Skip to main content

Electrospun Cellulose and Nanocellulose Composites as a Biomaterial

  • Chapter
  • First Online:
Book cover Electrospun Biomaterials and Related Technologies

Abstract

The use of electrospun cellulose and nanocellulose composites is a promising novel biomaterial, with particular potential to serve as scaffold for bone tissue regeneration. Nanoscale fibers meet the challenge of mimicking important features of the bone extracellular matrix, and the incorporation of nanofillers based on nanocellulose could enhance mechano-physical properties of these scaffolds. This chapter describes and discusses the properties and applications of cellulose and its derivatives, as well as nanocellulose composites fabricated using the electrospinning technique. Along with a general introduction of cellulose and its main derivatives used in biomedical applications, examples of nanocellulose for mechanical reinforcement and corresponding applications are discussed. Likewise, this review suggests cellulose as a new class of biomaterial that might offer great promise in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sternberg K (2009) Current requirements for polymeric biomaterials in otolaryngology. GMS Curr Top Otorhinolaryngol Head Neck Surg 8:11. https://doi.org/10.3205/cto000063

    Google Scholar 

  2. Doremus RH (1992) Bioceramics. J Mater Sci 27(2):285–297. https://doi.org/10.1007/bf00543915s

    Article  CAS  Google Scholar 

  3. Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84(2). https://doi.org/10.1351/pac-rec-10-12-04

  4. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50. https://doi.org/10.1016/s1369-7021(06)71389-x

    Article  CAS  Google Scholar 

  5. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.TEB.2012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou XH, Wei DX, Ye HM, Zhang X, Meng X, Zhou Q (2016) Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Mater Sci Eng C 67:326–335. https://doi.org/10.1016/j.msec.2016.05.030

    Article  CAS  Google Scholar 

  7. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Feng J (2017) Preparation and properties of poly(lactic acid) fiber melt blown non-woven disordered mats. Mater Lett 189:180–183. https://doi.org/10.1016/j.matlet.2016.12.013

    Article  CAS  Google Scholar 

  9. Yuan R, Fu X, Wang X, Liu P, Wu L, Xu Y, Wang X, Wang Z (2006) Template synthesis of hollow metal oxide fibers with hierarchical architecture. Chem Mater 18(19):4700–4705. https://doi.org/10.1021/cm0609911

    Article  CAS  Google Scholar 

  10. Eimura H, Umeta Y, Tokoro H, Yoshio M, Ohkoshi S, Kato T (2016) Self-assembled fibers containing stable organic radical moieties: alignment and magnetic properties in liquid crystals. Chemistry 22(26):8872–8878. https://doi.org/10.1002/chem.201505213

    Article  CAS  PubMed  Google Scholar 

  11. Rezabeigi E, Sta M, Swain M, McDonald J, Demarquette NR, Drew RAL, Wood-Adams PM (2017) Electrospinning of porous polylactic acid fibers during nonsolvent induced phase separation. J Appl Polym Sci 134(20). https://doi.org/10.1002/app.44862

  12. Liao IC, Chew SY, Leong KW (2006) Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine 1(4):465–471. https://doi.org/10.2217/17435889.1.4.465

    Article  CAS  PubMed  Google Scholar 

  13. Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F (2016) Potential of electrospun nanofibers for biomedical and dental applications. Materials 9(2):73. https://doi.org/10.3390/ma9020073

    Article  PubMed Central  Google Scholar 

  14. Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:1–11. https://doi.org/10.1155/2013/495708

    Google Scholar 

  15. Kim PH, Cho JY (2016) Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep 49(1):26–36. https://doi.org/10.5483/BMBRep.2016.49.1.165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vashisth P, Pruthi V (2016) Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Mater Sci Eng C 67:304–312. https://doi.org/10.1016/j.msec.2016.05.049

    Article  CAS  Google Scholar 

  17. Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49(18):6143–6159. https://doi.org/10.1007/s10853-014-8308-y

    Article  CAS  Google Scholar 

  18. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391. https://doi.org/10.1080/15583720802022281

    Article  CAS  Google Scholar 

  19. Merkle VM, Zeng L, Slepian MJ, Wu X (2014) Core-shell nanofibers: integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers 101(4):336–346. https://doi.org/10.1002/bip.22367

    Article  CAS  PubMed  Google Scholar 

  20. Williams GR, Chatterton NP, Nazir T, D-G Y, Zhu L-M, Branford-White CJ (2012) Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv 3(4):515–533. https://doi.org/10.4155/tde.12.17

    Article  CAS  PubMed  Google Scholar 

  21. Fang J, Wang X, Li T (2011) Functional applications of electrospun nanofibers. doi:https://doi.org/10.5772/24998

  22. Biazar E (2016) Application of polymeric nanofibers in medical designs, part IV: drug and biological materials delivery. Int J Polym Mater Polym Biomater 66(2):53–60. https://doi.org/10.1080/00914037.2016.1180621

    Article  CAS  Google Scholar 

  23. Shahabadi SMS, Kheradmand A, Montazeri V, Ziaee H (2015) Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polym Sci Ser A 57(2):155–167. https://doi.org/10.1134/s0965545x15020157

    Article  CAS  Google Scholar 

  24. Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 29(3):663–668. https://doi.org/10.1016/j.msec.2008.10.037

    Article  CAS  Google Scholar 

  25. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  26. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. https://doi.org/10.1016/s0032-3861(99)00068-3

    Article  CAS  Google Scholar 

  27. Tang X-P, Na S, Lan X, Liu H-Y (2014) Effect of flow rate on diameter of electrospun nanoporous fibers. Therm Sci 18:1447–1449. https://doi.org/10.2298/TSCI1405447T

    Article  Google Scholar 

  28. AK S, Sanpui P, Chatterjee K (2014) Fabrication of poly(Caprolactone) nanofibers by electrospinning. J Polym Biopolym Phys Chem 2(4):62–66

    Google Scholar 

  29. Abdul Khalil HPS, Davoudpour Y, Bhat AH, Rosamah E, Tahir PM (2015) Electrospun cellulose composite nanofibers. In: Handbook of polymer nanocomposites. processing, performance and application. Springer, Berlin, pp 191–227. https://doi.org/10.1007/978-3-642-45232-1_61

    Google Scholar 

  30. Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115(5):3130–3136. https://doi.org/10.1002/app.31396

    Article  CAS  Google Scholar 

  31. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(10):3372–3384. https://doi.org/10.1016/j.polymer.2005.03.011

    Article  CAS  Google Scholar 

  32. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46(16):6128–6134. https://doi.org/10.1016/j.polymer.2005.05.068

    Article  CAS  Google Scholar 

  33. Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, de Arroyo Garcia L, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont PS, Kitney R, Reeve B, Ellis T (2016) Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci U S A 113(24):E3431–E3440. https://doi.org/10.1073/pnas.1522985113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557. https://doi.org/10.1016/j.tim.2015.05.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.01.112

  36. Lenardon MD, Munro CA, Gow NA (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13(4):416–423. https://doi.org/10.1016/j.mib.2010.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1. Wiley, Weinheim. https://doi.org/10.1002/3527601929

    Book  Google Scholar 

  38. Brown RM, Saxena IM (2007) Cellulose: molecular and structural biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1

    Book  Google Scholar 

  39. Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131(31):11117–11123. https://doi.org/10.1021/ja903322w

    Article  CAS  PubMed  Google Scholar 

  40. Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2(30):4767. https://doi.org/10.1039/c4tb00431k

    Article  CAS  Google Scholar 

  41. French AD (2012) Combining computational chemistry and crystallography for a better understanding of the structure of cellulose. Adv Carbohydr Chem Biochem 67:19–93. https://doi.org/10.1016/B978-0-12-396527-1.00002-4

    Article  CAS  PubMed  Google Scholar 

  42. Imberty A, Perez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27(8):1205–1221. https://doi.org/10.1002/bip.360270803

    Article  CAS  Google Scholar 

  43. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. https://doi.org/10.1021/cr900339w

    Article  CAS  PubMed  Google Scholar 

  44. Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29(4):741–764. https://doi.org/10.1016/j.femsre.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  45. Ponni R, Kontturi E, Vuorinen T (2013) Accessibility of cellulose: structural changes and their reversibility in aqueous media. Carbohydr Polym 93(2):424–429. https://doi.org/10.1016/j.carbpol.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  46. Müller M, Czihak C, Schober H, Nishiyama Y, Vogl G (2000) All disordered regions of native cellulose show common low-frequency dynamics. Macromolecules 33(5):1834–1840. https://doi.org/10.1021/ma991227l

    Article  CAS  Google Scholar 

  47. Gümüskaya E, Usta M, Kirci H (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym Degrad Stab 81(3):559–564. https://doi.org/10.1016/s0141-3910(03)00157-5

    Article  CAS  Google Scholar 

  48. Gross AS, Bell AT, Chu JW (2011) Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride. J Phys Chem B 115(46):13433–13440. https://doi.org/10.1021/jp202415v

    Article  CAS  PubMed  Google Scholar 

  49. Kovalenko VI (2010) Crystalline cellulose: structure and hydrogen bonds. Russ Chem Rev 79(3):231–241. https://doi.org/10.1070/RC2010v079n03ABEH004065

    Article  CAS  Google Scholar 

  50. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. https://doi.org/10.1021/ja0257319

    Article  CAS  PubMed  Google Scholar 

  51. Wang T, Yang H, Kubicki JD, Hong M (2016) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromolecules 17(6):2210–2222. https://doi.org/10.1021/acs.biomac.6b00441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  PubMed  Google Scholar 

  53. Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476. https://doi.org/10.1104/pp.112.206359

    Article  CAS  PubMed  Google Scholar 

  54. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  55. Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstrom T, Sampson WW, Eichhorn SJ (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349. https://doi.org/10.1021/bm300042t

    Article  CAS  PubMed  Google Scholar 

  56. Herdocia-Lluberes CS, Laboy-López S, Morales S, Gonzalez-Robles TJ, González-Feliciano JA, Nicolau E (2015) Evaluation of synthesized nanohydroxyapatite-nanocellulose composites as biocompatible scaffolds for applications in bone tissue engineering. J Nanomater 2015:9. https://doi.org/10.1155/2015/310935

    Article  CAS  Google Scholar 

  57. Hanif Z, Ahmed FR, Shin SW, Kim YK, Um SH (2014) Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf B Biointerfaces 119:162–165. https://doi.org/10.1016/j.colsurfb.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  58. Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11(1):25–33. https://doi.org/10.1089/ind.2014.0024

    Article  CAS  Google Scholar 

  59. Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775. https://doi.org/10.1007/s10570-013-9948-9

    Article  CAS  Google Scholar 

  60. Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18(3):775–786. https://doi.org/10.1007/s10570-011-9501-7

    Article  CAS  Google Scholar 

  61. Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2(7):1691–1698. https://doi.org/10.1021/sc500153k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12. https://doi.org/10.1021/bm060620d

    Article  CAS  PubMed  Google Scholar 

  63. Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13(1–2):24–30. https://doi.org/10.1016/s1369-7021(10)70014-6

    Article  CAS  Google Scholar 

  64. Degree of Substitution (2011). doi:https://doi.org/10.1002/0471440264.pst445

  65. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779. https://doi.org/10.1039/c4nr01756k

    Article  CAS  PubMed  Google Scholar 

  66. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  PubMed  Google Scholar 

  67. Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29(5):1635–1642. https://doi.org/10.1016/j.msec.2009.01.006

    Article  CAS  Google Scholar 

  68. Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64. https://doi.org/10.1016/j.carbpol.2014.02.034

    Article  CAS  PubMed  Google Scholar 

  69. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542. https://doi.org/10.1039/c3cs60204d

    Article  CAS  PubMed  Google Scholar 

  70. Svachova V, Vojtova L, Pavlinak D, Vojtek L, Sedlakova V, Hyrsl P, Alberti M, Jaros J, Hampl A, Jancar J (2016) Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Mater Sci Eng C 67:493–501. https://doi.org/10.1016/j.msec.2016.05.059

    Article  CAS  Google Scholar 

  71. Weishaupt R, Siqueira G, Schubert M, Tingaut P, Maniura-Weber K, Zimmermann T, Thony-Meyer L, Faccio G, Ihssen J (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromolecules 16(11):3640–3650. https://doi.org/10.1021/acs.biomac.5b01100

    Article  CAS  PubMed  Google Scholar 

  72. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  73. Shokri J, Adibki K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Cellulose - medical, pharmaceutical and electronic applications. InTech. doi:https://doi.org/10.5772/55178

  74. Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20(2):741–749. https://doi.org/10.1007/s10570-013-9865-y

    Article  CAS  Google Scholar 

  75. Shaabani A, Rahmati A, Badri Z (2008) Sulfonated cellulose and starch: new biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal Commun 9(1):13–16. https://doi.org/10.1016/j.catcom.2007.05.021

    Article  CAS  Google Scholar 

  76. Bhatt N, Gupta PK, Naithani S (2008) Preparation of cellulose sulfate from α-cellulose isolated from Lantana camara by the direct esterification method. J Appl Polym Sci 108(5):2895–2901. https://doi.org/10.1002/app.27773

    Article  CAS  Google Scholar 

  77. Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28(6):909–921. https://doi.org/10.1177/0885328213486527

    Article  PubMed  CAS  Google Scholar 

  78. Rodríguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19(5):1583–1598. https://doi.org/10.1007/s10570-012-9734-0

    Article  CAS  Google Scholar 

  79. Huang R, Li W, Lv X, Lei Z, Bian Y, Deng H, Wang H, Li J, Li X (2015) Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75. https://doi.org/10.1016/j.biomaterials.2015.02.076

    Article  PubMed  CAS  Google Scholar 

  80. Rodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681–689. https://doi.org/10.1021/am100972r

    Article  CAS  PubMed  Google Scholar 

  81. Huang Y, Miao Y-E, Liu T (2014) Electrospun fibrous membranes for efficient heavy metal removal. J Appl Polym Sci 131(19):n/a–n/a. https://doi.org/10.1002/app.40864

    Article  CAS  Google Scholar 

  82. Wang S-D, Ma Q, Liu H, Wang K, Ling L-Z, Zhang K-Q (2015) Robust electrospinning cellulose acetate@TiO2ultrafine fibers for dyeing water treatment by photocatalytic reactions. RSC Adv 5(51):40521–40530. https://doi.org/10.1039/c5ra03797b

    Article  CAS  Google Scholar 

  83. Arslan O, Aytac Z, Uyar T (2016) Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl Mater Interfaces 8(30):19747–19754. https://doi.org/10.1021/acsami.6b05429

    Article  CAS  PubMed  Google Scholar 

  84. Su J, Raghuwanshi VS, Raverty W, Garvey CJ, Holden PJ, Gillon M, Holt SA, Tabor R, Batchelor W, Garnier G (2016) Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules. Sci Rep 6:36119. https://doi.org/10.1038/srep36119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Volpi N, Maccari F (2006) Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B 834(1–2):1–13. https://doi.org/10.1016/j.jchromb.2006.02.049

    Article  CAS  Google Scholar 

  86. Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207. https://doi.org/10.1016/j.carbpol.2014.06.086

    Article  CAS  PubMed  Google Scholar 

  87. Schulze P, Gericke M, Scholz F, Wondraczek H, Miethe P, Heinze T (2016) Incorporation of hydrophobic dyes within cellulose acetate and acetate phthalate based nanoparticles. Macromol Chem Phys 217(16):1823–1833. https://doi.org/10.1002/macp.201600160

    Article  CAS  Google Scholar 

  88. Alinat E, Delaunay N, Archer X, Mallet JM, Gareil P (2015) A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. J Hazard Mater 286:92–99. https://doi.org/10.1016/j.jhazmat.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  89. Fernandez de la Ossa MA, Ortega-Ojeda F, Garcia-Ruiz C (2013) Discrimination of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis. J Chromatogr A 1302:197–204. https://doi.org/10.1016/j.chroma.2013.06.034

    Article  CAS  PubMed  Google Scholar 

  90. Mu X, Yu H, Zhang C, Chen X, Cheng Z, Bai R, Wu X, Yu Q, Wu C, Diao Y (2016) Nano-porous nitrocellulose liquid bandage modulates cell and cytokine response and accelerates cutaneous wound healing in a mouse model. Carbohydr Polym 136:618–629. https://doi.org/10.1016/j.carbpol.2015.08.070

    Article  CAS  PubMed  Google Scholar 

  91. Yan S, Jian G, Zachariah MR (2012) Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl Mater Interfaces 4(12):6432–6435. https://doi.org/10.1021/am3021125

    Article  CAS  PubMed  Google Scholar 

  92. Nartker S, Drzal LT (2010) Electrospun cellulose nitrate nanofibers. J Nanosci Nanotechnol 10(9):5810–5813. https://doi.org/10.1166/jnn.2010.2447

    Article  CAS  PubMed  Google Scholar 

  93. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B (2009) Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater 168(2–3):1134–1139. https://doi.org/10.1016/j.jhazmat.2009.02.146

    Article  CAS  PubMed  Google Scholar 

  94. Budtova T, Navard P (2015) Cellulose in NaOH–water based solvents: a review. Cellulose 23(1):5–55. https://doi.org/10.1007/s10570-015-0779-8

    Article  CAS  Google Scholar 

  95. Pakulska MM, Vulic K, Shoichet MS (2013) Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J Control Release 171(1):11–16. https://doi.org/10.1016/j.jconrel.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  96. Pakulska MM, Vulic K, Tam RY, Shoichet MS (2015) Hybrid crosslinked methylcellulose hydrogel: a predictable and tunable platform for local drug delivery. Adv Mater 27(34):5002–5008. https://doi.org/10.1002/adma.201502767

    Article  CAS  PubMed  Google Scholar 

  97. Park CH, Jeong L, Cho D, Kwon OH, Park WH (2013) Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Carbohydr Polym 98(1):1179–1185. https://doi.org/10.1016/j.carbpol.2013.07.028

    Article  CAS  PubMed  Google Scholar 

  98. Huang CC, Liao ZX, Chen DY, Hsiao CW, Chang Y, Sung HW (2014) Injectable cell constructs fabricated via culture on a thermoresponsive methylcellulose hydrogel system for the treatment of ischemic diseases. Adv Healthc Mater 3(8):1133–1148. https://doi.org/10.1002/adhm.201300605

    Article  CAS  PubMed  Google Scholar 

  99. Chahal S, Jahir Hussain FS, Kumar A, Yusoff MM, Bahari Abdull Rasad MS (2015) Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering. RSC Adv 5(37):29497–29504. https://doi.org/10.1039/c4ra17087c

    Article  CAS  Google Scholar 

  100. Singh BN, Panda NN, Mund R, Pramanik K (2016) Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym 151:335–347. https://doi.org/10.1016/j.carbpol.2016.05.088

    Article  CAS  PubMed  Google Scholar 

  101. Prasanth R, Nageswaran S, Thakur VK, Ahn J-H (2014) Electrospinning of cellulose: process and applications. In: Nanocellulose polymer nanocomposites. Wiley, Hoboken, pp 311–340. https://doi.org/10.1002/9781118872246.ch12

    Google Scholar 

  102. Xu S, Zhang J, He A, Li J, Zhang H, Han CC (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49(12):2911–2917. https://doi.org/10.1016/j.polymer.2008.04.046

    Article  CAS  Google Scholar 

  103. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032. https://doi.org/10.1016/j.addr.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  104. Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47(14):5097–5107. https://doi.org/10.1016/j.polymer.2006.05.033

    Article  CAS  Google Scholar 

  105. Khil MS, Kim HY, Kang YS, Bang HJ, Lee DR, Doo JK (2013) Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior. Macromol Res 13(1):62–67. https://doi.org/10.1007/bf03219016

    Article  Google Scholar 

  106. Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98(4):1855–1859. https://doi.org/10.1002/app.22123

    Article  CAS  Google Scholar 

  107. Frey M, Joo Y, Kim C-W (2003) New solvents for cellulose electrospinning and preliminary nanofiber spinning results. Polym Prepr-Am 44(2):168–169

    CAS  Google Scholar 

  108. Frey M, Song H (2003) Cellulose fibers formed by electrospinning from solution. In: Abstracts of papers of the American Chemical Society. ACS, Washington, DC, pp U288–U288

    Google Scholar 

  109. Kim C-W, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci B Polym Phys 43(13):1673–1683. https://doi.org/10.1002/polb.20475

    Article  CAS  Google Scholar 

  110. Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482. https://doi.org/10.1002/app.24912

    Article  CAS  Google Scholar 

  111. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418. https://doi.org/10.1021/bm050837s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chanzy H, Nawrot S, Peguy A, Smith P, Chevalier J (1982) Phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water, and cellulose. J Polym Sci Polym Phys Ed 20(10):1909–1924. https://doi.org/10.1002/pol.1982.180201014

    Article  CAS  Google Scholar 

  113. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Mater Lett 62(4-5):759–762. https://doi.org/10.1016/j.matlet.2007.06.059

    Article  CAS  Google Scholar 

  114. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002

    Article  CAS  Google Scholar 

  115. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412. https://doi.org/10.1016/s0032-3861(02)00275-6

    Article  CAS  Google Scholar 

  116. Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian J Chem. doi:https://doi.org/10.1016/j.arabjc.2015.11.015

  117. Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118(31):9507–9514. https://doi.org/10.1021/jp506013c

    Article  CAS  PubMed  Google Scholar 

  118. El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. In: Advances in polymer science, vol 186. Springer, Berlin, pp 103–149. https://doi.org/10.1007/b136818

    Google Scholar 

  119. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115(13):6357–6426. https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  120. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117(10):7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562

    Article  CAS  PubMed  Google Scholar 

  121. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728. https://doi.org/10.1021/cr9001947

    Article  CAS  PubMed  Google Scholar 

  122. Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13(11):3173. https://doi.org/10.1039/c1gc15930e

    Article  CAS  Google Scholar 

  123. Meli L, Miao J, Dordick JS, Linhardt RJ (2010) Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chem 12(11):1883. https://doi.org/10.1039/c0gc00283f

    Article  CAS  Google Scholar 

  124. Quan S-L, Kang S-G, Chin I-J (2009) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230. https://doi.org/10.1007/s10570-009-9386-x

    Article  CAS  Google Scholar 

  125. Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. Macromol Symp 262(1):89–96. https://doi.org/10.1002/masy.200850210

    Article  CAS  Google Scholar 

  126. Konwarh R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31(4):421–437. https://doi.org/10.1016/j.biotechadv.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  127. Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40(18):2119–2129. https://doi.org/10.1002/polb.10261

    Article  CAS  Google Scholar 

  128. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575. https://doi.org/10.1007/s10570-007-9113-4

    Article  CAS  Google Scholar 

  129. Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci B Polym Phys 42(1):5–11. https://doi.org/10.1002/polb.10668

    Article  CAS  Google Scholar 

  130. Han D, Gouma PI (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine 2(1):37–41. https://doi.org/10.1016/j.nano.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  131. Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19(2):411–424. https://doi.org/10.1007/s10570-011-9647-3

    Article  CAS  Google Scholar 

  132. Liu H, Tang C (2006) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39(1):65–72. https://doi.org/10.1295/polymj.PJ2006117

    Article  CAS  Google Scholar 

  133. Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 265(1-2):115–123. https://doi.org/10.1016/j.memsci.2005.04.044

    Article  CAS  Google Scholar 

  134. Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membr Sci 319(1-2):23–28. https://doi.org/10.1016/j.memsci.2008.03.045

    Article  CAS  Google Scholar 

  135. Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24-25):2998–3001. https://doi.org/10.1016/j.matlet.2005.05.003

    Article  CAS  Google Scholar 

  136. Cao X, Sun S, Peng X, Zhong L, Sun R, Jiang D (2013) Rapid synthesis of cellulose esters by transesterification of cellulose with vinyl esters under the catalysis of NaOH or KOH in DMSO. J Agric Food Chem 61(10):2489–2495. https://doi.org/10.1021/jf3055104

    Article  CAS  PubMed  Google Scholar 

  137. Brydson J (1999) Plastic materials. Butterworth Heinemann, Oxford

    Google Scholar 

  138. Atila D, Keskin D, Tezcaner A (2015) Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr Polym 133:251–261. https://doi.org/10.1016/j.carbpol.2015.06.109

    Article  CAS  PubMed  Google Scholar 

  139. Atila D, Keskin D, Tezcaner A (2016) Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater Sci Eng C 69:1103–1115. https://doi.org/10.1016/j.msec.2016.08.015

    Article  CAS  Google Scholar 

  140. Entcheva E, Bien H, Yin L, Chung CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25(26):5753–5762. https://doi.org/10.1016/j.biomaterials.2004.01.024

    Article  CAS  PubMed  Google Scholar 

  141. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym 102:884–892. https://doi.org/10.1016/j.carbpol.2013.10.070

    Article  CAS  PubMed  Google Scholar 

  142. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  143. Czaja W, Kyryliouk D, DePaula CA, Buechter DD (2014) Oxidation of γ-irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci 131(6):n/a–n/a. https://doi.org/10.1002/app.39995

    Article  CAS  Google Scholar 

  144. Lopes VR, Sanchez-Martinez C, Stromme M, Ferraz N (2017) In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part Fibre Toxicol 14(1):1. https://doi.org/10.1186/s12989-016-0182-0

    Article  PubMed  PubMed Central  Google Scholar 

  145. Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Polysaccharide materials: performance by design, ACS symposium series, vol 1017. American Chemical Society, Washington DC, pp 81–91. https://doi.org/10.1021/bk-2009-1017.ch004

    Chapter  Google Scholar 

  146. Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2(3):1241006. https://doi.org/10.1142/s1793984412410061

    Article  CAS  Google Scholar 

  147. Herdocia-Lluberes CS, Laboy-López S, Morales S, Gonzalez-Robles TJ, González-Feliciano JA, Nicolau E (2015) Evaluation of synthesized nanohydroxyapatite-nanocellulose composites as biocompatible scaffolds for applications in bone tissue engineering. J Nanomater 2015:9. https://doi.org/10.1155/2015/310935

    Article  CAS  Google Scholar 

  148. Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In: Cellulose - fundamental aspects and current trends. InTech, Rijeka. https://doi.org/10.5772/61334

    Google Scholar 

  149. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 1(6):321–330. https://doi.org/10.2147/IJN.S16749

    Google Scholar 

  150. Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2(10):2924–2932. https://doi.org/10.1021/am1006222

    Article  CAS  PubMed  Google Scholar 

  151. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129(45):13810–13811. https://doi.org/10.1021/ja076196l

    Article  CAS  PubMed  Google Scholar 

  152. Liebert T, Kostag M, Wotschadlo J, Heinze T (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392. https://doi.org/10.1002/mabi.201100113

    Article  CAS  PubMed  Google Scholar 

  153. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  154. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 3:18496. https://doi.org/10.3402/nano.v3i0.18496

    Article  CAS  Google Scholar 

  155. Ledermann JA, Canevari S, Thigpen T (2015) Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol 26(10):2034–2043. https://doi.org/10.1093/annonc/mdv250

    Article  CAS  PubMed  Google Scholar 

  156. Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15(5):1560–1567. https://doi.org/10.1021/bm401593n

    Article  CAS  PubMed  Google Scholar 

  157. Colacino KR, Arena CB, Dong S, Roman M, Davalos RV, Lee YW (2015) Folate conjugated cellulose nanocrystals potentiate irreversible electroporation-induced cytotoxicity for the selective treatment of cancer cells. Technol Cancer Res Treat 14(6):757–766. https://doi.org/10.7785/tcrt.2012.500428

    Article  CAS  PubMed  Google Scholar 

  158. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321–330. https://doi.org/10.2147/IJN.S16749

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B Biointerfaces 85(2):270–279. https://doi.org/10.1016/j.colsurfb.2011.02.039

    Article  CAS  PubMed  Google Scholar 

  160. Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764. https://doi.org/10.1007/s10570-013-9954-y

    Article  CAS  Google Scholar 

  161. Cacicedo ML, Leon IE, Gonzalez JS, Porto LM, Alvarez VA, Castro GR (2016) Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf B Biointerfaces 140:421–429. https://doi.org/10.1016/j.colsurfb.2016.01.007

    Article  CAS  Google Scholar 

  162. Ndong Ntoutoume GM, Granet R, Mbakidi JP, Bregier F, Leger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V (2016) Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett 26(3):941–945. https://doi.org/10.1016/j.bmcl.2015.12.060

    Article  CAS  PubMed  Google Scholar 

  163. Anirudhan TS, Rejeena SR (2014) Aminatedβ-cyclodextrin-modified-carboxylated magnetic cobalt/nanocellulose composite for tumor-targeted gene delivery. J Appl Chem 2014:10. https://doi.org/10.1155/2014/184153

    Article  CAS  Google Scholar 

  164. Hu H, Yuan W, Liu FS, Cheng G, FJ X, Ma J (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7(16):8942–8951. https://doi.org/10.1021/acsami.5b02432

    Article  CAS  PubMed  Google Scholar 

  165. Saikrishnan D, Goyal M, Rossiter S, Kukol A (2014) A cellulose-based bioassay for the colorimetric detection of pathogen DNA. Anal Bioanal Chem 406(30):7887–7898. https://doi.org/10.1007/s00216-014-8257-y

    Article  CAS  PubMed  Google Scholar 

  166. Fontenot KR, Edwards JV, Haldane D, Graves E, Citron MS, Prevost NT, French AD, Condon BD (2016) Human neutrophil elastase detection with fluorescent peptide sensors conjugated to cellulosic and nanocellulosic materials: part II, structure/function analysis. Cellulose 23(2):1297–1309. https://doi.org/10.1007/s10570-016-0873-6

    Article  CAS  Google Scholar 

  167. Vincent Edwards J, Prevost N, French A, Concha M, DeLucca A, Wu Q (2013) Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity. Sci Res 5:20–28. https://doi.org/10.4236/eng.2013.59A003

    Google Scholar 

  168. Vincent Edwards J, Fontenot KR, Prevost NT, Haldane D, Pircher N, Liebner F, French A, Condon BD (2016) Protease biosensors based on peptide-nanocellulose conjugates: from molecular design to dressing interface. Int J Med Nano Res 3(2). 10.23937/2378-3664/1410018

  169. Weishaupt R, Siqueira G, Schubert M, Kämpf MM, Zimmermann T, Maniura-Weber K, Faccio G (2017) A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Adv Funct Mater 27(4):1604291. https://doi.org/10.1002/adfm.201604291

    Article  CAS  Google Scholar 

  170. Li Y, Jiang H, Zheng W, Gong N, Chen L, Jiang X, Yang G (2015) Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B 3(17):3498–3507. https://doi.org/10.1039/c4tb01819b

    Article  CAS  Google Scholar 

  171. Li Y, Wang S, Huang R, Huang Z, Hu B, Zheng W, Yang G, Jiang X (2015) Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 16(3):780–789. https://doi.org/10.1021/bm501680s

    Article  CAS  PubMed  Google Scholar 

  172. Fu L, Zhou P, Zhang S, Yang G (2013) Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng 33(5):2995–3000. https://doi.org/10.1016/j.msec.2013.03.026

    Article  CAS  Google Scholar 

  173. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose–the natural power to heal wounds. Biomaterials 27(2):145–151. https://doi.org/10.1016/j.biomaterials.2005.07.035

    Article  CAS  PubMed  Google Scholar 

  174. Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-Lucea C, Sanz-Garcia A, Vuola J, Valtonen J, Tammela P, Makitie A, Luukko K, Yliperttula M, Kavola H (2016) Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 244(Pt B):292–301. https://doi.org/10.1016/j.jconrel.2016.07.053

    Article  CAS  PubMed  Google Scholar 

  175. Park SU, Lee BK, Kim MS, Park KK, Sung WJ, Kim HY, Han DG, Shim JS, Lee YJ, Kim SH, Kim IH, Park DH (2014) The possibility of microbial cellulose for dressing and scaffold materials. Int Wound J 11(1):35–43. https://doi.org/10.1111/j.1742-481X.2012.01035.x

    Article  PubMed  Google Scholar 

  176. Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25(1):253–264. https://doi.org/10.1007/bf02920250

    Article  PubMed  Google Scholar 

  177. Muangman P, Opasanon S, Suwanchot S, Thangthed O (2011) Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J Am Col Certif Wound Spec 3(1):16–19. https://doi.org/10.1016/j.jcws.2011.04.001

    PubMed  PubMed Central  Google Scholar 

  178. Sundberg J, Gotherstrom C, Gatenholm P (2015) Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering. Biomed Mater Eng 25(1):39–52. https://doi.org/10.3233/BME-141245

    CAS  PubMed  Google Scholar 

  179. Muller FA, Muller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963. https://doi.org/10.1016/j.biomaterials.2006.02.031

    Article  PubMed  CAS  Google Scholar 

  180. He X, Cheng L, Zhang X, Xiao Q, Zhang W, Lu C (2015) Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydr Polym 115:485–493. https://doi.org/10.1016/j.carbpol.2014.08.114

    Article  CAS  PubMed  Google Scholar 

  181. Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C (2017) Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 97:568–573. https://doi.org/10.1016/j.ijbiomac.2016.12.091

    Article  CAS  PubMed  Google Scholar 

  182. Huang C, Tang Y, Liu X, Sutti A, Ke Q, Mo X, Wang X, Morsi Y, Lin T (2011) Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter 7(22):10812. https://doi.org/10.1039/c1sm06430d

    Article  CAS  Google Scholar 

  183. Min SK, Jung SM, JH J, Kwon YS, Yoon GH, Shin HS (2015) Regulation of astrocyte activity via control over stiffness of cellulose acetate electrospun nanofiber. In Vitro Cell Dev Biol Anim 51(9):933–940. https://doi.org/10.1007/s11626-015-9925-8

    Article  CAS  PubMed  Google Scholar 

  184. Chainoglou E, Karagkiozaki V, Choli-Papadopoulou T, Mavromanolis C, Laskarakis A, Logothetidis S (2016) Development of biofunctionalized cellulose acetate nanoscaffolds for heart valve tissue engineering. World J Nano Sci Eng 6(4):129–152. https://doi.org/10.4236/wjnse.2016.64013

    Article  Google Scholar 

  185. Mohan T, Hribernik S, Kargl R, Stana-Kleinschek K (2015) Nanocellulosic materials in tissue engineering applications. In: Cellulose - fundamental aspects and current trends. InTech, Rijeka. https://doi.org/10.5772/61344

    Google Scholar 

  186. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95. https://doi.org/10.1016/s1369-7021(11)70058-x

    Article  CAS  Google Scholar 

  187. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76(2):431–438. https://doi.org/10.1002/jbm.a.30570

    Article  PubMed  CAS  Google Scholar 

  188. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33(28):6644–6649. https://doi.org/10.1016/j.biomaterials.2012.05.071

    Article  CAS  PubMed  Google Scholar 

  189. Modulevsky DJ, Cuerrier CM, Pelling AE (2016) Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS One 11(6):e0157894. https://doi.org/10.1371/journal.pone.0157894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362. https://doi.org/10.1155/2011/175362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. AMS 9(3):527–534. https://doi.org/10.5114/aoms.2013.33433

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Nicolau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santillán-Mercado, J.A., Rodríguez-Avilés, Y.G., Bello, S.A., González-Feliciano, J.A., Nicolau, E. (2017). Electrospun Cellulose and Nanocellulose Composites as a Biomaterial. In: Almodovar, J. (eds) Electrospun Biomaterials and Related Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70049-6_3

Download citation

Publish with us

Policies and ethics