–41. ISSN 0001-8686, https://doi.org/10.1016/j.cis.2003.10.013. (http://www.sciencedirect.com/science/article/pii/S0001868603001350) Keywords: Double emulsions; Slow, Control and sustained release; Biopolymeric emulsifiers; Steric stabilization

  • Beverlya RL, Janesa ME, Prinyawiwatkulaa W, Nob HK (2008) Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiol 25:534–537

    Article  CAS  Google Scholar 

  • Bharadwaj RK, Mehrabia AR, Hamiltona C, Trujilloa C, Murgaa M, Fana R, Chavira A, Thompsonb AK (2002) Structure-property relationships in crosslinked polyester-clay nanocomposites. Polymer (Guildf) 43:3699–3705

    Article  CAS  Google Scholar 

  • Bin Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate incapsulated in zinc-aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962

    Article  CAS  Google Scholar 

  • Bogue R (2005) Developments in biosensors – where are tomorrow’s markets? Sens Rev 25(3):180–184. https://doi.org/10.1108/02602280510606426

    Article  Google Scholar 

  • Bogue R (2008) Nanosensors: a review of recent progress. Sens Rev 28(1):12–17. https://doi.org/10.1108/02602280810849965

    Article  Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  • Bourtoom T (2009) Review article. Edible protein films: properties enhancement. Int Food Res J 16:1–9

    CAS  Google Scholar 

  • Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, York

    Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610

    Article  CAS  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469(7330):393–396

    Article  CAS  Google Scholar 

  • Brody AL, Bugusu B, Han JH, Koelsch Sand C, McHugh TH (2008) Innovative food packaging. J Food Sci 73(8):107e117

    Article  CAS  Google Scholar 

  • Buonocore G, Conte A, Corbo MR, Sinigaglia M, Del Nobile MA (2005) Mono- and multilayer active films containing lysozyme as antimicrobial agent. Innovative Food Sci Emerg Technol 6:459–464

    Article  CAS  Google Scholar 

  • Burdo O (2005) Nanoscale effects in food production technologies. J Eng Phys Thermophys 78(1):90–97

    Article  Google Scholar 

  • Cagri A, Ustunol Z, Ryser ET (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-amino benzoic or sorbic acids. J Food Sci 66(6):865–870

    Google Scholar 

  • Cassano A, Donato L, Conidi C, Drioli E (2008) Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innovative Food Sci Emerg Technol 9(4):556–562

    Article  CAS  Google Scholar 

  • Chabeaud A, Vandanjon L, Bourseau P, Jaouen P, Chaplain- Derouiniot M, Guerard F (2009) Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: application to the refining of bioactive peptidic fractions. Sep Purif Technol 66(3):463–471

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008a) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008b) Applications and implications of nanotechnologies for the food sector. Food Addit Contam: Part A 25(3):241–258

    Article  CAS  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 60(3):30–36

    CAS  Google Scholar 

  • Cheng Y, Liua Y, Huanga J, Lia K, Zhang W, Xiana Y, Jin L (2009) Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta 77(4):1332–1336

    Article  CAS  Google Scholar 

  • Cheong JN, Tan CP, Yaakob B, Che M, Misran M (2008) α-Tocopherol nanodispersions: preparation, characterization and stability evaluation. Int J Food Eng 89(2):204–209

    Article  CAS  Google Scholar 

  • Cheryan M (1998) Ultrafiltration and microfiltration handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Choi MJ, Ruktanonchai U, Min SG, Chun JY, Soottitantawat A (2010) Physical characteristics of fish oil encapsulated by ß-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusion method. Food Chem 119(4):1694–1703

    Article  CAS  Google Scholar 

  • Chung YL, Ansari S, Estevez L, Hayrapetyan S, Giannelis EP, Lai HM (2010) Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr Polym 79(2):391e396

    Article  CAS  Google Scholar 

  • Coma V (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78(2):90–103

    Article  CAS  Google Scholar 

  • Coma V, Deschamps A, Martial-Gros A (2003) Bioactive packaging materials from edible chitosan polymer-antimicrobial assessment on dairy related contaminants. J Food Sci 68(9):2788–2792

    Article  CAS  Google Scholar 

  • Connolly (2008) Nanosensor developments in some European universities. Sens Rev 28(1):18–21. https://doi.org/10.1108/02602280810849974

    Article  Google Scholar 

  • Contreras MP, Avula RY, Singh RK (2009) Evaluation of nano zinc (ZnO) for surface enhancement of ATR–FTIR spectra of butter and spread. Food Bioprocess Technol 3(4):629–635. https://doi.org/10.1007/s11947-009-0237-4

    Article  CAS  Google Scholar 

  • CSIRO (2006) Farm factories: harvesting bioplastics. http://www.solve.csiro.au/0806/article6.htm. Accessed 20 June 2015

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry – recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46. ISSN 0924-2244, https://doi.org/10.1016/j.tifs.2011.10.006. (http://www.sciencedirect.com/science/article/pii/S0924224411002378)

  • Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, Vanage G, Patravale V (2010) Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci 99(12):4992–5010

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015a) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2015b) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19(3):700–708

    Google Scholar 

  • Dasgupta N, Ranjan S, Chakraborty AR, Ramalingam C, Shanker R, Kumar A (2016) Nanoagriculture and water quality management. In: Eric L (ed) Sustainable agriculture reviews: nanoscience in food and agriculture 1. Springer-Nature, Heidelberg. https://doi.org/10.1007/978-3-319-39303-2_1

    Google Scholar 

  • Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605

    Google Scholar 

  • daSilva AC, Deda DK, da Róz AL, Prado RA, Carvalho CC, Viviani V, Leite FL (2013) Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. Sensors (Basel) 13(2):1477–1489

    Article  CAS  Google Scholar 

  • Daufin G, Escudier JP, Carrère H, Bérot S, Fillaudeau L, Decloux M (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 79(2):89–102

    Article  CAS  Google Scholar 

  • deAzeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  • deBarros STD, Andrade CMG, Mendes ES, Peres L (2003) Study of fouling mechanism in pineapple juice clarification by ultrafiltration. J Membr Sci 215(1–2):213–224

    Article  CAS  Google Scholar 

  • dePaz E, Martin A, Estrella A, Rodriguez-Rojo S, Matias AA, Duarte CMM, Cocero MJ (2012) Formulation of β- carotene by precipitation from pressurized ethyl acetate-on water emulsions for application as natural colorant. Food Hydrocoll 26(1):17–27

    Article  CAS  Google Scholar 

  • Devlieghere F, Vermeiren L, Debevere J (2004) New preservation technologies: possibilities and limitations. Int Dairy J 14:273–285

    Article  Google Scholar 

  • Donofrio R (2006) Rapid safety testing of food nanomaterials using high content screening and zebrafish model. In: Nano and micro technologies in the food and health food industries conference, 25–26 October 2006 Amsterdam, The Netherlands

    Google Scholar 

  • Dube A, Ken N, Nicolazzo JA, Ian L (2010) Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem 122(3):662–667

    Article  CAS  Google Scholar 

  • Dunn J (2004) A mini revolution. Food Manufacture, London. http://www.foodmanufacture.co.uk/news/fullstory.php/aid/472/A%20mini%20revolution.htm. Accessed 23 Apr 2015

  • Durango AM, Soares NFF, Andrade NJ (2006) Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17:336–341

    Article  CAS  Google Scholar 

  • Echavarria AP, Torras C, Pagan J, Ibarz A (2011) Fruit juice processing and membrane technology application. Food Eng Rev 3(3–4):136–158

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11(4):742–748. ISSN 1466-8564, https://doi.org/10.1016/j.ifset.2010.06.003. (http://www.sciencedirect.com/science/article/pii/S1466856410000664) Keywords: Orange juice; Nanocomposite; Nano-ZnO; Nanosilver

  • Espitia PJP, Soares FFN, dosReis CJS, deAndrade NJ, Cruz SR, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464. https://doi.org/10.1007/s11947-012-0797-6

    Article  CAS  Google Scholar 

  • Eswaranandam S, Hettiarachhy NS, Johnson MG (2004) Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin incorporated soy protein film against Listeria monocytogenes, Eschericchia coli O157:H7, and Salmonella gaminara. J Food Sci 69(3):FMS79–FMS84

    CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  CAS  Google Scholar 

  • Fan W, Sun J, Chen Y, Qiu J, Zhang Y, Chi Y (2009) Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem 115:66–70

    Article  CAS  Google Scholar 

  • Fernandez A, Torres-Giner S, Lagaron JM (2009) Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll 23(5):1427–1432

    Article  CAS  Google Scholar 

  • Fernandez-Saiz P, Lagaron JM, Ocio MJ (2009) Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll 23:913–921

    Article  CAS  Google Scholar 

  • Ferreira I, Rocha S, Coelho M (2007) Encapsulation of antioxidants by spray-drying. Chem Eng Trans 11(9):713–717

    Google Scholar 

  • Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mater Sci Eng C 30:196–202

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney P, Cogan TM, Guinee TP (2004) Application of membrane technology to cheese production. Cheese: major cheese groups, 3rd edn, vol 2, pp 261–286

    Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86(2–3):243–252

    Article  CAS  Google Scholar 

  • Fu J, Park B, Siragusa G, Jones L, Tripp R, Zhao Y, Cho YJ (2008) An Au/Si hetero-nanorod based biosensor for Salmonella detection. Nanotechnology 19:1–7

    CAS  Google Scholar 

  • Fujii M, Xing Z, Huaqing X, Hiroki A, Koji T, Tatsuya I, Hidekazu A, Tetsuo S (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502

    Article  CAS  Google Scholar 

  • Gadang VP, Hettiarachchy NS, Johnson MG, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. J Food Sci 73(8):389–394

    Article  CAS  Google Scholar 

  • Galaverna G, DiSilvestro G, Cassano A, Sforza S, Dossena A, Drioli E, Marchelli R (2008) A new integrated membrane process for the production of concentrated blood orange juice: effect on bioactive compounds and antioxidant activity. Food Chem 106(3):1021–1030

    Article  CAS  Google Scholar 

  • García M, Martino M, Zaritizky N (2000) Lipid addition to improve barrier properties of edible starch-based films and coatings. J Food Sci 65(6):941–947

    Article  Google Scholar 

  • Garti N, Benichou A (2004) Recent developments in double emulsions for food applications. In: Friberg S, Larsson K, Sjoblom J (eds) Food emulsions, 4th edn. Marcel Dekker, New York, pp 353–412

    Google Scholar 

  • Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8(12):1034–1041

    Article  CAS  Google Scholar 

  • Golmohamadi A, Möller G, Powers J, Nindo C (2013) Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason Sonochem 20(5):1316–1323

    Article  CAS  Google Scholar 

  • Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–1567

    Article  CAS  Google Scholar 

  • Graveland-Bikker JF, deKruif CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17(5):196–203

    Article  CAS  Google Scholar 

  • Hadaruga NG, Hadaruga DI, Paunescu V, Tatu C, Ordodi VL, Bandur G, Lupea AX (2006) Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem 99(3):500–508

    Article  CAS  Google Scholar 

  • Han C, Zhao Y, Leonard SW, Traber MG (2004) Edible coating to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x Ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol 33:67–78

    Article  CAS  Google Scholar 

  • Han C, Lederer C, Mcdaniel M, Zhao Y (2005) Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings. J Food Sci 70(3):S172–S178

    Article  CAS  Google Scholar 

  • Heyang J, Fei X, Cuilan J, Yaping Z, Lin H (2009) Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin J Chem Eng 17(4):672–677

    Article  Google Scholar 

  • Horner SR, Mace CR, Rothberg LJ, Miller BL (2006) A proteomic biosensor for enteropathogenic E. coli. Biosens Bioelectron 21(8):1659–1663

    Article  CAS  Google Scholar 

  • Hosseini MH, Razavi SH, Mousavi MA (2009) Antimicrobial, physical and mechanical properties of chitosanbased films incorporated with thyme, clove and cinnamon essential oils. J Food Process Preserv 33:727–743

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechnol 4:165. https://doi.org/10.4172/2157-7439.1000165

    Article  CAS  Google Scholar 

  • Ingale AG, Goto S (2013) Identification of antigenic epitopes, homology modelling and structural characterization of capsule biosynthesis protein (CapA) from Compylobacter jejunni. Gene Ther Mol Biol 15:74–84

    Google Scholar 

  • Ingale AG (2014) Nanocomposite for surface coating. In: Soni S, Salhotra A, Suar M (eds) Handbook of research on diverse applications of nanotechnology in biomedicine, chemistry, and engineering. IGI Global, Hershey, pp 612–623

    Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007a) Encapsulation of nanopartricles of D-limonene by spray drying: role of emulsifiers and emulsifying agent. Dry Technol 25(6):1079–1089

    Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007b) Production of submicron emulsions by ultrasound and microfluidization techniques. J Food Eng 82(4):478–488

    Article  Google Scholar 

  • Jafari SM, Assadpoor E, Bhandari B, He Y (2008) Nanoparticle encapsulation of fish oil by spray drying. Food Res Int 41(2):172–183

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2016.1160363

  • Janardan S, Pothini S, Ragul G, Anjaneyulu U, Shivendu R, Dasgupta N, Ramalingam C, Swamiappan S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(iv) precursors. RSC Adv 6(71):66394–66406

    Google Scholar 

  • JasiÅ„ska M, Dmytrów I, Mituniewicz-MaÅ‚ek A, WÄ…sik K (2010) Cow feeding system versus milk utility for yoghurt manufacture. Acta Sci Pol Technol Aliment 9(2):189–199

    Google Scholar 

  • Jin T, Sun D, JY S, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74(1):M46–M52

    Article  CAS  Google Scholar 

  • Jin T, Gurtler JB (2011) Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. J Appl Microbiol 110:704–712. https://doi.org/10.1111/j.1365-2672.2011.04938.x

    Article  CAS  Google Scholar 

  • Jincheng W, Xiaoyu Z, Siahao C (2010) Preparation and properties of nanoencapsulated capsaicin by complex coacervation method. Chem Eng Commun 197(7):919–933

    Article  CAS  Google Scholar 

  • Jones PBC (2006) A nanotech revolution in agriculture and the food industry. Information Systems for Biotechnology, Blacksburg. Available from http://www.isb.vt.edu/articles/jun0605.htm. Accessed 19 Apr 2014

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  Google Scholar 

  • Kailasapathy K, Rybka S (1997) L. acidophilus and Bifidobacterium spp.—their therapeutic potential and survival in yoghurt. Aust J Dairy Technol 52:28–35

    Google Scholar 

  • Kaiser Helmut Consultancy (2004) Study: nanotechnology in food and food processing industry worldwide 2003–2006–2010–2015. Available at www.hkc22.com/Nanofood.html

  • Karbowiak T, Debeaufort D, Voilley A, Trystram G (2010) From macroscopic to molecular scale investigations of mass transfer of small molecules through edible packaging applied at interfaces of multiphase food products. Innovative Food Sci Emerg Technol 11:352–360

    Article  CAS  Google Scholar 

  • Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The use of ultrasonics for nanoemulsion preparation. Innovative Food Sci Emerg Technol 9(2):170–175

    Article  CAS  Google Scholar 

  • Kriegel C, Kit KM, McClements DJ, Weiss J (2009) Influence of surfactant type and concentration on electrospinning of chitosan–poly(ethylene oxide) blend nanofibers. Food Biophys 4:213–228. https://doi.org/10.1007/s11483-009-9119-6

    Article  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 11(3-9S2):71–88

    Article  Google Scholar 

  • Kristo E, Koutsoumanis KP, Biliaderis CG (2008) Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocoll 22:373–386

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B:Biointerf 80(2):184–192

    Article  CAS  Google Scholar 

  • Kwon SS, Nam YS, Lee JS, BS K, Han SH, Lee JY, Chang IS (2002) Preparation and characterization of coenzyme Q10-loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Colloids Surf A Physicochem Eng Asp 210:95–104

    Article  CAS  Google Scholar 

  • Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16(6):721–727

    Article  CAS  Google Scholar 

  • Leong WF, Lai OM, Long K, Yaakob B, Mana C, Misran M, Tan CP (2011) Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chem 129(1):77–83

    Article  CAS  Google Scholar 

  • Li Y, YT C, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889

    Article  CAS  Google Scholar 

  • Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat 64(4):504–509

    Article  CAS  Google Scholar 

  • Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Saf 6(3):60–75

    Article  CAS  Google Scholar 

  • Lin LY, Peng C, Wang H, Chuang C, Yu T, Chen K, Chiu W, Peng RY (2008) Acceleration of maturity of young sorghum (kaoliang) spirits by linking nanogold photocatalyzed process to conventional biological aging—a kinetic approach. Food Bioprocess Technol 1:234–245

    Article  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Luo Y, Zhang B, Whent M, Yu L, Wang Q (2011) Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf B: Biointerf 85(2):145–152

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5(34):26727–26733

    Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258

    Google Scholar 

  • Maftoonazad N, Ramaswamy HS, Marcotte M (2007) Moisture sorption behavior, and effect of moisture content and sorbitol on thermo-mechanical and barrier properties of pectin based edible films. Int J Food Eng 3(4):Article 10. Available at: http://www.bepress.com/ijfe/vol3/iss4/art10

    Article  Google Scholar 

  • Marques PT, Lima AMF, Bianco G, Laurindo JB, Borsali R, Le Meins JF, Soldi V (2006) Thermal properties and stability of cassava starch films crosslinked with tetraethylene glycol diacrylate. Polym Degrad Stab 91(4):726–732

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit B (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  • McLamore ES, Diggs A, Marzal PC, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016

    Article  CAS  Google Scholar 

  • Mitrakas GE, Koutsoumanis KP, Lazarides HN (2008) Impact of edible coating with or without anti-microbial agent on microbial growth during osmotic dehydration and refrigerated storage of a model plant material. Innovative Food Sci Emerg Technol 9:550–555

    Article  CAS  Google Scholar 

  • Mohammad AW, Ching YN, Ying PL, Gen HN (2012) Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food Bioprocess Technol 5:1143–1156

    Article  Google Scholar 

  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K (2007) The pro-inflammatory effects of low-toxicity lowsolubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615

    Article  CAS  Google Scholar 

  • Moresi M, Lo Presti S (2003) Present and potential applications of membrane processing in the food industry. Ital J Food Sci 15:3–34

    CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Mozafari RM, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres EZ, Singh H (2006) Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 86:2038e2045

    Article  CAS  Google Scholar 

  • Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin loaded PLGA nanosphere for cancer therapy. J Anticancer Res 29(10):3867–3875

    CAS  Google Scholar 

  • Nakagawa K, Surassmo S, Min SG, Choi MJ (2011) Dispersibility of freeze-dried poly(epsilon-caprolactone) nanocapsules stabilized by gelatin and the effect of freezing. J Food Eng 102(2):177–188

    Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39. https://doi.org/10.1007/s11947-010-0328-2

  • No HK, Meyres SP, Prinyawiwatkull W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:R87–R100

    Article  CAS  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(8):1–35

    Google Scholar 

  • Ojagh SM, Rezaei M, Razavi SH, Hosseini MH (2010) Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem 120:193–198

    Article  CAS  Google Scholar 

  • Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. LogForum 6(4):67–70

    Google Scholar 

  • Ozimek L, Pospiech E, Narine S (2010) Nanotechnologie in food and meat processing. Acta Sci Pol Technol Aliment 9(4):401–412

    Google Scholar 

  • Palchetti I, Mascini M (2008) Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem 391:455–471

    Article  CAS  Google Scholar 

  • Park SI, Daeschel MA, Zhao Y (2004) Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 69(8):215–221

    Article  Google Scholar 

  • Pintado CM, Ferreira MASS, Sousa I (2009) Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes. J Food Prot 72(9):1891–1896

    Article  Google Scholar 

  • Plexus Institute (2006) New nanotechnology food research—if it glows don’t eat it. http://www.plexusinstitute.org/news-events/show_news.cfm?id=164. Accessed 20 Oct 2016

  • Pouliot Y (2008) Membrane processes in dairy technology—from a simple idea to worldwide panacea. Int Dairy J 18(7):735–740

    Article  CAS  Google Scholar 

  • Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol 38:859–865

    Article  CAS  Google Scholar 

  • Preetz C, Rube A, Reiche I, Hause G, Mader K (2008) Preparation and characterization of biocompatible oil-loaded polyelectrolyte nanocapsules. Nanomedicine: nanotechnology. Biol Med 4(2):106–114

    CAS  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464. https://doi.org/10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Srivastava P, Ramalingam C (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481

    Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):72–96. https://doi.org/10.1080/19430871003684440

    Article  Google Scholar 

  • Renton A (2006) Welcome to the world of nanofoods. The Observer, London. http://observer.guardian.co.uk/foodmonthly/futureoffood/story/0,,1971266,00.html. Accessed 17 June 2015

  • Rhim J, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  CAS  Google Scholar 

  • Ribeiro C, Vicente AA, Teixeira JA, Miranda C (2007) Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol Technol 44:63–70

    Article  CAS  Google Scholar 

  • Ribeiro HS, Chua BS, Ichikawab S, Nakajima M (2008) Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocoll 22(1):12–17

    Article  CAS  Google Scholar 

  • Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (1999) Precision Agriculture: Changing the Face of Farming. www.ghccmsfcnasagove/precisionag/

  • Rivett J, Speer DV (2009) Oxygen scavenging film with good interplay adhesion. US Patent 75141512 (in English)

    Google Scholar 

  • Rodriguez A, Nerin C, Batlle R (2008) New cinnamon-based active paper packaging against Rhizopusstolonifer food spoilage. J Agric Food Chem 56(15):6364–6369

    Article  CAS  Google Scholar 

  • Rojas-Grau MA, Bustillos ARD, Friedman M, Henika PR, Martin-Belloso O, Mc Hugh TH (2006) Mechanical, barrier and antimicrobial properties of apple puree edible films containing plant essential oils. J Agric Food Chem 54:9262–9267

    Article  CAS  Google Scholar 

  • Roller S (2003) Introduction. In: Roller (ed) Natural antimicrobials for the minimal processing of foods. CRC Press, Boca Raton, pp 1–10

    Google Scholar 

  • Rosenberg M (1995) Current and future applications for membrane processes in the dairy industry. Trends Food Sci Technol 6(1):12–19

    Article  CAS  Google Scholar 

  • Ruiz-Altisenta M, Ruiz-Garciaa L, Moredaa GP, Lub R, Hernandez-Sancheza N, Correaa EC, Diezmaa B, Nicolaïc B, García-Ramosd J (2010) Sensors for product characterization and quality of specialty crops—a review. Comput Electron Agric 74:176–194

    Article  Google Scholar 

  • Samelis J, Sofos JN (2003) Organic acids. In: Roller (ed) Natural antimicrobials for the minimal processing of foods. CRC Press, Boca Raton

    Google Scholar 

  • Saxena A, Tripathi BP, Kumar M, Shahi VK (2009) Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interf Sci 145(1–2):1–22

    Article  CAS  Google Scholar 

  • Sebti I, Martial-Gros A, Carnet-Pantiez A, Grelier S, Coma V (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70(2):100–104

    Article  Google Scholar 

  • Semo E, Kesselman W, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll 21(6):936–942

    Article  CAS  Google Scholar 

  • Shen XL, JM W, Chen Y, Zhao G (2010) Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll 24:285–290

    Article  CAS  Google Scholar 

  • Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R (2017) Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip 31(5):863–879

    Google Scholar 

  • Silva HD, Cerqueira MA, Souza BWS, Ribeiro C, Avides MC, Quintas MAC, Coimbra JSR, Cunha MGC, Vicente AA (2011) Nanoemulsions of β-carotene using a highenergy emulsification–evaporation technique. J Food Eng 102(2):130–135

    Article  CAS  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    Article  CAS  Google Scholar 

  • Simões ADN, Tudela JA, Allende A, Puschmann R, Gil MI (2009) Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biol Technol 51:364–370

    Article  CAS  Google Scholar 

  • Siripireddy B, Mandal BK, Ranjan S, Dasgupta N, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. https://doi.org/10.1016/j.jphotobiol.2017.04.004

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  • Sowasod N, Charinpanitkul ST, Tanthapanichakoon W (2008) Nanoencapsulation of curcumin in biodegradable chitosan via multiple emulsion/solvent evaporation. Int J Pharm 347:93–101

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82e89

    Article  CAS  Google Scholar 

  • Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saos E, Chen H, Peterson CM, Friedl KE, McDade-Ngutter C, Hubbard V, Starke-Reed P, Miller N, Betz JM, Dwyer J, Milner J, Ross SA (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119e124

    Article  CAS  Google Scholar 

  • Stutzenberger FJ, Latour RA, Sun Y, Tzeng T (2007) Adhesin-specific nanoparticles and process for using same. US Patent No 20070184120 (in English)

    Google Scholar 

  • Surassamo S, Bejrapha P, Min SG, Choi MJ (2010) Effect of surfactants on capsicum oleoresin loaded nanocapsules formulated through emulsion diffusion method. Food Res Int 43(1):8–17

    Article  CAS  Google Scholar 

  • Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12:1–6

    Article  CAS  Google Scholar 

  • Tachaprutinun A, Udomsup T, Luadthong C, Wanichwecharungruang S (2009) Preventing the thermal degradation of astaxanthin through nanoencapsulation. Int J Pharm 374(1–2):119–124

    Article  CAS  Google Scholar 

  • Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168

    Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78

    Article  CAS  Google Scholar 

  • The U.S. Department of Agriculture (2015) Nanoscale Science and Engineering for Agriculture and Food Systems. http://nifa.usda.gov/program/food-science-technology-programs. Accessed on 15th July 2015

  • Tiyaboonchai W, Tungpradit W, Plianbangchang P (2007) Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm 337(1–2):299–306

    Article  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2014) Food safety for moms-to-be: medical professionals – foodborne pathogens. http://www.fda.gov/food/resourcesforyou/healtheducators/ucm091681.htm

  • Vargas M, Albors A, Chiralt A, González-Maríınez C (2006) Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biol Technol 41:164–171

    Article  CAS  Google Scholar 

  • Vargas M, Pastor C, Chiralt A, McClements DJ, González- Martínez C (2008) Recent advances in edible coatings for fresh and minimally processed fruits. Crit Rev Food Sci Nutr 48(6):496–511

    Article  CAS  Google Scholar 

  • Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769

    Article  CAS  Google Scholar 

  • Vashist SK (2007) A review of microcantilevers for sensing applications. J Nanotechnol online 3. https://doi.org/10.2240/azojono0115

  • Vicentini DS, AJr S, Laranjeira MCM (2010) Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C 30(4):503–508

    Article  CAS  Google Scholar 

  • Walia N, Dasgupta N, Ranjan S, Chen L, Ramalingam C (2017) Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635

    Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007a) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007b) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185

    Article  CAS  Google Scholar 

  • Wang JC, Chen SH, ZC X (2008a) Synthesis and properties research on the nanocapsulated capsaicin by simple coacervation method. J Dispers Sci Technol 29(5):687–695

    Article  CAS  Google Scholar 

  • Wang X, Jiang Y, Wang YW, Huang MT, Hoa CT, Huang Q (2008b) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108(2):419–424

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):107–116

    Article  CAS  Google Scholar 

  • Wenner M (2008) Magnifying taste: new chemicals trick the brain into eating less. Scientific American Magazine:96–99

    Google Scholar 

  • Xing F, Cheng G, Yi K, Ma L (2004) Nanoencapsulation of capsaicin by complex coacervation of gelatin, acacia, and tannins. J Appl Polym Sci 96(6):2225–2229

    Article  CAS  Google Scholar 

  • Xu YX, Kimb KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crop Prod 21:185–192

    Article  CAS  Google Scholar 

  • Yuan Y, Gao Y, Mao L, Zhao J (2008a) Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chem 107(3):1300–1306

    Article  CAS  Google Scholar 

  • Yuan Y, Yanxiang G, Zhao J, Mao L (2008b) Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41(1):61–68

    Article  CAS  Google Scholar 

  • Zhao X, Hilliard LR, Mechrey SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci 101:15027–15032

    Article  CAS  Google Scholar 

  • Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071

    Article  CAS  Google Scholar 

  • Zhao L, Xiong H, Peng H, Wang Q, Han D, Bai C, Liu Y, Shi S, Deng B (2011) PEG-coated lyophilized pro-liposomes: preparation, characterizations and in vitro release evaluation of vitamin E. Eur Food Res Technol 232(4):647–654

    Article  CAS  Google Scholar 

  • Ziani K, Fernandez Pan I, Royo M, Maté J (2009) Antifungal activity of films and solutions based on chitosan. Food Hydrocoll 23:2309–2314

    Article  CAS  Google Scholar 

  • Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll 23(4):1120–1126

    Article  CAS  Google Scholar 

  • Zivanovic S, Chi S, Draughon AF (2005) Antimicrobial activity of chitosan films enriched with essential oils. J Food Sci 70:M45–M51. https://doi.org/10.1111/j.1365-2621.2005.tb09045.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun G. Ingale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingale, A.G., Chaudhari, A.N. (2018). Nanotechnology in the Food Industry. In: Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds) Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-319-70166-0_3

Download citation

Publish with us

Policies and ethics