Skip to main content

Silicon Nanocrystal-Based Organic/Inorganic Hybrid Solar Cells

  • Chapter
  • First Online:
Advances in Silicon Solar Cells

Abstract

Comparing to bulk silicon, silicon nanocrystals (Si NCs) possess particularly interesting properties and have further broadened applications in optics, microelectronics, photovoltaics, and other fields. In this chapter, novel fabrication process of Si NCs by using a plasma will be introduced firstly; next, some basic properties of resulted Si NCs, such as crystallinity, optical, and electrical properties, have been studied extensively; then, its application in organic/inorganic hybrid solar cells has been explored; structure design, device fabrication, and performance characterization of Si NC-based organic/inorganic hybrid solar cells have been described finally. In addition, effects of Si NCs on device performance are also discussed extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.K. Leutwyler, S.L. Bürgi, H. Burgl, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)

    Article  Google Scholar 

  2. A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226–13239 (1996)

    Article  Google Scholar 

  3. F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33(11), 773–780 (2000)

    Article  Google Scholar 

  4. W.E. Buhro, V.L. Colvin, Semiconductor nanocrystals: shape matters. Nat. Mater. 2(3), 138–139 (2003)

    Article  Google Scholar 

  5. D.V. Melnikov, J.R. Chelikowsky, Quantum confinement in phosphorus-doped silicon nanocrystals. Phys. Rev. Lett. 92(4), 046802 (2004)

    Article  Google Scholar 

  6. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462–465 (2005)

    Article  Google Scholar 

  7. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)

    Article  Google Scholar 

  8. V. Colvin, M. Schlamp, A. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354–357 (1994)

    Article  Google Scholar 

  9. M. Schlamp, X. Peng, A. Alivisatos, Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82(11), 5837–5842 (1997)

    Article  Google Scholar 

  10. O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062), 1530–1533 (2011)

    Article  Google Scholar 

  11. J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8(10), 3488–3492 (2008)

    Article  Google Scholar 

  12. B.A. Ridley, B. Nivi, J.M. Jacobson, All-inorganic field effect transistors fabricated by printing. Science 286(5440), 746–749 (1999)

    Article  Google Scholar 

  13. J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, T. Nann, Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv. Mater. 20(21), 4068–4073 (2008)

    Article  Google Scholar 

  14. D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412–G417 (2003)

    Article  Google Scholar 

  15. R. Malakooti, L. Cademartiri, Y. Akçakir, S. Petrov, A. Migliori, G.A. Ozin, Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films. Adv. Mater. 18(16), 2189–2194 (2006)

    Article  Google Scholar 

  16. Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2), 525–532 (1991)

    Article  Google Scholar 

  17. M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  Google Scholar 

  18. L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4), 655–659 (2005)

    Article  Google Scholar 

  19. N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, F. Rocca, Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101(11), 113510 (2007)

    Article  Google Scholar 

  20. R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G.-y. Liu, S.M. Kauzlarich, Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124(7), 1150–1151 (2002)

    Article  Google Scholar 

  21. K. Littau, P. Szajowski, A. Muller, A. Kortan, L. Brus, A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97(6), 1224–1230 (1993)

    Article  Google Scholar 

  22. R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4(2), 143–146 (2005)

    Article  Google Scholar 

  23. Z. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571), 1293–1297 (2002)

    Article  Google Scholar 

  24. M. Ostraat, J. De Blauwe, M. Green, L. Bell, M. Brongersma, J. Casperson, R. Flagan, H. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3), 433–435 (2001)

    Article  Google Scholar 

  25. T. Lu, M. Alexe, R. Scholz, V. Talelaev, M. Zacharias, Multilevel charge storage in silicon nanocrystal multilayers. Appl. Phys. Lett. 87(20), 202110 (2005)

    Article  Google Scholar 

  26. C.-Y. Liu, Z.C. Holman, U.R. Kortshagen, Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett. 9(1), 449–452 (2008)

    Article  Google Scholar 

  27. G. Conibeer, M. Green, E.-C. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516(20), 6748–6756 (2008)

    Article  Google Scholar 

  28. M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007)

    Article  Google Scholar 

  29. K.-Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11(5), 1952–1956 (2011)

    Article  Google Scholar 

  30. V. Svrcek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media. J. Phys. Chem. C 115(12), 5084–5093 (2011)

    Article  Google Scholar 

  31. X. Pi, Q. Li, D. Li, D. Yang, Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011)

    Article  Google Scholar 

  32. R. Gresback, T. Nozaki, K. Okazaki, Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma. Nanotechnology 22(30), 305605 (2011)

    Article  Google Scholar 

  33. N. Shirahata, T. Hasegawa, Y. Sakka, T. Tsuruoka, Size-tunable UV-luminescent silicon nanocrystals. Small 6(8), 915–921 (2010)

    Article  Google Scholar 

  34. A. Stegner, R. Pereira, K. Klein, R. Lechner, R. Dietmueller, M. Brandt, M. Stutzmann, H. Wiggers, Electronic transport in phosphorus-doped silicon nanocrystal networks. Phys. Rev. Lett. 100(2), 026803 (2008)

    Article  Google Scholar 

  35. V. Švrček, T. Sasaki, Y. Shimizu, N. Koshizaki, Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Appl. Phys. Lett. 89(21), 213113 (2006)

    Article  Google Scholar 

  36. Y. Ding, R. Yamada, R. Gresback, S. Zhou, X. Pi, T. Nozaki, A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor. J. Phys. D. Appl. Phys. 47(48), 485202 (2014)

    Article  Google Scholar 

  37. Y. Ding, R. Gresback, Q. Liu, S. Zhou, X. Pi, T. Nozaki, Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance. Nano Energy 9, 25–31 (2014)

    Article  Google Scholar 

  38. Y. Ding, R. Gresback, R. Yamada, K. Okazaki, T. Nozaki, Hybrid silicon nanocrystal/poly (3-hexylthiophene-2, 5-diyl) solar cells from a chlorinated silicon precursor. Jpn. J. Appl. Phys. 52(11S), 11NM04 (2013)

    Article  Google Scholar 

  39. L.M. Wheeler, N.R. Neale, T. Chen, U.R. Kortshagen, Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals. Nat. Commun. 4, 2197 (2013)

    Google Scholar 

  40. S. Rivillon, F. Amy, Y.J. Chabal, M.M. Frank, Gas phase chlorination of hydrogen-passivated silicon surfaces. Appl. Phys. Lett. 85, 2583 (2004)

    Article  Google Scholar 

  41. M. Brodsky, M. Cardona, J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 16(8), 3556 (1977)

    Article  Google Scholar 

  42. Y. Ding, D. He, H. Shirai, Deposition of low dielectric constant SiOC films by using an atmospheric pressure microplasma jet. J. Phys. D. Appl. Phys. 42(12), 125503 (2009)

    Article  Google Scholar 

  43. A. Grill, D.A. Neumayer, Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J. Appl. Phys. 94(10), 6697–6707 (2003)

    Article  Google Scholar 

  44. N. Benissad, K. Aumaille, A. Granier, A. Goullet, Structure and properties of silicon oxide films deposited in a dual microwave-rf plasma reactor. Thin Solid Films 384(2), 230–235 (2001)

    Article  Google Scholar 

  45. M. Wolkin, J. Jorne, P. Fauchet, G. Allan, C. Delerue, Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82(1), 197 (1999)

    Article  Google Scholar 

  46. Y. Ding, M. Sugaya, Q. Liu, S. Zhou, T. Nozaki, Oxygen passivation of silicon nanocrystals: influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy 10, 322–328 (2014)

    Article  Google Scholar 

  47. G. Higashi, Y. Chabal, G. Trucks, K. Raghavachari, Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56(7), 656–658 (1990)

    Article  Google Scholar 

  48. R. Gresback, Y. Murakami, Y. Ding, R. Yamada, K. Okazaki, T. Nozaki, Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition. Langmuir 29(6), 1802–1807 (2013)

    Article  Google Scholar 

  49. Y. Ding, S. Zhou, F.B. Juangsa, M. Sugaya, Y. Asano, X. Zhang, Y. Zhao, T. Nozaki, Optical, electrical, and photovoltaic properties of silicon nanoparticles with different crystallinities. Appl. Phys. Lett. 107(23), 233108 (2015)

    Article  Google Scholar 

  50. D. Selmarten, M. Jones, G. Rumbles, P. Yu, J. Nedeljkovic, S. Shaheen, Quenching of semiconductor quantum dot photoluminescence by a π-conjugated polymer. J. Phys. Chem. B 109(33), 15927–15932 (2005)

    Article  Google Scholar 

  51. M. Sykora, L. Mangolini, R.D. Schaller, U. Kortshagen, D. Jurbergs, V.I. Klimov, Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. Phys. Rev. Lett. 100(6), 067401 (2008)

    Article  Google Scholar 

  52. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. Lebedev, G. Van Tendeloo, V.V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3(3), 174–178 (2008)

    Article  Google Scholar 

  53. S.W. Lin, D.H. Chen, Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5(1), 72–76 (2009)

    Article  Google Scholar 

  54. Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G. Hu, The structure and properties of nanosize crystalline silicon films. J. Appl. Phys. 75(2), 797–803 (1994)

    Article  Google Scholar 

  55. M. Wright, A. Uddin, Organic—inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells 107, 87–111 (2012)

    Article  Google Scholar 

  56. J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells. Adv. Mater. 23(16), 1810–1828 (2011)

    Article  Google Scholar 

  57. A. Salant, M. Shalom, Z. Tachan, S. Buhbut, A. Zaban, U. Banin, Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. Nano Lett. 12(4), 2095–2100 (2012)

    Article  Google Scholar 

  58. S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S. Gradecak, Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett. 11(9), 3998–4002 (2011)

    Article  Google Scholar 

  59. Z. Yang, A. Janmohamed, X. Lan, F.P. García de Arquer, O. Voznyy, E. Yassitepe, G.-H. Kim, Z. Ning, X. Gong, R. Comin, Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 15(11), 7539–7543 (2015)

    Article  Google Scholar 

  60. A. Abrusci, I.-K. Ding, M. Al-Hashimi, T. Segal-Peretz, M.D. McGehee, M. Heeney, G.L. Frey, H.J. Snaith, Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells. Energy Environ. Sci. 4(8), 3051–3058 (2011)

    Article  Google Scholar 

  61. J. Von Behren, T. Van Buuren, M. Zacharias, E. Chimowitz, P. Fauchet, Quantum confinement in nanoscale silicon: the correlation of size with bandgap and luminescence. Solid State Commun. 105(5), 317–322 (1998)

    Article  Google Scholar 

  62. H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16(1), 45–61 (2006)

    Article  Google Scholar 

  63. Z. Zhou, L. Brus, R. Friesner, Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett. 3(2), 163–167 (2003)

    Article  Google Scholar 

  64. M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mat.-Deerfield Beach Then Weinheim 18(6), 789 (2006)

    Article  Google Scholar 

  65. P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol. Energy Mater. Sol. Cells 90(14), 2150–2158 (2006)

    Article  Google Scholar 

  66. H.-L. Yip, A.K.-Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5(3), 5994–6011 (2012)

    Article  Google Scholar 

  67. Y. Ding, R. Gresback, S. Zhou, X. Pi, T. Nozaki, Silicon nanocrystals synthesized using very high frequency non-thermal plasma and their application in photovoltaics. J. Phys. D. Appl. Phys. 48, 314011 (2015)

    Article  Google Scholar 

  68. P.W. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19(12), 1551–1566 (2007)

    Article  Google Scholar 

  69. P. Cheng, Y. Li, X. Zhan, Efficient ternary blend polymer solar cells with indene-C 60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7(6), 2005–2011 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would thank all contributors to the publication, who have been important for this work. This work was financially supported by the National Natural Science Foundation of China (No. 61504069), the 111 Project of China (B16027), and Grant-in-Aid for Scientific Research (b) of Japan (No. 26289045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Y., Nozaki, T. (2018). Silicon Nanocrystal-Based Organic/Inorganic Hybrid Solar Cells. In: Ikhmayies, S. (eds) Advances in Silicon Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-69703-1_7

Download citation

Publish with us

Policies and ethics