Skip to main content

Optoelectronic Characteristics of Passivated and Non-passivated Silicon Quantum Dot

  • Chapter
  • First Online:
  • 1391 Accesses

Abstract

In this chapter, our recent research about the impact of hydrogen passivations and size on the electronic and optical features of silicon quantum dots will be reviewed. A theoretical modeling will be presented for silicon quantum dot with spherical topologies and treating their corresponding physical properties. This recent study was conducted by means of first principle calculations to explore the energy band gap versus the radius of Si quantum dots for passivated and non-passivated surface. The optimization of the structures of quantum dots was performed for both passivated and unpassivated quantum dots with various sizes. The interesting features for the electronic characteristic, such as the energy band gaps are higher in the case of hydrogenated surface than the unpassivated case. Accordingly, both quantum confinement and surface passivation provide information concerning the electronic and optical characters of Si quantum dots. The passivation impact on the surface dangling bonds with hydrogen atoms as well as the contribution of surface states on the gap energy are also presented. The hydrogen passivation influence increases the energy gap than that of pure silicon quantum dots. The significant character of the confinement and surface passivation on the optical properties are reviewed. The previous experimental determinations have shown that the optical properties of these dots were significantly affected by the quantum confinement effects. Overall, the hydrogen saturation surface controls principally the ground-state geometry, the energy gap, and optical absorption of Si quantum dots with the change of radius size. It was inferred in our previous study that the insertion of hydrogen could lead to the alteration of the electronic structure of silicon quantum dots. The saturated surface by hydrogen atoms has also a main contribution on the spatial distribution of the highest occupied and lowest unoccupied molecular orbitals. The hydrogen effect on optical absorption spectra and the static dielectric constant are also reviewed. Exclusively, the absorption threshold relationship of Si nanoparticles on the radius and hydrogenation surmise a decrease in the quantum confinement effect. The absorption spectra illustrated that the absorption properties are intimately accompanied with the surface saturation as well the radius of the dots. This theoretical finding could assist the comprehension of the microscopic mechanism which is spectacular for the devices performance and the potential application in nanotechnologies. This could highlight the significant optical parameters of silicon quantum dots for the purpose to comprehend the optical properties in the photoluminescence process of finite-size dots. The recent work about the optical absorption showed that the nanostructured Si could possess a very high luminescence in the visible regime as reported in the experimental inspection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Forcales, N.J. Smith, R.G. Elliman, J. Appl. Phys. B 100, 014902 (2006)

    Article  Google Scholar 

  2. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  Google Scholar 

  3. Z. Deng, X.D. Pi, J.J. Zhao, D. Yang, J. Mater. Sci. Technol. 29, 221 (2013)

    Article  Google Scholar 

  4. L.W. Wang, A. Zunger, Phys. Chem. 98, 2158 (1994)

    Article  Google Scholar 

  5. L. Koponen, L. Tunturivuori, et al., Phys.Rev. B 79, 2353321 (2009)

    Article  Google Scholar 

  6. Z.Y. Ni et al., J. Phys. D: Appl. Phys. 48, 314006 (2015)

    Article  Google Scholar 

  7. M. Luppi, S. Ossicini, Phys. Rev. B 71, 035340 (2005)

    Article  Google Scholar 

  8. D. Li et al., Appl. Phys Lett. 104, 204101 (2014)

    Article  Google Scholar 

  9. L.E. Ramos, H.-C. Weissker, J. Furthm¨uller, F. Bechstedt, Phys. Status Solidi B 242, 3053 (2005)

    Article  Google Scholar 

  10. D. Melnikov, J.R. Chelikowsky, Phys. Rev. B 69, 113305 (2004)

    Article  Google Scholar 

  11. A. Tsolakidis, R.M. Martin, Phys. Rev. B 71, 125319 (2005)

    Article  Google Scholar 

  12. F. Trani, G. Cantele, D. Ninno, G. Iadonisi, Phys. Rev. B 72, 075423 (2005)

    Article  Google Scholar 

  13. L. Yao, T. Yu, L.X. Ba, H. Meng, X. Fang, Y.L. Wang, L. Li, X. Rong, S. Wang, X.Q. Wang, G.Z. Ran, X.D. Pi, G.G. Qin, J. Mater. Chem. C 4, 673 (2016)

    Article  Google Scholar 

  14. B.B. Sahu, Y. Yin, J.G. Han, M. Shiratanib, Phys. Chem. Chem. Phys. 18, 15697 (2016)

    Article  Google Scholar 

  15. S. Askari, M. Macias-Montero, T. Velusamy, P. Maguire, V. Svrcek, D. Mariotti, J. Phys. D: Appl. Phys. 314002, 48 (2015)

    Google Scholar 

  16. L. Eleonora, I. Federico, M. Rita, P. Olivia, O. Stefano, D. Elena, O. Valerio, Phys. Rev. B 75, 033303 (2007)

    Article  Google Scholar 

  17. F. Sangghaleh, I. Sychugov, Z. Yang, J.G.C. Veinot, J. Linnros, J. ACS Nano 9, 7097 (2015)

    Article  Google Scholar 

  18. B. Pejova, Semicond. Sci. Technol. 29, 045007 (2014)

    Article  Google Scholar 

  19. S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics (Springer, Berlin, 2004)

    Google Scholar 

  20. M.B. Gongalsky, L.A. Osminkina, A. Pereira, A.A. Manankov, A.A. Fedorenko, A.N. Vasiliev, V.V. Solovyev, A.A. Kudryavtsev, M. Sentis, A.V. Kabashin, V.Y. Timoshenko, Sci. Rep. 6, 24732 (2016). https://doi.org/10.1038/srep24732

    Article  Google Scholar 

  21. M. Miyano, S. Endo, H. Takenouchi, S. Nakamura, Y. Iwabuti, O. Shiino, T. Nakanishi, Y. Hasegawa, J. Phys. Chem. C 118, 19778 (2014)

    Article  Google Scholar 

  22. G. Shen, D. Chen, K. Tang, Y. Qian, S. Zhang, Chem. Phys. Lett. 375, 177 (2003)

    Article  Google Scholar 

  23. D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, D.N. Mcllroy, M. Grant Norton, Nano Lett. 3, 983 (2003)

    Article  Google Scholar 

  24. G.W. Ho, A.S.W. Wong, D.J. Kang, M.E. Welland, Nanotechnology 15, 996 (2004)

    Article  Google Scholar 

  25. R. Rurali, Phys. Rev. B71, 205405 (2005)

    Article  Google Scholar 

  26. B. Tian et al., Nature 449, 885 (2007)

    Article  Google Scholar 

  27. D.V. Melnikov, J.R. Chelikowsky, Phys. Rev. Lett. 92, 046802 (2004)

    Article  Google Scholar 

  28. X. Liu, Y. Zhang, Y. Ting, X. Qiao, R. Gresback, X. Pi, D. Yang, Part. Part. Syst. Charact. 33, 44 (2016)

    Article  Google Scholar 

  29. S. Ossicini, M. Amato, R. Guerra, M. Palummo, O. Pulci, Nanoscale. Res. Lett 5, 1637 (2010)

    Article  Google Scholar 

  30. S. Askari et al., D. Appl. Phys. Lett. 104, 163103 (2014)

    Article  Google Scholar 

  31. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  32. A. Laref, N. Alshammari, S. Laref, S.J. Luo, Sol. Energy Mater. Sol. Cells 120, 622 (2014)

    Article  Google Scholar 

  33. J.P. Proot, C. Delerue, G. Allan, Appl. Phys. Lett. 61(16), 1948 (1992)

    Article  Google Scholar 

  34. J.S. Biteen, D.P. Pacifici, N.S. Lewis, H.A. Atwater, Nano Lett. 5, 1768 (2005)

    Article  Google Scholar 

  35. B. Delley, E. F. Steigmeier, Phys. Rev. B 47, 1397 (1993); Appl. Phys. Lett. 67, 2370 (1995)

    Google Scholar 

  36. T. Trupke, J. Zhao, A. Wang, R. Corkish, M. Green, Appl. Phys. Lett. 82, 2996 (2003)

    Article  Google Scholar 

  37. L.-W. Wang, A. Zunger, J. Chem. Phys. 100, 2394 (1994)

    Article  Google Scholar 

  38. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, Nature 427, 615 (2004)

    Article  Google Scholar 

  39. F. Bruneval, F. Sottile, V. Olevano, R.D. Sole, L. Reining, Phys. Rev. Lett. 94, 186402 (2005)

    Article  Google Scholar 

  40. I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. Lett. 86, 1813 (2001); A.J. Williamson, J.C. Grossman, R.Q. Hood, A. Puzder, G. Galli, Phys. Rev. Lett. 89, 196803 (2002)

    Google Scholar 

  41. C. Delerue, M. Lannoo, G. Allan, Phys. Rev. Lett. 84, 2457 (2000)

    Article  Google Scholar 

  42. C.S. Garoufalis, A.D. Zdetsis, S. Grimme, Phys. Rev. Lett. 87, 276402 (2001)

    Article  Google Scholar 

  43. A. Zunger, Phys. Status Solidi A 190, 467 (2002)

    Article  Google Scholar 

  44. R.M. Martin, Electronic Structure (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  45. K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 9, 73 (2005)

    Article  Google Scholar 

  46. J. Wilcoxon, G. Samara, et al. Phys. Rev. B 60, 2704 (1999)

    Article  Google Scholar 

  47. M. Wolkin, J. Jorne, et al., Phys. Rev. Lett. 82, 197 (1999)

    Article  Google Scholar 

  48. A.D. Zdetsis, C.S. Garoufalis, S. Grimme, in NATO Advanced Research Workshop on “Quantum Dots: Fundamentals, Applications, and Frontiers” (Crete 2003), ed. by B.A. Joyce et al. (Springer, Heidelberg, 2005), pp. 317–332

    Google Scholar 

  49. S.Z. Bisri et al., Adv. Mater. 26, 5639–5645 (2014)

    Article  Google Scholar 

  50. Y. Liu, Z.Y. Zhang, Y.F. Hu, C.H. Jin, L.-M. Peng, J. Nanosci. Nanotechnol. 8, 252 (2008)

    Article  Google Scholar 

  51. Y.-Y. Noh, X. Cheng, H. Sirringhaus, J.I. Sohn, M.E. Welland, D.J. Kang, Appl. Phys. Lett. 91, 043109 (2007)

    Article  Google Scholar 

  52. B. Ghosh et al., Adv. Funct. Mater. 24, 7151 (2014)

    Google Scholar 

  53. Y. Du Y et al., Acs Nano 8, 10019–10025 (2014)

    Article  Google Scholar 

  54. N.J. Thompson et al., Nat. Mat. 13, 1039 (2014)

    Article  Google Scholar 

  55. G. Conibeer, M. Green, et al. Thin Solid Films 511-512, 654 (2006)

    Article  Google Scholar 

  56. G. Conibeer, M. Green, M. Cho, et al., Thin Solid Films. 516, 6748 (2008); C.S. Garoufalis, A.D. Zdetsis, J. Math. Chem. 46, 952 (2009)

    Google Scholar 

  57. S.Z. Bisri, et al., Adv. Mater. 26, 5639–5645 (2014); R. Guerra, E. Degoli, et al., Phys. Rev. B. 80, 155332-1—155332-5 (2009)

    Google Scholar 

  58. D. König, J. Rudd, et al., Sol. Energy Mater. Sol. Cells 93, 753 (2009)

    Article  Google Scholar 

  59. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  Google Scholar 

  60. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  61. M. Ribeiro Jr., L.R.C. Fonseca, L.G. Ferreira, Phys. Rev. B 241312(R), 79 (2009)

    Google Scholar 

  62. J. von Behren et al., Solid State Commun. 105, 17 (1998)

    Article  Google Scholar 

  63. M. Stupca, M. Alsalhi, T. Al-Saud, A. Almuhanna, M. Nayfeh, Appl. Phys. Lett. 91, 063107 (2007)

    Article  Google Scholar 

  64. F.A. Reboredo, A. Franceschetti, A. Zunger, Phys. Rev. B 61, 13073 (2000)

    Article  Google Scholar 

  65. G. te Velde et al., J. Comput. Chem. 22, 931 (2001)

    Article  Google Scholar 

  66. L.C. Lew-Yan-Voon, L.R. Ram-Mohan, Phys. Rev. B 47, 15500 (1993)

    Article  Google Scholar 

  67. M. Virgilio, G. Grosso, Nanotechnology 18, 075402 (2007)

    Article  Google Scholar 

  68. G. Pizzi, M. Virgilio, G. Grosso, Nanotechnology 21, 055202 (2010)

    Article  Google Scholar 

  69. O. Lehtonen, D. Sundholm, Phys. Rev. B 72, 085424 (2005)

    Article  Google Scholar 

  70. C. Tserbak, H.M. Polatoglou, G. Theodorou, Phys. Rev. B 47, 7104 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laref, A. (2018). Optoelectronic Characteristics of Passivated and Non-passivated Silicon Quantum Dot. In: Ikhmayies, S. (eds) Advances in Silicon Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-69703-1_2

Download citation

Publish with us

Policies and ethics