Skip to main content

Basic Electrochemistry of CPs

  • Chapter
  • First Online:
Book cover Conducting Polymers, Fundamentals and Applications
  • 2423 Accesses

Abstract

We note at the outset that this chapter deals specifically with the electrochemistry of CPs per se; electrochemistry and mechanisms associated with polymerization processes are discussed elsewhere in this book. It is also noted that it has been attempted to write this first section specifically for readers with little knowledge of electrochemistry and no familiarity with electrochemistry of CPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literature Cited

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354(6348), 56–58 (1991). Bibcode:1991Natur.354...56I. doi: https://doi.org/10.1038/354056a0

  2. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1365 (2004). Bibcode:2004Sci...306.1362H. doi: https://doi.org/10.1126/science.1104962. PMID 15550668

  3. Iijima, S.: High resolution electron microscopy of some carbonaceous materials. J. Microsc. 119(1), 99–111 (1980)

    Article  Google Scholar 

  4. Радушкевич, Л.В.: О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте. Журнал Физической Химии. 26, 88–95 (1952) (in Russian). (see http://nanotube.msu.edu/HSS/2006/4/2006-4.pdf)

  5. Schützenberger, P., Schützenberger, L.: C. R. Acad. Sci. 111, 774–780 (1890)

    Google Scholar 

  6. Oberlin, A., Endo, M., Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth. 32(3), 335–349 (1976). Bibcode:1976JCrGr..32..335O. doi: https://doi.org/10.1016/0022-0248(76)90115-9

  7. Baker, R.T.K., Harris, P.S.: The formation of filamentous carbon. Chem. Phys. Carbon. 14, 83–165 (1978)

    Google Scholar 

  8. Abrahamson, J., Wiles, P.G., Rhoades, B.L.: Structure of carbon fibers found on carbon arc anodes. Carbon. 37(11), 1873–1874 (1999). https://doi.org/10.1016/S0008-6223(99)00199-2

    Article  Google Scholar 

  9. Izvestiya Akademii Nauk SSSR. Metals. 3, 12–17 (1982)

    Google Scholar 

  10. Tennent, H.G.: Carbon fibrils, method for producing same and compositions containing same (1987)

    Google Scholar 

  11. Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature. 358, 220–222 (1992)

    Article  Google Scholar 

  12. Mintmire, J.W., Dunlap, B.I., White, C.T.: Are fullerene tubules metallic? Phys. Reve. Lett. 68, 631–634 (1992)

    Article  Google Scholar 

  13. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Carbon fibers based on C60 and their symmetry. Phys. Rev B Condens Matter. 45, 6234–6242 (1992)

    Article  Google Scholar 

  14. Jones, D.E.H.: New Sci. 110, 1505 (1986)

    Google Scholar 

  15. Ajayan, P.M.: Nanotubes from Carbon. Chem. Rev. 99(7), 1787–1800 (1999)

    Article  Google Scholar 

  16. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature. 386, 474–477 (1997)

    Article  Google Scholar 

  17. Terrones, M.: Science and technology of the twenty-first century: synthesis, properties, and applications of carbon banotubes. Annu. Rev. Mater.Res. 33, 419–501 (2003)

    Article  Google Scholar 

  18. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science. 339(535), 535–539 (2013)

    Article  Google Scholar 

  19. Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small. 2, 180–192 (2005)

    Article  Google Scholar 

  20. Hu, H., Bhowmik, P., Zhao, B., Hamon, M.A., Itkis, M.E., Haddon, R.C.: Chem. Phys. Lett. 108(4), 227 (2006)

    Google Scholar 

  21. Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R., Ando, Y.: Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92(12), 125502 (2004). Bibcode:2004PhRvL..92l5502Z. doi: https://doi.org/10.1103/PhysRevLett.92.125502. PMID 15089683

  22. Zhang, R., Zhang, Y., Zhang, Q., Xie, H., Qian, W., Wei, F.: Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano. 7(7), 6156–6161 (2003). https://doi.org/10.1021/nn401995z. PMID 23806050

    Article  Google Scholar 

  23. Davenport, M.: Twist and shouts: a nanotube story. Chem. Eng. News. 93(23), 10–15 (2016.) Ouyang, M., Huang, J.-L.: Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1018–1025 (2002)

    Google Scholar 

  24. Wilder, J.W.G., Venma, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature. 391, 59–62 (1998). https://doi.org/10.1038/34139

    Article  Google Scholar 

  25. Odom, T.W., Huang, J.-L., Kim, P., Lieber, C.M.: Structures and electronic properties of carbon nanotubes. J. Phys. Chem. B. 104, 2794–2809 (2000)

    Article  Google Scholar 

  26. Kim, P., Odom, T.W., Huang, J.L., Lieber, C.M.: Electronic density of atomically resolved single-walled carbon nanotubes: van Hove singularities and end states. Phys. Rev. Lett. 82, 1225–1228 (1999)

    Article  Google Scholar 

  27. Sgobba, V., Guldi, D.M.: Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009)

    Article  Google Scholar 

  28. Hong, S., Myung, S.: Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2(4), 207–208 (2007). Bibcode:2007NatNa...2..207H. https://doi.org/10.1038/nnano.2007.89. PMID 18654263

  29. Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172 (2001)

    Article  Google Scholar 

  30. Schnorr, J.M., Swager, T.M.: Emerging applications of carbon nanotubes. Chem. Mater. 23(3), 646–657 (2011) https://doi.org/10.1021/cm102406h

  31. Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., et al.: Individual single-wall carbon nanotubes as quantum wires. Nature. 386, 474–477 (1997)

    Article  Google Scholar 

  32. Bachtold, A., Strunk, C., Salvetat, J.-P., Bonard, J.-M., Forró, L., Nussbaumer, T., Schönenberger, C.: Aharonov-Bohm oscillations in carbon nanotubes. Nature. 397, 673–675 (1999)

    Article  Google Scholar 

  33. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354, 56–58 (1991)

    Article  Google Scholar 

  34. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature. 363, 603–605 (1993.) Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–6 (1993)

    Article  Google Scholar 

  35. Ishigami, N., Ago, H., Imamoto, K., Tsuji, M., Iakoubovskii, K., Minami, N.: Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. J. Am. Chem. Soc. 130(30), 9918–9924 (2008)

    Article  Google Scholar 

  36. Syangdev, N., Ishwar, K.P.: A model for catalytic growth of carbon nanotubes. J. Phys. D Appl. Phys. 41(6), 065304 (2008)

    Article  Google Scholar 

  37. Meyer-Plath, A., Ortis-Gil, G., Petrov, S., et al.: Plasma-thermal purification and annealing of carbon nanotubes. Carbon. 50(10), 3934–3942 (2012)

    Article  Google Scholar 

  38. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. 282(5391), 1105–1107. Bibcode:1998Sci...282.1105R. (1998). https://doi.org/10.1126/science.282.5391.1105

    Article  Google Scholar 

  39. Neupane, S., Lastres, M., Chiarella, M., Li, W.Z., Su, Q., Du, G.H.: Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper. Carbon. 50(7), 2641–2650 (2012)

    Article  Google Scholar 

  40. Richard, S.E., Li, Y., Moore, V.C., Price, B.K., Colorado, R., Schmidt, H.K., Hauge, R.H., Barron, A.R., Tour, J.M.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128(49), 15824–15829 (2006)

    Article  Google Scholar 

  41. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1365 (2004). Bibcode:2004Sci...306.1362H. https://doi.org/10.1126/science.1104962. PMID 15550668

  42. Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29 (2009)

    Article  Google Scholar 

  43. Hata, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306, 1362 (2004.) Kozio, L.K., et al. High-performance carbon nanotube fiber. Science. 318, 1892 (2007)

    Article  Google Scholar 

  44. Chang, H., Lin, C., Kuo, C.: Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates. Thin Solid Films. 420–421, 219–224 (2002)

    Article  Google Scholar 

  45. Ting, G., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerness. J. Phys. Chem. 99(27), 10694–10697 (1995)

    Article  Google Scholar 

  46. Ting, G., Nikolaev, P., Thess, A., Colbert, D., Smalley, R.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243(1-2), 49–54 (1995)

    Article  Google Scholar 

  47. Chiang, M., Liu, K., Lai, T., Tsai, C., Cheng, H., Lin, I.: Electron field emission properties of pulsed laser deposited carbon films containing carbon nanotubes. J Vac Sci Technol B. 19(3), 1034–1039 (2001)

    Article  Google Scholar 

  48. Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M., Ruoff, R.S.: Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry. J. Phys. Chem. B. 103(21), 4330–4337 (1999.) [in press]

    Article  Google Scholar 

  49. Soundarrajan, P., Patil, A., Liming, D.: Surface modification of aligned carbon nanotube arrays for electrochemical sensing applications. Am. Vac. Soc. 21, 1198–1201 (2002)

    Article  Google Scholar 

  50. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., et al.: Crystalline ropes of metallic carbon nanotubes. Science. 273, 483–487 (1996)

    Article  Google Scholar 

  51. Smiljanic, O., Stansfield, B.L., Dodelet, J.-P., Serventi, A., Désilets, S.: Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet. Chem. Phys. Lett. 356(3–4), 189–193 (2002). Bibcode:2002CPL...356..189S. https://doi.org/10.1016/S0009-2614(02)00132-X

  52. Kim, K.S., Cota-Sanchez, G., Kingston, C., Imris, M., Simard, B., Soucy, G.: Large-scale production of single-wall carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 40(8), 2375–2387. Bibcode:2007JPhD...40.2375K (2007). https://doi.org/10.1088/0022-3727/40/8/S17

    Article  Google Scholar 

  53. Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., Harris, P.J.F.: Condensed-phase nanotubes. Nature. 377, 687 (1995)

    Article  Google Scholar 

  54. Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M.: Electrlytic formation of carbon nanostructures. Chem. Phys. Lett. 262, 161–166 (1996)

    Article  Google Scholar 

  55. Laplaze, D., Bernier, P., Master, W.K., Flamant, G., Guillard, T., Loiseau, A.: Carbon. 36, 685–688 (1998)

    Article  Google Scholar 

  56. Guillard, T., Flamant, G., Robert, J.F., Rivoire, B., Olalde, G., et al.: J. Phys. IV9, 59–64 (1999)

    Google Scholar 

  57. Alvarez, L., Guillard, T., Olalde, G., Rivoire, B., Robert, J.F., et al.: Synth. Met. 103, 2476–77 (1999)

    Google Scholar 

  58. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science. 282, 95 (1998)

    Article  Google Scholar 

  59. Graupner, R., Abraham, J., Wunderlich, D., Vencelová, A., Lauffer, P., Röhrl, J., Hundhausen, M., Ley, L., Hirsch, A.: Nucleophilic−alkylation−reoxidation: a functionalization sequence for single-wall carbon nanotubes. J. Am. Chem. Soc. 128(20), 6683–6689 (2006). https://doi.org/10.1021/ja0607281

    Article  Google Scholar 

  60. Syrgiannis, Z., Hauke, F., Röhrl, J., Hundhausen, M., Graupner, R., Elemes, Y., Hirsch, A.: Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides. Eur. J. Org. Chem. 15, 2544–2550 (2008). https://doi.org/10.1002/ejoc.200800005

    Article  Google Scholar 

  61. Balaban, T.S., Balaban, M.C., Malik, S., Hennrich, F., Fischer, R., Rösner, H., Kappes, M.M.: Polyacylation of single-walled nanotubes under Friedel–Crafts conditions: an efficient method for functionalizing, purifying, decorating, and linking carbon allotropes. Adv. Mater. 18(20), 2763–2767 (2006). https://doi.org/10.1002/adma.200600138

    Article  Google Scholar 

  62. Karousis, N., Tagmatarchis, N., Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010). https://doi.org/10.1021/cr100018g

    Article  Google Scholar 

  63. Yang, H., Wang, S.C., Mercier, P., Akins, D.L.: Diameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer. Chem. Commun. 1425–1427 (2006). https://doi.org/10.1039/B515896F

  64. Chen, R., Radic, S., Choudhary, P., Ledwell, K.G., Huang, G., Brown, J.M., Chun Ke, P.: Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Appl. Phys. Lett. 101(13), 133702 (2012). https://doi.org/10.1063/1.4756794. PMC 3470598

    Article  Google Scholar 

  65. Wang, Z., Li, M., Zhang, Y., Yuan, J., Shen, Y., Niu, L., Ivaska, A.: Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon. 45(10), 2111–2115 (2007). https://doi.org/10.1016/j.carbon.2007.05.018

    Article  Google Scholar 

  66. Campidelli, S., Sooambar, C., Lozano Diz, E., Ehli, C., Guldi, D.M., Prato, M.: Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 128(38), 12544–12552 (2006). https://doi.org/10.1021/ja063697i

    Article  Google Scholar 

  67. Ballesteros, B., de la Torre, G., Ehli, C., Aminur Rahman, G.M., Agulló-Rueda, F., Guldi, D.M., Torres, T.: Single-wall carbon nanotubes bearing covalently linked phthalocyanines − photoinduced electron transfer. J. Am. Chem. Soc. 129(16), 5061–5068 (2007). https://doi.org/10.1021/ja068240n

    Article  Google Scholar 

  68. Georgakilas, V., Bourlinos, A.B., Zboril, R., Trapalis, C.: Synthesis, characterization and aspects of superhydrophobic functionalized carbon nanotubes. Chem. Mater. 20(9), 2884–2886 (2008). https://doi.org/10.1021/cm7034079

    Article  Google Scholar 

  69. Fabre, B., Hauquier, F., Herrier, C., Pastorin, G., Wu, W., Bianco, A., Prato, M., Hapiot, P., Zigah, D.: Covalent assembly and micropatterning of functionalized multiwalled carbon nanotubes to monolayer-modified Si(111) surfaces. Langmuir. 24(13), 6595–6602 (2008). https://doi.org/10.1021/la800358w

    Article  Google Scholar 

  70. Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M.: Biomedical applications of functionalized carbon nanotubes. Chem. Commun. (5), 571–577 (2005)

    Google Scholar 

  71. Shin, W.H., Jeong, H.M., Kim, B.G., Kang, J.K., Choi, J.W.: Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12(5), 2283–2288 (2012). Bibcode:2012NanoL..12.2283S. https://doi.org/10.1021/nl3000908. PMID 22452675

  72. Yin, L.-W., Bando, Y., Li, M.-S., Liu, Y.-X., Qi, Y.-X.: Unique single-crystalline beta carbon nitride nanorods. Adv. Mater. 15(21), 1840–1844 (2003). https://doi.org/10.1002/adma.200305307

    Article  Google Scholar 

  73. Glerup, M., Steinmetz, J., Samaille, D., Stephan, O., Enouz, S., Loiseau, A., Roth, S., Bernier, P.: Synthesis of N-doped SWNT using the arc-discharge procedure. Chem. Phys. Lett. 387, 193 (2004)

    Article  Google Scholar 

  74. Sen R., Satishkumar, B.C., Govindaraj S., Harikumar K.R., Renganathan M.K., Rao C.N R.: Mater. Chem. 7, 2335 (1997)

    Google Scholar 

  75. Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., Tour, J.M.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001)

    Article  Google Scholar 

  76. Knez, M., Sumser, M., Bittner, A.M., Wege, C., Jeske, H., Kooi, S., Burghard, M., Kern, K.: Electrochemical modification of individual nano-objects. J. Electroanal. Chem. 522, 70 (2002)

    Article  Google Scholar 

  77. Vlandas, A., Kurkina, T., Ahmad, A., Kern, K., Balasubramanian, K.: Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Anal. Chem. 82, 6090 (2010)

    Article  Google Scholar 

  78. (a) Kalyanasundaram, K.: Photochemistry of polypyridine and porphyrin complexes. Academic Press, London (1997); (b) Dolphin, D.: The porphyrins. Academic Press, New York (1978); (c) Kadish, K.M., Smith, K.M., Guilard, R.: The porphyrin handbook. Academic Press, New York (2003)

    Google Scholar 

  79. (a) Baskaran, D., Mays, J.W., Zhang, X.P., Bratcher, M.S.: Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J. Am. Chem. Soc. 127, 6916 (2005); (b) Li, H., Martin R.B., Harruff, B.A., Carino, R.A., Allard, L.F., Sun, Y.P: Single-walled carbon nanotubes tethered with porphyrins: synthesis and photophysical properties. Adv. Mater. 16, 896 (2004)

    Google Scholar 

  80. O’Reagan, B.; Grätzel, M.: Nature 353, 737 (1991)

    Google Scholar 

  81. Wang, P., Moorefiled, C.N., Li, S., Hwang, S. H., Shreiner, C.D., Newkome, G.R.: Chem. Commun. 10, 1091 (2006)

    Google Scholar 

  82. Lim, J.K., Yoo, B.K., Yi, W., Hong, S., Paik, H.Y., Chun K., Kim, S.K., Joo, S.W.: J. Mater. Chem. 16, 2374 (2006)

    Google Scholar 

  83. Guo, Z., Du, F., Ren, D., Chen, Y., Zheng, J., Liu, Z., Tian, J.: Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor-acceptor nanohybrid. J. Mater. Chem. 16, 3021 (2006)

    Article  Google Scholar 

  84. Cui, J.B., Burghard, M., Kern, K.: Reversible sidewall osmylation of individual carbon nanotubes. Nano Lett. 3, 613 (2003)

    Article  Google Scholar 

  85. Banerjee, S., Wong, S.S.: Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 2073 (2004.) Liu J., Rinzler A.G., Dai H.J., Hafner J H., Bradley R.K., et al.: Fullerene pipes. Science 280, 1253–56 (1998)

    Article  Google Scholar 

  86. Chen, J., Hamon, M.A., Hu, H., Chen, Y.S., Rao, A.M., et al.: Solution properties of single-walled carbon nanotubes. Science. 282, 95–98 (1998)

    Article  Google Scholar 

  87. Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C.: Nat. Nanotechnol. 21, 29 (2009)

    Google Scholar 

  88. Kim, W.-J., Usrey, M.L., Strano, M.S.: Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 19(7), 1571 (2007). https://doi.org/10.1021/cm061862n

    Article  Google Scholar 

  89. Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, D.L., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002)

    Article  Google Scholar 

  90. Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suuspension: an empirical Kataura plot. Nano Lett. 3(9), 1235–1238 (2003). Bibcode:2003NanoL...3.1235W. https://doi.org/10.1021/nl034428i

  91. Reisch, M.S.: Molecular rebar design unravels carbon nanotubes. Chem. Eng. News. 93(9), 25 (2015)

    Article  Google Scholar 

  92. Zhao, Q., Nardelli, M.B., Bernholc, J.: Ultimate strength of carbon nanotubes: a theoretical study. Am. Phys. Soc. 65(144105), 1–6 (2002)

    Google Scholar 

  93. Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanke, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science. 273(5274), 483–487 (1996)

    Article  Google Scholar 

  94. Ruoff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., Chan, B.: Radial deformation of carbon nanotubes by van der Waals forces. Nature. 364(6437), 514–516 (1993). Bibcode:1993Natur.364..514R. https://doi.org/10.1038/364514a0

  95. Palaci, I., Fedrigo, S., Brune, H., Klinke, C., Chen, M., Riedo, E.: Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett.. 94(17) (2005). arXiv:1201.5501. Bibcode:2005PhRvL..94q5502P. https://doi.org/10.1103/PhysRevLett.94.175502

  96. Ruoff, R.S., Qian, D., Liu, W.K.: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4, 993–1008 (2003)

    Article  Google Scholar 

  97. Paradise, M., Goswami, T.: Carbon nanotubes – production and industrial applications. Mater. Des. 28, 1477–1489 (2007)

    Article  Google Scholar 

  98. Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 287(5453), 637–640 (2000). Bibcode:2000Sci...287..637Y. https://doi.org/10.1126/science.287.5453.637. PMID 10649994

  99. Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008). https://doi.org/10.1038/nnano.2008.211. PMID 18839003; Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334(1–2), 173–178 (2002). doi:https://doi.org/10.1016/S0921-5093(01)01807-X

  100. Stainless Steel – 17-7PH (Fe/Cr17/Ni 7) Material Information, Archived from the original on July 19, 2011

    Google Scholar 

  101. Wagner, H.D.: Reinforcement. Encycl. Polym. Sci. Technol. John Wiley & Sons. doi:https://doi.org/10.1002/0471440264.pst317

  102. Yamabe, T.: Recent development of carbon nanotubes. Synthetic Met. 1511–1518 (1995)

    Google Scholar 

  103. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    Article  Google Scholar 

  104. Filleter, T., Bernal, R., Li, S., Espinosa, H.D.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23(25), 2855–2860 (2011). https://doi.org/10.1002/adma.201100547

    Article  Google Scholar 

  105. Treacy, M., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 381, 678–680 (1996)

    Article  Google Scholar 

  106. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 277, 1971–1975 (1997)

    Article  Google Scholar 

  107. Popov, M., Kyotani, M., Nemanich, R., Koga, Y.: Superhard phase composed of single-wall carbon nanotubes. Phys. Rev. B. 65(3), 033408 (2002). Bibcode:2002PhRvB..65c3408P. https://doi.org/10.1103/PhysRevB.65.033408

  108. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Article  Google Scholar 

  109. Chem. Eng. News 25 (2016)

    Google Scholar 

  110. Kelly, B.T.: Physics of graphite. Applied Science, London (1981)

    Google Scholar 

  111. Hone, J.: Carbon Nanotubes 80, 273–86 (2001)

    Google Scholar 

  112. Yi, W., Lu, L., Zhang, D.L., Pan, Z.W., Xie, S.S.: Linear specific heat of carbon nanotubes. Phys. Rev. 59(14), R9015–R9018 (1999)

    Article  Google Scholar 

  113. Hone, J., Llaguno, M.C., Biercuk, M.J., Johnson, A.T., Batlogg, B., Benes, Z., Fischer, J.E.: Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A. 74, 339–343 (2002)

    Article  Google Scholar 

  114. Pradhan, N.R., Duan, H., Liang, J., Iannacchione, G.S.: The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnol. 20, 1–7 (2009)

    Article  Google Scholar 

  115. Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., Li, J.Q.: Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B. 66, 165440-1–165540-6 (2002)

    Google Scholar 

  116. Kolosnjaj, J., Szwarc, H., Moussa, F.: Toxicity studies of carbon nanotubes. Adv. Exp. Med Biol. 620, 181–204 (2007). https://doi.org/10.1007/978-0-387-76713-0_14. ISBN 978-0-387-76712-3. PMID 18217344

  117. Corredor, C., Hou, W.C., Klein, S.A., Moghadam, B.Y., Goryll, M., Doudrick, K., Westerhoff, P., Posner, J.D.: Disruption of model cell membranes by carbon nanotubes. Carbon. 60, 67–75 (2013). https://doi.org/10.1016/j.carbon.2013.03.057

    Article  Google Scholar 

  118. Lam, C.W., James, J.T., McCluskey, R., Arepalli, S., Hunter, R.L.: A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 36(3), 189–217 (2006). https://doi.org/10.1080/10408440600570233.PMID 16686422

    Article  Google Scholar 

  119. Firme III, C.P., Bandaru, P.R.: Toxicity in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. Biol. Med. 6, 245–256 (2010)

    Article  Google Scholar 

  120. Yang, S.T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., et al.: Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett. 181, 182–189 (2008)

    Article  Google Scholar 

  121. Byrne, J.D., Baugh, J.A.: The significance of nano particles in particle-induced pulmonary fibrosis. McGill J. Med. 11(1), 43–50 (2008)

    Google Scholar 

  122. Porter, A., Gass, M., Muller, K., Skepper, J.N., Midgley, P.A., Welland, M.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007). Bibcode:2007NatNa...2..713P. https://doi.org/10.1038/nnano.2007.347. PMID 18654411

  123. Fatkhutdinova, L.M., Khaliullin, T.O., Vasil'yeva, O.L., Zalyalov, R.R., Mustafin, I.G., Kisin, E.R., Birch, M.E., Yanamala, N., Shvedova, A.A.: Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol. Appl. Pharmacol. 299, 125–131 (2016). https://doi.org/10.1016/j.taap.2016.02.016

    Article  Google Scholar 

  124. Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., et al.: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health. 66, 1909–1926 (2003)

    Article  Google Scholar 

  125. Lee, J.S., Choi, Y.C., Shin, J.H., Lee, J.H., Lee, Y., Park, S.Y., Baek, J.E., Park, J.D., Ahn, K.: Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicol. 9(6), 802–811 (2015). https://doi.org/10.3109/17435390.2014.978404. ISSN 1743-5390. PMID 25395166

  126. Liou, S.-H., Tsai, C.S.J., Pelclova, D., Schubauer-Berigan, M.K., Schulte, P.A.: Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res.. 17(10), 1–19 (2015). https://doi.org/10.1007/s11051-015-3219-7. ISSN 1388-0764. PMC 4666542. PMID 26635494

  127. Grosse, Y.: Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 15(13), 1427–1428 (2014)

    Article  Google Scholar 

  128. Schulte, P.A., Kuempel, E.D., Zumwalde, R.D., Geraci, C.L., Schubauer-Berigan, M.K., Castranova, V., Hodson, L., Murashov, V., Dahm, M.M.: Focused actions to protect carbon nanotube workers. Am. J. Ind. Med. 55(5), 395–411 (2012). https://doi.org/10.1002/ajim.22028. ISSN 1097-0274

    Article  Google Scholar 

  129. Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Natl. Inst. Occup.Saf. Health. 65, 1–156 (2013)

    Google Scholar 

  130. Lacerda, L., Bianco, A., Prato, M., Kostarelos, K.: Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470 (2006)

    Article  Google Scholar 

  131. Pacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S., Schwegler-Berry, D., et al.: Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect. 116, 1211–1217 (2008)

    Article  Google Scholar 

  132. Jacobsen, N.R., Pojana, G., White, P., Moller, P., Cohn, C.A., Korsholm, K.S., et al.: Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta mouse lung epithelial cells. Environm. Mol. Mutagen. 49, 476–487 (2008)

    Article  Google Scholar 

  133. Guo, L., Bussche, A.V.D., Buechner, M., Yan, A., Kane, A.B., Hurt, R.H.: Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small. 4(6), 721–727 (2008)

    Article  Google Scholar 

  134. Glenn, H.: U.S. Launches Inquiry Into Plastic resin Imports. Chem. Eng. News. 93(12), 28 (2015)

    Article  Google Scholar 

  135. Zyvex Technologies. http://zyvextech.com

  136. Edwards, B.C.: The space elevator: a revolutionary earth-to-space transportation system. BC Edwards (2003)

    Google Scholar 

  137. Miaudet, P., Badaire, S., Maugey, M., Derré, A., Pichot, V., Launois, P., Poulin, P., Zakri, C.: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 5(11), 2212–2215 (2005). Bibcode:2005NanoL...5.2212M. https://doi.org/10.1021/nl051419w. PMID 16277455

  138. Li, Y.-L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004). Bibcode:2004Sci...304..276L. https://doi.org/10.1126/science.1094982. PMID 15016960

  139. Pötschke, P., Andres, T., Villmow, T., Pegel, S., Brünig, H., Kobashi, K., Fischer, D., Häussler, L.: Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol. 70(2), 343–349 (2010). https://doi.org/10.1016/j.compscitech.2009.11.005

    Article  Google Scholar 

  140. Chen, P., Kim, H.S., Kwon, S.M., Yun, Y.S., Jin, H.J.: Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Curr. Appl. Phys. 9(2), e96. Bibcode:2009CAP.....9...96C (2009). https://doi.org/10.1016/j.cap.2008.12.038

    Article  Google Scholar 

  141. Coleman, J.N., Khan, U., Blau, W.J., Gun’Ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44(9), 1624–1652 (2006). https://doi.org/10.1016/j.carbon.2006.02.038

    Article  Google Scholar 

  142. Alimohammadi, F., Parvinzadeh, M., Shamei, A.: Carbon nanotube embedded textiles. US20110171413 A1, 14 July 2011

    Google Scholar 

  143. Alimohammadi, F., Parvinzadeh Gashti, M., Shamei, A.: Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J. Coat. Technol. Res. 10, 123–132 (2012). https://doi.org/10.1007/s11998-012-9429-3

    Article  Google Scholar 

  144. Alimohammadi, F., Gashti, M.P., Shamei, A.: A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a cross-linking agent. Prog. Org. Coat. 74(3), 470–478 (2012). https://doi.org/10.1016/j.porgcoat.2012.01.012

    Article  Google Scholar 

  145. Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., Ajayan, P.M.: Direct synthesis of long single-walled carbon nanotube strands. Science. 296, 884 (2002)

    Article  Google Scholar 

  146. Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. 306, 1358 (2004)

    Article  Google Scholar 

  147. Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H.: Strong, transparent, multifunctional, carbon nanotube sheets. Science. 309, 1215 (2005)

    Article  Google Scholar 

  148. Yildirim, T., Gülseren, O., Kılıç, Ç., Ciraci, S.: Pressure-induced interlinking of carbon nanotubes. Phys. Rev. B. 62(19), 19 (2001). arXiv:cond-mat/0008476. Bibcode:2000PhRvB..6212648Y. https://doi.org/10.1103/PhysRevB.62.12648

  149. Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. 306, 1358 (2004)

    Article  Google Scholar 

  150. Behabtu, N., et al.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 339, 182 (2013)

    Article  Google Scholar 

  151. Thoteson, E., Ren, Z., Chou, T.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  152. Delmotte, J.P., Rubio, A.: Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon. 40(10), 1729–1734 (2002)

    Article  Google Scholar 

  153. Chou, T.-W., Gao, L., Thostenson, E.T., Zhang, Z., Byun, J.-H.: Compos. Sci. Technol. 64, 2363 (2004)

    Google Scholar 

  154. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte, K.: Carbon Nanotube-reinforced epoxy composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363 (2004)

    Article  Google Scholar 

  155. Yao, Z., Braidy, N., Botton, G.A., Adronov, A.: Polymerization from the surface of single-walled carbon nanotubes - preparation and characterization of nanocomposites. J. Am. Chem. Soc. 125, 16015 (2003)

    Article  Google Scholar 

  156. Veedu, V.P., et al.: Multifunctional composites using reinforced laminae with carbon-nantube forests. Nat. Mater. 5, 457 (2006)

    Article  Google Scholar 

  157. Garcia, E.J., Wardle, B.L., Hard, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034 (2008)

    Article  Google Scholar 

  158. Seeger, T., Köhler, T., Frauenheim, T., Grobert, N., Rühle, M., et al.: Chem. Commun. 35, 34–35 (2002)

    Google Scholar 

  159. Kashigawa, T., et al.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928 (2005)

    Article  Google Scholar 

  160. Smith, J.: Slicing it extra thin, Tireview, 2005. Available from: http://www.tireview.com

  161. Krishnamoorti, R., Dyke, C.A., Tour, J.M.: To be submitted for publication

    Google Scholar 

  162. Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486 (2009)

    Article  Google Scholar 

  163. Yu, K., Ganhua, L., Zheng, B., Shun, M., Junhong, C.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 1556–1562 (2011). https://doi.org/10.1021/jz200641c

    Article  Google Scholar 

  164. Bourzac, K.: Nano paint could make airplanes invisible to radar, Technology Review. Mit, 5 December 2011

    Google Scholar 

  165. Dai, L., Chang, D.W., Baek, J.-B., Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small. 8, 1130 (2012)

    Article  Google Scholar 

  166. Evanoff, J., et al.: Adv. Mater. 24, 433 (2012)

    Google Scholar 

  167. Sotowa, C., et al.: The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. ChemSusChem. 1, 911 (2008)

    Article  Google Scholar 

  168. Wu, G.T., Wang, C.S., Zhang, X.B., Yang, H.S., Qi, Z.F., Li, W.Z.: Lithium insertion into CuO/carbon nanotubes. J. Power Sources. 75, 175–179 (1998)

    Article  Google Scholar 

  169. Sakamoto, J.S., Dunn, B.: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. Electrochem Soc. 149, A26–A30 (2002)

    Article  Google Scholar 

  170. Gao, B., Bower, C., Lorentzen, J.D., Fleming, L., Kleinhammes, A., Tang, X.P., McNeil, L.E., Wu, Y., Zhou, O.: Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 327, 1–2, (69–75) (2000). Bibcode:2000CPL...327...69G. https://doi.org/10.1016/S0009-2614(00)00851-4

  171. See, Beyond Batteries: Storing Power in a Sheet of Paper, at https://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php (2007). Accessed 2016

  172. Hu, L., Choi, J.W., Yang, Y., Jeong, S., Mantia, F.L., Cui, L.-F., Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad Sci. 106(51), 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106. ISSN 0027-8424. PMC 2799859. PMID 19995965

    Article  Google Scholar 

  173. Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary Li-ion paper batteries. ACS Nano. 4(10), 5843–5848 (2010). https://doi.org/10.1021/nn1018158. ISSN 1936-0851

    Article  Google Scholar 

  174. Chen, Z., To, J.W.F., Wang, C., Lu, Z., Liu, N., Chortos, A., Pan, L., Wei, F., Cui, Y., Boa, Z.: A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 4, 1400207 (2014). https://doi.org/10.1002/aenm.201400207

    Article  Google Scholar 

  175. Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B., Hammond, P.T., Shao-Horn, Y.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010). https://doi.org/10.1038/NNANO.2010.116

    Article  Google Scholar 

  176. Guo, J., Xu, Y., Wang, C.: Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288–4294 (2011)

    Article  Google Scholar 

  177. Endo, M., Hayashi, T., Kim, Y.A., Terrones, M., Dresselhaus, M.S.: Applications of carbon nanotubes in the twenty-first century. R. Soc. 362, 2223–2238 (2004)

    Google Scholar 

  178. Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes–the route toward applications. Science. 297, 787–792 (2002)

    Article  Google Scholar 

  179. Frackowiak, E., Beguin, F.: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon. 40, 1775–1787 (2002)

    Article  Google Scholar 

  180. Ma, R.Z., Liang, J., Wei, B.Q., Zhang, B., Xu, C.L., Wu, D.H.: Processing and performance of electric double-layer capacitors with block-type carbon nanotube electrodes. Bull. Chem. Soc. Jpn. 72, 2563–2566 (1999)

    Article  Google Scholar 

  181. Jurewicz, K., Delpeux, S., Bertagna, V., Be-guin, F., Frackowiak, E.: Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 347, 36–40 (2001)

    Article  Google Scholar 

  182. Schnorr, J.M., Swager, T.M.: Emerging applications of carbon nanotubes. Chemistry of Materials. 23(2), 646–657 (2011)

    Article  Google Scholar 

  183. Wee, G., Mak, W.F., Phonthammachai, N., Kiebele, A., Reddy, M.V., Chowdari, B.V.R., Gruner, G., Srinivasan, M., Mhaisalkar, S.G.: J. Electrochem. Soc. 157, A179 (2010)

    Google Scholar 

  184. Xie, X., Gao, L.: Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon. 45, 2365 (2007)

    Article  Google Scholar 

  185. Zhou, Y.-k., He, B.-l., Zhou, W.-j., Huang, J., Li, X.-h., Wu, B., Li, H.-L.: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta. 49, 257 (2004)

    Article  Google Scholar 

  186. Khomenko, V., Frackowiak, E., Béguin, F.: Electrochim. Acta. 50, 2499 (2005)

    Google Scholar 

  187. M. H. van der Veen et al.: Paper presented at the 2012, IEEE international interconnect technology conference, San Jose, CA, 4 to 6 June 2012

    Google Scholar 

  188. Liu, C., Bard, A.J., Wudl, F., Weitz, I., Heath, J.R.: Electrochemical characterization of films of single-walled carbon nonotubes and their possible application in supercapacitors. Electrochem. Solid-State Lett. 2(11), 577–578 (1999)

    Article  Google Scholar 

  189. Gong, K., Du, F., Xia, M., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 323, 760 (2009)

    Article  Google Scholar 

  190. Matsumoto, T., et al.: Science 2004, 840 (2011)

    Google Scholar 

  191. Le Goff, A., et al.: From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science. 326, 1384 (2009)

    Article  Google Scholar 

  192. Lee, J.M., et al.: Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv. Mater. 23, 629 (2011)

    Article  Google Scholar 

  193. Gabor, N.M., Zhong, Z., Bosnick, K., Park, J., McEuen, P.L.: Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science. 325, 1367 (2009)

    Article  Google Scholar 

  194. Ajayan, P., Zhou, O.: Applications of carbon nanotubes, carbon nanotubes. Top. Appl. Phys. 80, 391–425 (2001)

    Article  Google Scholar 

  195. Pederson, B. M.: J. Phys. Rev. Lett. 69(2689), 405 (1992)

    Google Scholar 

  196. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature. 386(6623), 377–379. Bibcode:1997Natur.386..377D (1997). https://doi.org/10.1038/386377a0

    Article  Google Scholar 

  197. Jhi, S.H., Kwon, Y.K., Bradley, K., Gabriel, J.C.P.: Hydrogen storage by physisorption: beyond carbon. Solid State Commun. 129(12), 769–773. Bibcode:2004SSCom.129..769J (2004). https://doi.org/10.1016/j.ssc.2003.12.032

    Article  Google Scholar 

  198. Vohrer, U., et al.: Carbon nanotube sheets for the use as artificial muscles. Carbon. 42, 1159 (2004). https://doi.org/10.1016/j.carbon.2003.12.044

    Article  Google Scholar 

  199. Chang, T., Guo, Z.: Temperature-induced reversible dominoes in carbon nanotubes. Nano Lett. 10(1021), 101623 (2010)

    Google Scholar 

  200. Baughman, R.H., et al.: Carbon nano actuators. Science. 284(5418), 1340 (1999)

    Article  Google Scholar 

  201. Spinks, G.M., et al.: Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728 (2002)

    Article  Google Scholar 

  202. Aliev, A.E., et al.: Giant-stroke, superelastic carbon nanotube aerogel muscles. Science. 323(5921), 1575–1578 (2009)

    Article  Google Scholar 

  203. Madden, D.W.: Materials science: stiffer than steel. Science. 323(5921), 1571–1572 (2009)

    Article  Google Scholar 

  204. Yuzvinsky, T.: Nanotube nanomotor, tailoring carbon nanotubes. https://users.soe.ucsc.edu/~yuzviknsy/research/nanomotor.php. Accessed 30 Sept 2016

  205. Berger, M.: Speeding up catalytic nanomotors with carbon nanotubes. Nano Werk [Online]. http://www.nanowerk.com/spotlight/spotid=5553.php (2008). Accessed 30 Sept 2016

  206. Laocharoensuk, R., Burdick, J., Wang, J.: Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano. 2(5), 1069–1075 (2008)

    Article  Google Scholar 

  207. Bailey, S.W.D., Amanatidis, I., Lambert, C.J.: Carbon nanotube electron windmills: a novel design for nanomotors. Phys. Rev. Lett. 100, 256802 (2008)

    Article  Google Scholar 

  208. Baugham, R., Zakhidov, A., Heer, W.: Carbon nanotubes – the route toward applications. Science. 297, 787–792 (2002)

    Article  Google Scholar 

  209. Tang, Z.K., et al.: Science. 292, 2462 (2001)

    Article  Google Scholar 

  210. Tennent, H.G.: Carbon fibrils, method for producing same and compositions containing same. US 4663230 A, 5 May 1987

    Google Scholar 

  211. Kong, N.R., Franklin, C., Zhou M.C., Chapline, S., Peng, K., Cho, H.D.: Science 287(622), 406–15 (2000)

    Google Scholar 

  212. Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., et al.: Nanotube molecular wires as chemical sensors. Science. 287, 622–625 (2000)

    Article  Google Scholar 

  213. Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C., Grimes, C.A.: Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B. 81, 32–41 (2001)

    Article  Google Scholar 

  214. Valentini, L., Cantalini, C., Lozzi, L., Armanetano, I., Kenny, J. M., Santucci, S.: Mater. Sci. Eng. C 23, 523 (2003)

    Google Scholar 

  215. Valentini, L., Cantalini, C., Lozzi, L., Armanetano, I., Kenny, J. M., Santucci, S.: Sens. Actuators B 93, 333 (2003)

    Google Scholar 

  216. Valentini, L., Cantalini, C., Lozzi, L., Armanetano, I., Kenny, J.M., Santucci, S.: J. Eur. Ceram. Soc. 24,1405 (2004)

    Google Scholar 

  217. Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S., Cho, K.J.: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3, 347 (2003)

    Article  Google Scholar 

  218. Ahn, K.S., Kim, J.H., Lee, K.N., Kim, C.O., Hong, J.P.: Multi-wall carbon nanotubes as a high-efficiency gas sensor. J. Korean Phys. Soc. 45, 158 (2004)

    Google Scholar 

  219. Valentini, L., Bavastrello, V., Stura, E., Armanetano, I., Nicolini, C., Kenny, J.M.: Chem. Phys. Lett. 383, 617 (2004)

    Google Scholar 

  220. He, J.-B., Chen, C.-L., Li, J.-H.: Sens. Actuators B 99, 1 (2004)

    Google Scholar 

  221. Wong, Y.M., Kang, W.P., Davidson, J.L., Wisitsora-at, A., Soh, K.L.: Sens. Actuators B 93, 327 (2003)

    Google Scholar 

  222. Suehiro, J., Zhou, G.B., Hara, M.: J. Phys. D. 36, L109 (2003)

    Google Scholar 

  223. Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C., Grimes, C.A.: Sens. Actuators B 81, 32 (2001)

    Google Scholar 

  224. Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science. 307, 1942 (2005)

    Article  Google Scholar 

  225. Esser, B., Schnoor, J.M., Swager T.M.: Angew Chem. Int. Ed. 51, 5752 (2012)

    Google Scholar 

  226. Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of singlewalled carbon nanotubes. Appl. Phys. Lett. 83, 4026 (2003)

    Article  Google Scholar 

  227. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M.: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929 (2003)

    Article  Google Scholar 

  228. Valentini, L., Armentano, I., Kenny, J.M., Cantalini, C., Lozzi, L., Santucci, S.: Sensors for sub-ppm NO 2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 82, 961 (2003)

    Article  Google Scholar 

  229. Mubeen, S., Zhang, T., Yoo, B., Deshusses, M.A., Myung, N.V.: Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J. Phys. Chem. C. 111, 6321 (2007)

    Article  Google Scholar 

  230. Sun, Y., Wang, H.: High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Adv. Mater. 19, 2818 (2007)

    Article  Google Scholar 

  231. Sun, Y., Wang, H.: Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, 213107 (2007)

    Article  Google Scholar 

  232. Lu, Y.J., Li, J., Han, J., Ng, H.T., Binder, C., Partridge, C., Meyyappan, M.: Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344 (2004)

    Article  Google Scholar 

  233. Star, A., Han, T.R., Joshi, V., Gabriel, J.C.P., Gruner, G.: Nanoelectronic carbon dioxide sensors. Adv. Mater. 16, 2049 (2004)

    Article  Google Scholar 

  234. Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.C.P.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B. 110, 21014 (2006)

    Article  Google Scholar 

  235. Lee, H., Naishadham, K., Tentzeris, M.M., Shaker, G.: A novel highly-sensitive antenna-based ‘smart skin’ bas sensor utilizing carbon nano tubes and inkjet printing, pp. 1593–1596 (2011)

    Google Scholar 

  236. Chopra, S., Pham, A., Gaillard, J., Parker, A., Rao, A.M.: Appl. Hys. Lett. 80, 4632–34 (2002)

    Google Scholar 

  237. Rubianes, M.D., Rivas, G.A.: Electrochem. Commun. 5, 689 (2003)

    Google Scholar 

  238. Farajian, A., Yakobson, B., Mizeseki, H., Kawazoe, Y.: Electronic transport through bent carbon nanotubes: nanoelectromechanical sensors and switches. Phys Rev. 67, 1–6 (2003)

    Article  Google Scholar 

  239. Gao, M., Dai, L.M., Wallace, G.G.: Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis. 15, 1089 (2003)

    Article  Google Scholar 

  240. Star, A., et al.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. U.S.A. 103, 921 (2006)

    Article  Google Scholar 

  241. Trojanowicz, M., Mulchandani, A., Mascini, M.: Carbon nanotubesmodified screen-printed electrodes for chemical sensors and biosensors. Anal. Lett. 37, 3185 (2004)

    Article  Google Scholar 

  242. Britto, P.J., Santhanam, K.S.V., Ajayan, P.M.: Carbon nanotube electrode for oxidation of dopamine. Bielectrochem. Bioenerg. 41, 121 (1996)

    Article  Google Scholar 

  243. Zhang, M., Smith, A., Gorski, W.: Anal. Chem. 76, 1083 (2004)

    Google Scholar 

  244. Xu, J.Z., Zhu, J.J., Wu, Q., Hu, Z., Chen, H.Y.: An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis (NY). 15, 219 (2003)

    Article  Google Scholar 

  245. Jiang, L.-C., Zhang, W.-D.: A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402 (2010)

    Article  Google Scholar 

  246. Pérez López, B., Merkoçi, A.: Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst. 134, 60 (2009)

    Article  Google Scholar 

  247. Zhao, Y., Gao, Y., Zhan, D., Liu, H., Zhao, Q., Kou, Y., Shao, Y., Li, M., Zhuang, Q., Zhu, Z.: Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta. 66, 51 (2005)

    Article  Google Scholar 

  248. Guo, M., Chen, J., Li, J., Tao, B., Yao, S.: Anal. Chem. Acta 532, 71 (2005)

    Google Scholar 

  249. Mancuso, S., Marras, A.M., Magnus, V., Baluska, F.: Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal. Biochem. 341, 344 (2003)

    Article  Google Scholar 

  250. Hun, C.G., Wang, W.L., Wang, S.X., Zhu, W., Li, Y.: Investigation on electrochemical properties of carbon nanotubes. Diamond Relat. Mat. 12, 1295 (2003)

    Article  Google Scholar 

  251. Wang, S.-F., Xu, Q.: Square wave voltammetry determination of brucine at multiwall carbon nanotube-modified glassy carbon electrodes. Anal. Lett. 38, 657 (2005)

    Article  Google Scholar 

  252. Gong, K.P., Dong, Y., Xiong, S.X., Chen, Y., Mao, L.: Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosens. Bioelectron. 20, 253 (2004)

    Article  Google Scholar 

  253. Deo, R.P., Wang, J.: Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes. Electrochem. Commun. 6, 284 (2004)

    Article  Google Scholar 

  254. Ye, J.S., We, Y., De Zhang, W., Gan, L.M., Xu, G.Q., Sheu, F.S.: Electroanalysis (NY) 15, 1693 (2003)

    Google Scholar 

  255. Zhao, G., Zang, S.Q., Liu, K.Z., Lin, S., Liang, J., Guo, X.Y., Zhang, Z.J.: Determination of trace xanthine by anodic stripping voltammetry with carbon nanotube modified glassy carbon electrode. Anal. Lett. 35, 2233 (2002)

    Article  Google Scholar 

  256. Zhao, G., Liu, K.Z., Lin, S., Liang, J., Guo, X.Y., Zhang, Z.J.: Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine. Microchim. Acta. 143, 255 (2003)

    Article  Google Scholar 

  257. Zeng, B.Z., Huang, F.: Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modified gold electrodes. Talanta. 64, 380 (2004)

    Article  Google Scholar 

  258. Yang, C.H.: Microchem. Acta 148, 87 (2004)

    Google Scholar 

  259. Britto, P.J., Santhanam, K.S.V., Ajayan, P.M.: Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41, 121 (1996)

    Article  Google Scholar 

  260. Wang, Z.H., Liu, J., Liang, Q.L., Wang, Y.M., Luo, G.: Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst. 127, 653 (2002)

    Article  Google Scholar 

  261. Rubianes, M.D., Rivas, G.A.: Carbon nanotubes paste electrode. Electrochem. Commun. 5, 689 (2003)

    Article  Google Scholar 

  262. Wang, J.X., Li, M.X., Shi, Z.J., Li, N.Q., Gu, Z.N.: Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis. 14, 225 (2002)

    Article  Google Scholar 

  263. Moore, R.R., Banks, C.E., Compton, R.G.: Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal. Chem. 76, 2677 (2004)

    Article  Google Scholar 

  264. Valentini, F., Amine, A., Orlanducci, S., Terranova, M.L., Palleschi, G.: Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal. Chem. 75, 5413 (2003)

    Article  Google Scholar 

  265. Wang, J., Musameh, M.: Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 75, 2075 (2003)

    Article  Google Scholar 

  266. Wang, J., Musameh, M.: Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125, 2408 (2003)

    Article  Google Scholar 

  267. Rubianes, M.D., Rivas, G.A.: Carbon nanotubes paste electrode. Electrochem. Commun. 5, 689 (2003)

    Article  Google Scholar 

  268. Wang, J.: Carbon-nanotube based electrochemical biosensers: a review. Electroanalysis. 17(1), 7–14 (2005)

    Article  Google Scholar 

  269. Wang, J., Musameh, M.: Carbon nanotube screen-printed electrochemical sensors. Analyst. 129, 1 (2004)

    Article  Google Scholar 

  270. Lin, Y., Lu, F., Wang, J.: Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis. 16, 145 (2004)

    Article  Google Scholar 

  271. Patolsky, F., Weizmann, Y., Willner, I.: Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem., Int. Ed. Engl. 43, 2113 (2004)

    Article  Google Scholar 

  272. Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010 (2004)

    Article  Google Scholar 

  273. Cheng, G., Zhao, J., Tu, Y., He, P., Fang, Y.: A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal. Chim. Acta. 533, 11 (2005)

    Article  Google Scholar 

  274. Koehne, J.E., Chen, H., Cassell, A.M., Ye, Q., Han, J., Meyyappan, M., Li, J.: Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin. Chem. 50, 1886 (2004)

    Article  Google Scholar 

  275. Zhang, X., Jiao, K., Liu, S., Hu, Y.: Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 81, 6006 (2009)

    Article  Google Scholar 

  276. Staii, C., Johnson, A.T., Chen, M., Gelperin, A.: DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774 (2005)

    Article  Google Scholar 

  277. Wang, J., Kawde, A., Mustafa, M.: Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst. 128, 912 (2003)

    Article  Google Scholar 

  278. Pedano, M., Rivas, G.A.: Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem. Commun. 6, 10 (2004)

    Article  Google Scholar 

  279. Wang, J., Li, M., Shi, Z., Li, N., Gu, Z.: Electroanalysis 16, 140 (2004)

    Google Scholar 

  280. Gooding, J.J.: Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta. 50, 3049–3060 (2005)

    Article  Google Scholar 

  281. Li, J., Ng, H.T., Cassell, A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., Meyyappan, M.: Carbon nanotube nanoelectrode array for ultrasensitive dna detection. Nano Lett. 3, 597 (2003)

    Article  Google Scholar 

  282. Nguyen, C.V., Delzeit, L., Cassell, A.M., Li, J., Han, J., Meyyappan, M.: Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2, 1079 (2002)

    Article  Google Scholar 

  283. Koehne, J., Chen, H., Li, J., Cassell, A.M., Ye, Q., Ng, H.T., Han, J., Meyyappan, M.: Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnol. 14, 1239 (2003)

    Article  Google Scholar 

  284. Koehne, J., Li, J., Cassell, A.M., Chen, H., Ye, Q., Ng, H.T., Han, J., Meyyappan, M.: The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Mater. Chem. 14, 676 (2004)

    Article  Google Scholar 

  285. Johnston, D.H., Glasgow, K.C., Thorp, H.H.: Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J. An. Chem. Soc. 117, 8933 (1995)

    Article  Google Scholar 

  286. Thorp, H.H.: TIBTECH 16, 117 (1998)

    Google Scholar 

  287. Gooding, J.J.: Electrochemical DNA hybridization biosensors. Electroanalysis. 14, 1149 (2002)

    Article  Google Scholar 

  288. Tran, H.V., Piro, B., Reisberg, S., Tran, L.D., Duc, H.T., Pham, M.C.: Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosens. Bioelectro. 49, 164–169 (2013)

    Article  Google Scholar 

  289. Star, A., Gabriel, J.C.P., Bradley, K., Gruner, G.: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003)

    Article  Google Scholar 

  290. Boussaad, S., Tao, N., Zhang, N.J., Zhang, R., Hopson, T., Nagahara, L.A.: In Situ detection of cyto chrome adsorption with single walled carbon nanotube device. Chem. Commun. 9, 1502–1503 (2003)

    Article  Google Scholar 

  291. Forzani, E.S., Li, X.L., Zhang, P.M., Tai, N.J., Zhang, R., Amlani, I., Tsui, R., Nagahara, L.A.: Turning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. Small. 2, 1283–1291 (2006)

    Article  Google Scholar 

  292. Gooding, J.J., Wibowo, R., Liu, J.Q., Yang, W.R., Losic, D., Orbons, S., Mearns, F.J., Shapter, J.G., Hibbert, D.B.: Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006–9007 (2003)

    Article  Google Scholar 

  293. Yu, X., et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006)

    Article  Google Scholar 

  294. Besterman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A., Dekker, C.: Nano Lett. 3, 727 (2003)

    Google Scholar 

  295. So, H.M., Won, J., Kim, Y.H., Kim, B.K., Ryu, B.H., Na, P.S., Kim, H., Lee, J.O.: Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906 (2007)

    Article  Google Scholar 

  296. So, H.M., Park, D.W., Jeon, E.K., Kim, Y.H., Kim, B.S., Lee, C.K., Choi, S.Y., Kim, S.C., Chang, J., Lee, J.O.: Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small. 4, 197 (2008)

    Article  Google Scholar 

  297. Yoon, H., Kim, J.H., Lee, N., Kim, B.G., Jang, J.: A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem. 9, 634 (2008)

    Article  Google Scholar 

  298. Wohlstadter, J.N., Wilbur, J.L., Sigal, G.B., Biebuyck, H.A., Billadeau, L.W., Dong, L.W., Fischer, A.B., Gudbande, S.R., Jamieson, S.H., Kenten, J.H., Leginus, J., Leland, J.K., Massey, R.J., Wohlstadter, S.J.: Carbon nanotube-based biosensor. Adv. Mater. 15, 1184 (2003)

    Article  Google Scholar 

  299. Sánchez, S., Pumera, M., Fabregas, E.: Biosens. Biolectron. 22, 332 (2007)

    Google Scholar 

  300. Sánchez, S., Roldán, M., Pérez, S., Fabregas, E.: Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of hCG hormone. Anal. Chem. 80, 6508 (2008)

    Article  Google Scholar 

  301. Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chem. Eur. J. 15, 4970–4978 (2009)

    Article  Google Scholar 

  302. Musameh, M., Wang, J., Merkoci, A., Lin, Y.: Low-potential stable nadh detection at carbon -nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4, 743 (2002)

    Article  Google Scholar 

  303. Campbell, J.K., Sun, L., Crooks, R.M.: Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779 (1999)

    Article  Google Scholar 

  304. Heller, I., Kong, J., Heering, H.A., Williams, K.A., Lemao, S.G., Dekker, C.: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137 (2005)

    Article  Google Scholar 

  305. Zhang, C., Wang, G., Liu, M., Feng, Y., Zhang, Z., Fang, B.: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Electrochim. Acta. 55, 2835 (2010)

    Article  Google Scholar 

  306. Kong, L., Wang, J., Luo, T., Meng, F., Chen, X., Li, M., Liu, J.: Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst. 135, 368 (2010)

    Article  Google Scholar 

  307. Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of singlewalled carbon nanotubes. Appl. Phys. Lett. 83, 4026 (2003)

    Article  Google Scholar 

  308. Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soci. 126, 15638–15639 (2004)

    Article  Google Scholar 

  309. Welsher, K., Sherlock, S.P., Dai, H.: Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proceedings of the National Academy of Sciences. 108(22), 8943–8948 (2011)

    Article  Google Scholar 

  310. Heller, D.A., Baik, S., Eurell, T.E., Strano, M.S.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793 (2005)

    Article  Google Scholar 

  311. Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P., Braet, F.: Carbon nanotubes for biological and biomedical applications. Nanotechnol. 18(412001), 1–12 (2007)

    Google Scholar 

  312. Kam, N.W.S., O’Connell, M., Wisdom, J.A., Dai, H.J.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA. 102, 11600–11605 (2005)

    Article  Google Scholar 

  313. Pantarotto, D., Briand, J.P., Prato, M., Bianco, A.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb). (1), 16–17 (2004)

    Google Scholar 

  314. Bhandavat, R., Feldman, A., Cromer, C., Lehman, J., Singh, G.: Very high laser-damage threshold of polymer-derived Si(B)CN- carbon nanotube composite coatings. ACS Appl. Mater Interfaces. 5(7), 2354–2359 (2013). https://doi.org/10.1021/am302755x

    Article  Google Scholar 

  315. Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as nanoprobes in scanning probe microscopy. Nature. 384, 147–150 (1996)

    Article  Google Scholar 

  316. Yumura, M.: Carbon nanotube industrial applications. Res. Cent. Adv. Carbon Mater. 10, (2004)

    Google Scholar 

  317. Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science. 286, 2148 (1999)

    Article  Google Scholar 

  318. Chen, H.-W., Wu, R.-J., Chan, K.-H., Sun, Y.-L., Su, P.-G.: Sens. Actuators B 104, 80 (2005)

    Google Scholar 

  319. Penza, M., Antolini, F., Antisari, M.V.: Sens. Actuators B 100, 47 (2004)

    Google Scholar 

  320. Sumanasekera, G.U., Pradham, B.K., Adu, C.K.W., Romero, H.E., Foley, H.C., Eklund, P.C.: Mol. Cryst. Liq. Cryst. 387, 255 (2002)

    Google Scholar 

  321. Modi, A., Koratkar, N., Lass, E., Wei, B.Q., Ajayan, P.M.: Miniaturized gas ionization sensors using carbon nanotubes. Nature (London). 424, 171 (2003)

    Article  Google Scholar 

  322. Dharap, P., Zhiling, L., Nagarajaiah, S., Barrera, E.V.: Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnol. 15, 379–382 (2004)

    Article  Google Scholar 

  323. Lee, C., Liu, X., Zhou, C.: Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79(20), (2001)

    Google Scholar 

  324. De La Zerda, A., et al.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557 (2008)

    Article  Google Scholar 

  325. Shi Kam, N.W., Jessop, T.C., Wender, P.A., Dai, H.: Nanotube molecular transporters: internalization of carbon nanotube-proteinconjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Article  Google Scholar 

  326. Cai, D., Mataraza, J.M., Qin, Z.H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454 (2005)

    Article  Google Scholar 

  327. Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)

    Article  Google Scholar 

  328. Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005)

    Article  Google Scholar 

  329. Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45, 577–581 (2006)

    Article  Google Scholar 

  330. Shao, N., Lu, S.X., Wickstrom, E., Panchapakesan, B.: Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnol. 18, 315101 (2007)

    Article  Google Scholar 

  331. Guiseppi-Elie, A., Lei, C.H., Baughman, R.H.: Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol. 13, 559–564 (2002)

    Article  Google Scholar 

  332. Pantarotto, D., Partidos, C.D., Graff, R., Hoebeke, J., Briand, J.P., Prato, M., Bianco, A.: Synthesis, Structural characterization and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160–6164 (2003)

    Article  Google Scholar 

  333. Liu, Z., Winters, M., Holodniy, M., Dai, H.J.: siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)

    Article  Google Scholar 

  334. Dean, D.A., Strong, D.D., Zimmer, W.E.: Nuclear entry of nonviral vectors. Gene. Ther. 12, 881–890 (2005)

    Article  Google Scholar 

  335. Luo, D.: A new solution for improving gene delivery. Trends Biotechnol. 22, 101–103 (2004)

    Article  Google Scholar 

  336. Schmidt-Wolf, G.D., Schmidt-Wolf, I.G.: Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol. Med. 9, 67–72 (2003)

    Article  Google Scholar 

  337. Chaudhuri, A. (ed.): Special issue: cationic transfection lipids. Curr. Med. Chem. 10, 1185–1315 (2003)

    Google Scholar 

  338. Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J.P., Prato, M., Kostarelos, K., Bianco, A.: Functionalised carbon nanotubes for plasmid DNA gene delivery. Angew Chem. Int. Ed. Engl. 43, 5242–5246 (2004)

    Article  Google Scholar 

  339. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partido, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: towards the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005)

    Article  Google Scholar 

  340. Bianco, A., Hoebek, E.J., Godefroy, S., Chaloin, O., Pantarotto, D., Briand, J.P., Muller, S., Prato, M., Partidos, C.D.: Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 127, 58–59 (2005)

    Article  Google Scholar 

  341. Lu, Q., Moore, J.M., Huang, G., Mount, A.S., Rao, A.M., Larcom, L.L., Ke, P.C.: RNA polymer translocation with single-walled carbon nanotubes. Nano. Lett. 4, 2473–2477 (2004)

    Article  Google Scholar 

  342. Wu, W., Wieckowski, S., Pastorin, G., Klumpp, C., Benincasa, M., Briand, J.P., Gennaro, R., Prato, M., Bianco, A.: Targeted delivery of amphotericin B to cells using functionalised carbon nanotubes. Angew Chem. Int. Ed. Engl. 44(39), 6358–6352 (2005., in press). https://doi.org/10.1002/anie.200501613

    Article  Google Scholar 

  343. Yinghuai, Z., Peng, A.T., Carpenter, K., Maguire, J.A., Hosmane, N.S., Takagaki, M.: Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc. 127, 9875–9880 (2005)

    Article  Google Scholar 

  344. Murakami, T., Ajima, K., Miyawaki, J., Yudasaka, M., Iijima, S., Shibe, K.: Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 399–405 (2004)

    Google Scholar 

  345. Liu, Z., Sun, X., Jakayama-Ratchford, N., Dai, H.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 1, 50 (2007)

    Article  Google Scholar 

  346. Matson, M.L., Wilson, L.J.: Nanotechnology and MRI contrast enhancement. Future Med. Chem. 2(3), 491–502 (2010). https://doi.org/10.4155/fmc.10.3. PMID 21426177

  347. Wang, J.X., Li, M.X., Shi, Z.J., Li, N.Q., Gu, Z.N.: Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 74, 1993 (2002)

    Article  Google Scholar 

  348. Davis, J.J., Coles, R.J., Hill, H.A.O.: Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 440, 279 (1997)

    Google Scholar 

  349. Wang, G., Xu, J.J., Chen, H.Y.: Interfacing cytochrome c to electrodes with a DNA—carbon nanotube composite film. Electrochem. Commun. 4, 506 (2002)

    Article  Google Scholar 

  350. Zhao, G.C., Zhang, L., Wei, X. W., Yang, Z.S.: Electrochem. Commun. 5, 825 (2003)

    Google Scholar 

  351. Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., Rusling, J.F.: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochemical. Commun. 5, 408 (2003)

    Article  Google Scholar 

  352. Wang, L., Wang, J.X., Zhou, F.M.: Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis. 16, 627 (2004)

    Article  Google Scholar 

  353. Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009)

    Article  Google Scholar 

  354. Kocabas, C., Pimparkar, N., Yesilyurt, O., Kang, S.J., Alam, M.A., Rogers, J.A.: Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7(5), 1195–1202 (2007)

    Article  Google Scholar 

  355. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube transistors. Nature. 424, 654–657 (2003)

    Article  Google Scholar 

  356. Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular trasnisters and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319–1322 (2004)

    Article  Google Scholar 

  357. Gabriel, J.-C.P.: 2d Random networks of carbon nanotubes. C.R. Phys. 11(5–6), 362–374 (2010)

    Article  Google Scholar 

  358. Gabriel, J.-C.P.: Large scale production of carbon nanotube transistors: a generic platforms for chemical sensors. Mat. Res. Soc. Symp. Proc. 762, Q.12.7.1 (2003)

    Google Scholar 

  359. Nanomix Elab System: Fast and fully automated point of care diagnostic system. http://www.nano.com. Accessed 30 Sept 2016

  360. Gabriel, J.-C.P.: Dispersed growth of nanotubes on a substrate, Patent WO 2004040671A2, 10 Aug 2005

    Google Scholar 

  361. Bradley, K., Gabriel, J.-C.P., Grüner, G.: Flexible nanotube transistors. Nano Lett. 3(10), 1353–1355 (2003)

    Article  Google Scholar 

  362. Armitage, P. N., Bradley, K., Gabriel, J. -C. P., Grüner, G.: Flexible nanostructure electronic devices. US 8456074, 25 Aug 2005.

    Google Scholar 

  363. Franklin, A.D., et al.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758 (2012)

    Article  Google Scholar 

  364. Cao, Q., et al.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature. 454, 495 (2008)

    Article  Google Scholar 

  365. Park, H., et al.: High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7, 787 (2012)

    Article  Google Scholar 

  366. McCarthy, M.A., et al.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science. 332, 570 (2011)

    Article  Google Scholar 

  367. Cao, Q., Kim, H.S., Pimparkar, N., Kulkarni, J.P., Wang, C.J., Shim, M., Roy, K., Alam, M.A., Rogers, J.A.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature. 454, 495 (2008)

    Article  Google Scholar 

  368. Kocabas, C., Kim, H.S., Banks, T., Rogers, J.A., Pesetski, A.A., Baumgardner, J.E., Krishnaswamy, S.V., Zhang, H.: Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U.S.A. 105, 1405 (2008)

    Article  Google Scholar 

  369. Chimot, N., Derycke, V., Goffman, M.F., Bourgoin, J.P., Happy, H., Dambrine, G.: Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 91, 153111 (2007)

    Article  Google Scholar 

  370. Kang, S.J., Kocabas, C., Kim, H.S., Cao, Q., Meitl, M.A., Khang, D.Y., Rogers, J.A.: Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano. Lett. 7, 3343 (2007)

    Article  Google Scholar 

  371. Katz, E., Willner, I.: Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem. 5(8), 1084–1104 (2004)

    Article  Google Scholar 

  372. Rinzler, A., Hafner, J.H., Nikolaev, P., Lou, L., Kim, D.G., et al.: Unraveling nanotubes: field emission from an atomic wire. Science. 269, 1550–1553 (1995)

    Article  Google Scholar 

  373. Saito, Y., Hamaguchi, K., Hata, K., Uchida, K., Tasaka, Y., et al.: Conical beams from open nanotubes. Nature. 389, 554–555 (1997)

    Article  Google Scholar 

  374. De Vita, A., Charlier J.C., Blase, X., Car, R.: Appl. Phys. A 68, 283–86 (1999)

    Google Scholar 

  375. Saito, Y., Uemura, S., Hamaguchi, K.: Jpn. J. Appl. Phys. 37, L346–48 (1998)

    Google Scholar 

  376. Sugie, H., Tanemura, M., Filip, V., Iwata, K., Takahashi, K., Okuyama, F.: Carbon nanotubes as electron source in an x-ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001)

    Article  Google Scholar 

  377. Lee, N.S., Chung, D.S., Han, I.T., Kang, J.H., Choi, Y.S., Kim, H.Y., Park, S.H., Jin, Y.W., Yi, W.K., Yun, M.J., Jung, J.E., Lee, C.J., You, J.H., Jo, S.H., Lee, C.G., Kim, J.M.: Application of carbon nanotubes to field emission displays. Diamond Relat. Mater. 10, 265–270 (2001)

    Article  Google Scholar 

  378. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. App. Phys. Lett. 75(20), 3129–3131 (1999)

    Article  Google Scholar 

  379. Lee, Y.H., Lim, S.C., An, K.H., Kim, W.S., Jeong, H.J., et al.: New Diamond Front. Carbon Technol. 12, 181–207 (2002)

    Google Scholar 

  380. Endo, M., Kim, C., Nishimura, K., Fujino, T., Miyashita, K.: Carbon 38, 183–197 (2000)

    Google Scholar 

  381. Rotman, D.: Tech. Rev. 38–45 (2002)

    Google Scholar 

  382. Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.H.: Appl. Phys. Lett. 72(2912), 499–400.1998,

    Google Scholar 

  383. Yue, G.Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., et al.: Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81, 355–357 (2002)

    Article  Google Scholar 

  384. Lee, N.S., Chung, d.S., Han, I.T., Kang, J.H., Choi, Y.S., et al.: Application of carbon nanotubes to field emission displays. Diamond Rel. Mater. 10, 265–270 (2001)

    Article  Google Scholar 

  385. Wu, Z., et al.: Transparent, conductive carbon nanotube films. Science. 305, 1273 (2004)

    Article  Google Scholar 

  386. De, S., Coleman, J.N.: The effects of percolation in nanostructured transparent conductors. MRS Bull. 36, 774 (2011)

    Article  Google Scholar 

  387. Polytechnic University of Catalonia: Transparent conductive coatings based on carbon nanotubes. https://upcommons.upc.edu/bitstream/handle/2099.1/6114/Transparent%20Conductive%20C...%20based%20on%20Carbon%20Nanotubes.pdf;sequence=1. Accessed 4 Oct 2016

  388. Pennsylvania State University: Carbon nanotube based transparent conductive coatings. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.5774&rep=rep1&type=pdf. Accessed 4 Oct 2016

  389. Berkei, M.: Conductive coatings using carbon nanotubes: a fascinating material for the coating producer’s toolbox. Chemicals. 7–8, 10 (2011)

    Google Scholar 

  390. Akhmadishina, K.F., Bobrinetskii, I.I., Ibragimov, R.A., Komarov, I.A., Malovichko, A.M., Nevolin, V.K., Petukhov, V.A.: Fabrication of flexible transparent conductive coatings based on single-walled carbon nanotubes. Inorganic Materials. 50(1), 23–28 (2014)

    Article  Google Scholar 

  391. Janas, D., Herman, A.P., Boncel, S., Koziol, K.K.: Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon. 73, 225–233 (2014)

    Article  Google Scholar 

  392. Yao, Z., Wei, J., Vajtai, R., Ajayan, P.M., Barrera, E.V.: Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. (Nature). 1, 83 (2011)

    Article  Google Scholar 

  393. Subramaniam, C., Yamada, T., Kobashi, K., Sekiguchi, A., Futaba, D.N., Yumura, M., Hata, K.: One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 4, (2013)

    Google Scholar 

  394. Hamada, N., Sawada, A., Oshiyama, A.: A new one-dimensional conductor: graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992)

    Article  Google Scholar 

  395. Geerligs, L.J., Harmans, C.J., Kouwenhoven, L.P.: The physics of few-electron nanostructures. North-Holland, Amsterdam (1993)

    Google Scholar 

  396. Ando, T.: Theory of Electronic States and Transport in Carbon Nanotubes. J. Phys. Soc. Jpn. 74(3), 777–817 (2005)

    Article  Google Scholar 

  397. Akera, H., Ando, T.: Phys. Rev. B. 43, 11676 (1991)

    Google Scholar 

  398. Dekker, C.: Carbon nanotubes as molecular quantum wires. Phys. Today. 52(5), 22–28 (1999)

    Article  Google Scholar 

  399. White, C.T., Todorov, T.N.: Carbon nanotubes as long ballistic conductors. Nature. 393, 240 (1998)

    Article  Google Scholar 

  400. Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhögl, W., Liebau, M., Unger, E., Hönlein, W.: Carbon nanotubes in interconnect applications. Microelectron. Eng. 64, 399 (2002)

    Article  Google Scholar 

  401. Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D., Wang, J.N., Chan, C.T., Sheng, P.: Superconductivity in 4 angstrom single-walled carbon nanotubes. Science. 292, 2462–2465 (2001)

    Article  Google Scholar 

  402. Camilli, L., Pisani, C., Gautron, E., Scarselli, M., Castrucci, P., D’Orazio, F., Passacantando, M., Moscone, D., De Crescenzi, M.: A three-dimensional carbon nanotube network for water treatment. Nanotechnol. 25(6), 1–3 (2014)

    Article  Google Scholar 

  403. Hashim, D.P., Narayanan, N.T., Romo-Herrera, J.M., Cullen, D.A., Hahm, M.H., Lezzi, P., Suttle, J.R., Kelkhoff, D., Muñoz-Sandoval, E., Ganguli, S., Roy, A.K., Smith, D.J., Vajtai, R., Sumpter, B.G., Meunier, V., Terrones, H., Terrones, M., Ajayan, P.M.: Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep.. 2, (2012)

    Google Scholar 

  404. Zhang, S., Shao, T., Selcen Kose, H., Karanfil, T.: Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ. Sci. Technol. 44(12), 6377–6383 (2010)

    Article  Google Scholar 

  405. Fasano, M., Chiavazzo, E., Asinari, P.: Water transport control in carbon nanotube arrays. Nanoscale Res. Lett. 9(1), 559 (2014)

    Article  Google Scholar 

  406. Gethard, K., Sae-Khow, O., Mitra, S.: Water deslination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces. 3(2), 110 (2011)

    Article  Google Scholar 

  407. Corry, B.: Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B. 112, 1427 (2008)

    Article  Google Scholar 

  408. Dumée, L.F., Sears, K., Schütz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., Gray, S.: Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. J. Membraine Sci. 351, 36 (2010)

    Article  Google Scholar 

  409. Gao, G., Vecitis, C.D.: Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ. Sci. Technol. 45, 9726 (2011)

    Article  Google Scholar 

  410. Rahaman, M.S., Vecitis, C.D., Elimelech, M.: Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ. Sci. Technol. 46, 1556 (2012)

    Article  Google Scholar 

  411. Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R., Ajayan, P.M.: Carbon nanotube filters. Nat. Mater. 3, 610 (2004)

    Article  Google Scholar 

  412. Brady-Estévez, A.S., Nguyen, T.H., Gutierrez, L., Elimelech, M.: Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Res. 44, 3773 (2010)

    Article  Google Scholar 

  413. Brady-Estéves, A.S., Kang, S., Elimelech, M.: A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small. 4, 481 (2008)

    Article  Google Scholar 

  414. Seldon Water: Carbon nanotube technology: the science behind our products. Accessed June 2016

    Google Scholar 

  415. Herrera-Herrara, A.V., González-Curbelo, M.Á., Hérnandez-Borges, J.: Carbon nanotubes applications in separation science: a review. Analytica Chimica Acta. 734, 1–30 (2012)

    Article  Google Scholar 

  416. Wang, S.: Optimum degree of functionalization for carbon nanotubes. Curr. Appl. Phys. 9, 1146–1150 (2009)

    Article  Google Scholar 

  417. Safavi, A., Maleki, N., Doroodmand, M.M.: Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen. Anal. Chim. Acta. 675, 207–212 (2010)

    Article  Google Scholar 

  418. Speltini, A., Merli, D., Quartarone, E., Profumo, A.: Separation of alkanes and aromatic compounds by packed column gas chromatography using functionalized multi-walled carbon nanotubes as stationary phases. J. Chromatogr. A. 1217, 2918–2924 (2010)

    Article  Google Scholar 

  419. Hussain, C.M., Saridara, C., Mitra, S.: Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns. Anal. Chem. 82, 5184–5188 (2010)

    Article  Google Scholar 

  420. Merli, D., Speltini, A., Ravelli, D., Quartarone, E., Costa, L., Profumo A.: J. Chromatogr. A 1218, 7275–7281 (2010)

    Google Scholar 

  421. Zhao, L., Ai, P., Duan, A.H., Yuan, L.M.: Single-walled carbon nanotubes for improved enantioseparations on a chiral ionic liquid stationary phase in GC. Anal. Bioanal. Chem. 399, 143–147 (2011)

    Article  Google Scholar 

  422. Na, N., Cui, X., De Beer, T., Li, T., Tang, T., Sajid, M., Ouyang, J.: The use of silica nanoparticles for gas chromatographic separation. J. Chromatogr. A. 1218, 4552–4558 (2011)

    Article  Google Scholar 

  423. Hussain, C.M., Saridara, C., Mitra, S.: Altering the polarity of self-assembled carbon nanotubes stationary phase via covalent functionalization. RSC Adv. 1, 685–689 (2011)

    Article  Google Scholar 

  424. Speltini, A., Merli, D., Dondi, D., Paganini, G., Profumo, A.: Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase. Anal. Bioanal. Chem. 403, 1157–1165 (2012) https://doi.org/10.1007/s00216-011-5606-y

  425. André, C., Gharbi, T., Guillaume, Y.C.: A novel stationary phase based on amino derivatized nanotubes for hplc separations: Theoretical and practical aspects. J. Sep. Sci. 32, 1757–1764 (2009)

    Article  Google Scholar 

  426. Liang, X., Liu, S.H., Liu, X., Jiang, S.: J. Sep. Sci. 33, 3304–3312 (2010)

    Google Scholar 

  427. Zhong, Y., Zhou, W., Zhang, P., Zhu, Y.: Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers. Talanta. 82, 1439–1447 (2010)

    Article  Google Scholar 

  428. Chambers, S.D., Svec, F., Frechet, J.M.J.: Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A. 1218, 2546–2552 (2011)

    Article  Google Scholar 

  429. André, C., Aljhani, R., Gharbi, T., Guillaume, Y.C.: Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: theoretical and practical aspects. J. Sep. Sci. 34, 1221–1227 (2011)

    Article  Google Scholar 

  430. André, C., Agiovlasileti, D., Guillaume, Y.C.: Peculiarities of a novel bioenzymatic reactor using carbon nanotubes as enzyme activity enhancers: application to arginase. Talanta. 85, 2703 (2011)

    Article  Google Scholar 

  431. Yoo, J.T., Ozawa, H., Fujigaya, T., Nakashima, N.: Evaluation of affinity of molecules for carbon nanotubes. Nanoscale. 3, 2517–2522 (2011)

    Article  Google Scholar 

  432. Chen, J.L.: Multi-wall carbon nanotubes bonding on silica-hydride surfaces for open-tubular capillary electrochromatography. J. Chromatogr. A. 1217, 715–721 (2010)

    Article  Google Scholar 

  433. Chen, J.L., Lu, T.L., Lin, Y.C.: Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography. Electrophoresis. 31, 3217–3226 (2010)

    Article  Google Scholar 

  434. Chen, J.L., Hsieh, K.H.: Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: comparison with silica hydride and polyacrylate phase matrices. Electrophoresis. 31, 3937–3948 (2010)

    Article  Google Scholar 

  435. Chen, J.L., Lin, Y.C.: The role of methacrylate polymerized as porous-layered and nanoparticle-bound phased for open-tubular capillary electrochromatography: substitution of a charged monomer for a bulk monomer. Electrophoresis. 31, 3949–3958 (2010)

    Article  Google Scholar 

  436. Stege, P.W., Sombra, L.L., Messina, G., Martinez, L.D., Silva, M.F.: Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis. 31, 2242–2248 (2010)

    Article  Google Scholar 

  437. Jiménez-Soto, J.M., Moliner-Martínez, Y., Cárdenas, S., Valcárcel, M.: Evaluation of the performance of single walled carbon nanohorns in capillary electrophoresis. Electrophoresis. 31, 1681–1688 (2010)

    Article  Google Scholar 

  438. Yu, J., Dushu, H., Kelong, H., Yong, H.: Preparation of hydroxypropyl-β-cyclodextrin cross-linked multi-walled carbon nanotubes and their application in enantioseparation of clenbuterol. J. Chem. 29, 893–897 (2011)

    Google Scholar 

  439. Reid, V.R., Stadermann, M., Bakajin, O., Synovec, R.E.: High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Talanta. 77, 1420–1425 (2009)

    Article  Google Scholar 

  440. Goswami, S., Bajwa, N., Asuri, P., Ci, L., Ajayan, P.M., Cramer, S.M.: Aligned carbon nanotube stationary phases for electrochromatographic chip separations. Chromatographia. 69, 473–480 (2009)

    Article  Google Scholar 

  441. Wu, R.G., Yang, C.S., Wang, P.C., Tseng, F.G.: Electrophoresis. 30, 2024–2031 (2009)

    Google Scholar 

  442. Moigensen, K.B., Chen, M., Molhave, K., Boggild, P., Kutter, J.P.: Lab Chip 2116–2118 (2011)

    Google Scholar 

  443. Shrivas, K., Wu, H.-F.: Multifunctional nanoparticles composite for MALDI-MS: Cd2+ doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis. J. Mass Spectrom. 45, 1452–1460 (2010)

    Article  Google Scholar 

  444. Yang, H.-J., Lee, A., Lee, M.-Y., Kim, W., Kim, J.: Bull. Korean Chem. Soc. 31, 35–40 (2010)

    Google Scholar 

  445. Gholipour, Y., Giudicessi, S.L., Nonami, H., Erra-Balsells, R.: Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem. 82, 5518–5526 (2010)

    Article  Google Scholar 

  446. Wei, Y.-L., Zhou, W., Liu, F., Ren, Z.-Y., Zhang, L.-Y., Du, Y.-P., Guo, Y.-L., Chem. J. Chinese U. 31, 1729–1733 (2010)

    Google Scholar 

  447. Li, X.-S., Wu, J.-H., Xu, L.-D., Zhao, Q., Luo, Y.-B., Yuan, B.-F., Feng, Y.-Q.: Chem. Commun. 47, 9816–9818 (2011)

    Google Scholar 

  448. Tang, H.-W., Ng, K.-M., Lu, W., et al.: Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates. Anal. Chem. 81, 4720–4729 (2009)

    Article  Google Scholar 

  449. Hsu, W.-Y., Lin, W.-D., Hwu, W.-L., Lai, C.-C., Tsai, F.-J.: Anal. Chem. 82, 6814–6820 (2010)

    Google Scholar 

  450. Lee, J., Kim, Y.-K., Min, D.-H.: J. Am. Chem. Soc. 132, 14714–14717 (2010)

    Google Scholar 

  451. Kim, Y.-K., Na, H.-K., Kwack, S.-J., Ryoo, S.-R., Lee Y., Hong, S., Hong, S., Jeong, Y., Min, D.-H.: ACS Nano 5, 4550–4561 (2011)

    Google Scholar 

  452. Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Carbon. 23, 6453 (2007)

    Google Scholar 

  453. Lordi, V., Yao, N., Wei, J.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001)

    Article  Google Scholar 

  454. Jiang, L., Gu, H., Xu, X., Yan, X.: J. Mol. Catal. A-Chem. 310, 144 (2009)

    Google Scholar 

  455. Pawelec, B., La Parola, V., Navarro, R.M., Murcia-Mascaros, S., Fierro, J.L.G.: On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics. Carbon. 44, 84 (2006)

    Article  Google Scholar 

  456. Yoon, B., Pan, H.-B., Wai, C.M.: Relative catalytic activities of carbon nanotube-supported metallic nanoparticles for room-temperature hydrogenation of benzene. J. Phys. Chem. C. 113, 1520 (2009)

    Article  Google Scholar 

  457. Tan, X., Deng, W., Liu, M., Zhang, Q., Wang, Y.: Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chem. Commun. (46), 7179 (2009)

    Google Scholar 

  458. Sullivan, J.A., Flanagan, K.A., Hain, H.: Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal. Today. 145, 108 (2009)

    Article  Google Scholar 

  459. Baleizao, C., Gigante, B., Garcia, H., Corma, A.: Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes. J. Catal. 221, 77 (2004)

    Article  Google Scholar 

  460. Carol, L.: Carbon SUPER-SPRINGS, Mechanical Engineering (2010)

    Google Scholar 

  461. Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306(5696), 666–669 (2004)

    Article  Google Scholar 

  462. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  463. Fitzer, E., Kochling, K.-H., Boehm, H.P., Marsh, H.: Recommended terminology for the description of carbon as a sold (IUPAC Recommendations 1995). Pure Appl. Chem. 67(3), 473–506 (2009)

    Google Scholar 

  464. Moura, S., et al.: Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minérale. 24, 572 (1987)

    Google Scholar 

  465. The Official Web Site of the Nobel Prize: Graphene – the perfect atomic lattice. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html. Accessed June 2016

  466. Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das Adsoprtionsverhealten sehr dünner Kohlenstoff-Folien. Zeitschrift für anorganische und allgemeine Chemie. 316(3-4), 119–127 (1962)

    Article  Google Scholar 

  467. Boehem, H.P., Clauss, A., Fischer, G., Hofmann, U., Surface properties of extremely thin graphite lamellae. In: Proceedings of the Fifth Conference on Carbon (1961)

    Google Scholar 

  468. Graphene Times: Boehm’s 1961 isolation of graphene. Acessed June 2016

    Google Scholar 

  469. Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. London. 149, 249–259 (1859)

    Article  Google Scholar 

  470. Wallace, P.R.: The band structure of graphite. Phys. Rev. 71, 622–634 (1947)

    Article  Google Scholar 

  471. Ruess, G., Vogt, F.: Höchstlamellarer Kohlenstoff aus Graphitohydroxyd. Monatshefte für Chemie. 78, 222–242 (1948)

    Article  Google Scholar 

  472. Oshima, C., Nagashima, A.: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter. 9, 1–20 (1997)

    Article  Google Scholar 

  473. Jang, B.Z., Huang, W.C.: Nano-scaled graphene plates. US 7071258 B1, 4 July 2006

    Google Scholar 

  474. Affoune, A.M., Prasad, B.L.V., Sato, H., Enoki, T., Kaburagi, Y., Hishiyama, Y.: Experimental evidence of a single nano-graphene. Chem. Phys. Lett. 348, 17 (2001)

    Article  Google Scholar 

  475. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008)

    Article  Google Scholar 

  476. Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, L.A., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.-C., Terrones, H.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today. 5, 351–372 (2010)

    Article  Google Scholar 

  477. Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y., Zhang, J., Zhang, X., Ajayan, P.M., Zhu, T., Lou, J.: Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014)

    Google Scholar 

  478. Rozhkov, A.V., Giavaras, G., Bliokh, Y.P., Freilikher, V., Nori, F.: Electronic properties of mesoscopic graphene structures: change confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)

    Article  Google Scholar 

  479. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  480. Edwards, R.S., Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale. 5, 38 (2013)

    Article  Google Scholar 

  481. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)

    Article  Google Scholar 

  482. (a) Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature. 446, 60 (2007); (b) Pop, E., Roy, A.K., Varshney, V.: Thermal properties of graphene: Fundamentals and applications. MRS Bull. 37, 1273 (2012); (c) Thermal Conductivity. http://ndl.ee.ucr.edu/MRS-Talk-09.pdf. Accessed June 2016

  483. (a) Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morosov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451 (2005); (b) Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T. J., Geim, A.K.: Appl. Phys. Lett. 91, 063124 (2007)

    Google Scholar 

  484. Stolyarova, E., Taegh, R.K., Ryu, S., Maultzsch, J., Kim, P., Brus, L.E., Heinz, T.F., Hybertsen, M.S., Flynn, G.W.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. USA. 104, 9209 (2007)

    Article  Google Scholar 

  485. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582 (2008)

    Article  Google Scholar 

  486. Talukdar, Y., Rashkow, J.T., Lalwani, G., Kanakia, S., Sitharaman, B.: The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials. 35(18), 4863–4877 (2014)

    Article  Google Scholar 

  487. News from Brown: Jagged Graphene can slice into cell membranes. https://news.brown.edu/articles/2013/07/graphene. Accessed 4 Oct 2016

  488. Li, Y., Yuan, H., von Dem Bussche, A., Creighton, M., Hurt, R.H., Kane, A.B., Gao, H.: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. 110(30), 12295–12300 (2013)

    Article  Google Scholar 

  489. Mullick Chodhury, S., Lalwani, G., Zhang, K., Yang, J.O., Neville, K., Sitharaman, B.: Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials. 34(1), 283–293 (2013)

    Article  Google Scholar 

  490. Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S., et al.: Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 1 (2010)

    Google Scholar 

  491. Akhavan, O., Ghaderi, E.: Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 4, 5731 (2010)

    Article  Google Scholar 

  492. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the Elastic Properities and Intrinsic Strength of Monolayer Graphene. Science. 5887, 385–388 (2008.) Frank, I.W., Tanenbaum, D. M., Van Der Zande, A.M., McEuen, P.L.: Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B, 25(6), 2558–2561 (2007)

    Article  Google Scholar 

  493. Hill, E.W., Vijayaragahvan, A., Novoselov, K.: Graphene sensors. IEEE Sens. J. 11(12), 3161–3170 (2011)

    Article  Google Scholar 

  494. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008)

    Article  Google Scholar 

  495. Poot, M., van der Zant, H.S.J.: Nanomechanical properties of few-layer graphene membranes. Appl. Phys. Lett. 92(6), 063111–063113 (2008)

    Article  Google Scholar 

  496. Scott, A.: Graphene’s global race to market. Chem. Eng. News. 94(15), 28–33 (2016)

    Google Scholar 

  497. Graphene Flagship: http://graphene-flagshup.eu/. Accessed June 2016

  498. IDTechEx: Graphene & 2D Materials Europe. http://www.idtechex.com/graphene-europe/show/en/. Accessed June 2016

  499. IDtechEx: Event Highlights. http://www.idtechex.com/events/summary/E16/. Accessed June 2016

  500. EV and More: Production of revolutionary graphene batteries begins in Spain. http://blog.evandmore.com/production-of-revolutionary-graphene-batteries-begins-in-spain/. Accessed June 2016

  501. Vorbeck: RFID. http://vorbeck.com/pages/products-rfid. Accessed June 2016

  502. Vorbeck: Antennas. http://vorbeck.com/pages/products-antennas. Accessed June 2016

  503. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Phyical properies of carbon nanotubes. Imperial College Press (1998)

    Google Scholar 

  504. Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B. 79, 155413 (2009)

    Article  Google Scholar 

  505. Savchenko, A.: Transforming graphene. Science. 323, 589–590

    Google Scholar 

  506. Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005)

    Article  Google Scholar 

  507. Zhang, Y., Tan, Y., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 438, 201 (2005)

    Article  Google Scholar 

  508. Novoselov, K.S., McCann, E., Morosov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., et al.: Unconventional quantum Hall effect and Berry’s phase of 2 pi in bilayer graphene. Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  509. Akturk, A., Goldsman, N.: Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103(5), 053702 (2008)

    Article  Google Scholar 

  510. Morosov, S.V., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J., Geim, A.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008)

    Article  Google Scholar 

  511. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438(7065), 197–200 (2005)

    Article  Google Scholar 

  512. Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nat. Nanotechnol. 3(4), 206–209 (2008)

    Article  Google Scholar 

  513. Neto, A.C., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  514. Sagade, A.A., et al.: Highly air stable passivation of graphene based field effect devices. Nanoscale. 7, 3558–3564 (2015)

    Article  Google Scholar 

  515. Evaldsson, M., Zozoulenko, I.V., Xu, H., Heinzel, T.: Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B. 78, 161407 (2008)

    Article  Google Scholar 

  516. Cervantes-Sodi, F., Csanyi, G., Piscanec, S., Ferrari, A.C.: Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys. Rev. B. 77, 165427 (2008)

    Article  Google Scholar 

  517. Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nat. Lett. 459, 820–823 (2009)

    Article  Google Scholar 

  518. Lui, C.H., Zhiqiang, L., Mak, K.F., Cappelluti, E., Heinz, T.F.: Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944–947 (2011)

    Article  Google Scholar 

  519. Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.K.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151 (2008)

    Article  Google Scholar 

  520. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb Carbon: A Review of Graphene. Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  521. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  522. Ohta, T., et al.: Controlling the electronic structure of bilayer graphene. Science. 313(5789), 951–954 (2006)

    Article  Google Scholar 

  523. Kaiser, A.B., Gómez-Navarro, C., Sundaram, R.S., Burghard, M., Kern, K.: Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 9(5), 1787–1792 (2009)

    Article  Google Scholar 

  524. Wang, Y., Huang, Y., Song, Y., Zhang, X., Ma, Y., Lang, J., Chen, Y.: Room-temperature ferromagnetism of graphene. Nano Lett. 9(1), 220–224 (2009)

    Article  Google Scholar 

  525. Ghosh, S., Nika, D.L., Pokatilov, E.P., Balandin, A.A.: Heat conduction in graphene: experimental study and theoretical interpretation. New J. Phys. 11, 1–18 (2009)

    Article  Google Scholar 

  526. Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 25(10), 1645–1651 (2010)

    Article  Google Scholar 

  527. Xu, X., Periera, L.F.C., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Tinh Bui, C., Xie, R., Thong, J.T.L., Hong, B.H., Loh, K.P., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2004)

    Google Scholar 

  528. Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., Shi, L.: Two-dimensional phonon transport in supported graphene. Science. 328, 213–216 (2010)

    Article  Google Scholar 

  529. Balandin, A., Wang, K.L.: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B. 58, 1544 (1998)

    Article  Google Scholar 

  530. Zou, J., Balandin, A.: Phonon heat conduction in a semiconductor nanowires. J. Appl. Phys. 89, 2932 (2001)

    Article  Google Scholar 

  531. Ghosh, S., Nika, D.L., Pokatilov, E.P., Balandin, A.A.: Heat conduction in graphene: experimental study and theoretical interpretation. New J. of Phys. 11, 1–18 (2009)

    Article  Google Scholar 

  532. Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today. 60(8), 45–41 (2007)

    Google Scholar 

  533. Alzari, V., Nuvoli, D., Scognamillo, S., Piccinini, M., Gioffredi, E., Malucelli, G., Marceddu, S., Sechi, M., Sanna, V., Mariana, A.: Graphene-containing thermoresponsive nanocomposite hydrogels of ply(N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011)

    Article  Google Scholar 

  534. Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S.B., Piccinini, M., Illescas, J., Mariani, A.: High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428–3431 (2011)

    Article  Google Scholar 

  535. Vallés, C., Drummond, C., Saadaoi, H., Furtado, C.A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., Penicaud, A.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802 (2008)

    Article  Google Scholar 

  536. Kamali, A.R., Fray, D.J.: Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon. 56, 121–131 (2013)

    Article  Google Scholar 

  537. Kamali, A.R., Fray, D.J.: Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale. 7, 11310–11320 (2015)

    Article  Google Scholar 

  538. Hamilton, C.E., Lomeda, J.R., Sun, Z., Tour, J.M., Barron, A.R.: High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 9, 3460 (2009)

    Article  Google Scholar 

  539. Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A., Stubos, A.K.: Liquid-phase exfoliation of graphite towards solubilized graphenes. Small. 5, 1841 (2009)

    Article  Google Scholar 

  540. Woltornist, S.J., Oyer, A.J., Carrillo, J.-M.Y., Dobrynin, A.V., Adamson, D.H.: Conductive thin films of pristine graphene by solvent interface trapping. ACS Nano. 7(8), 7062–7066 (2013)

    Article  Google Scholar 

  541. Dhakate, S.R., Chauhan, N., Sharma, S., Tawale, J., Singh, S., Sahare, P.D., Mathur, R.B.: An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon. 49, 1946–1954 (2011)

    Article  Google Scholar 

  542. Safavi, A., Tohidi, M., Mahyari, F.A., Shahbaazi, H.: J. Mater. Chem. 22, 3825–3831 (2012)

    Google Scholar 

  543. Pu, N.-W., Wang, C.-A., Sung, Y., Liu, Y.-M., Ger, M.-D.: Mater. Lett. 63, 1987–1989 (2009)

    Google Scholar 

  544. Li, X.L., Wang, X.R., Zhang, L., Lee, S.W., Dai, H.J.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 319, 1229 (2008)

    Article  Google Scholar 

  545. JAyasena, B., Sathyan, S.: A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6, 95 (2011)

    Article  Google Scholar 

  546. Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)

    Article  Google Scholar 

  547. Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 110, 8535 (2006)

    Article  Google Scholar 

  548. Hofmann, M., Chiang, W.-Y., Nguyễn, T.D., Hiseh, Y.-P.: Controlling the properties of graphene produced by electrochemical exfoliation – IOPscience. Nanotechnol. 26, 334607 (2015)

    Google Scholar 

  549. Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., Yao, J.: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon. 47, 3242–3246 (2009)

    Article  Google Scholar 

  550. Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A.N., Li, L.-J.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano. 5, 2332–2339 (2011)

    Article  Google Scholar 

  551. Wang, J., Manga, K.K., Bao, Q., Loh, K.P.: High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)

    Article  Google Scholar 

  552. Suslick, K.S., Price, G.J.: Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)

    Article  Google Scholar 

  553. Paton, K.R., et al.: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)

    Article  Google Scholar 

  554. Sutter, P.W., Flege, J., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008)

    Article  Google Scholar 

  555. Wei, D., Liu, Y., Zhang, H., Huang, L., Wu, B., Chen, J., Yu, G.: Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 131, 11147–11154 (2009)

    Article  Google Scholar 

  556. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dressel Haus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009)

    Article  Google Scholar 

  557. Caltech: Caltech scientists develop cool process to make better graphene. https://www.caltech.edu/news/caltech-scientists-develop-cool-process-make-better-graphene-45961. Accessed June 2016

  558. Electronics Weekly: Good graphene over square centimetres without high temperatures. http://www.electronicsweekly.com/news/research-news/good-graphene-square-centimetres-without-high-temperatures-2015-03/. Accessed June 2016

  559. Boyd, D.A., Lin, W.-H., Hsu, C.-C., Teague, M.-L., Chen, C.-C., Lo, Y.-Y., Chan, W.-Y., Su, W.-B., Cheng, T.-C., Chang, C.-S., Wu, C.-I., Yeh, N.-C.: Single-step deposition of high-mobility graphene at reduced temperatures. Nat. Commun. 6, 6620 (2015)

    Article  Google Scholar 

  560. Bointon, T.H., Barnes, M.D., Russo, S., Carciun, M.F.: High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition. Adv. Mater. 27(28), 4200–4206 (2015)

    Article  Google Scholar 

  561. Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Tendeloo, G.V., Vanhulsel, A., Haesendonck, C.V.: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnol. 19, 305604 (2008)

    Article  Google Scholar 

  562. Wang, J.J., Zhu, M.Y., Outlaw, R.A., Zhao, X., Manos, D.M., Holoway, B.C.: Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265 (2004)

    Article  Google Scholar 

  563. Wang, J.J., Zhu, M.Y., Outlaw, R.A., Zhao, X., Manos, D.M., Holoway, B.C.: Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon. 42, 2867 (2004)

    Article  Google Scholar 

  564. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis- of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752 (2009)

    Article  Google Scholar 

  565. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Changdra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  Google Scholar 

  566. Chpucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30 (2009)

    Article  Google Scholar 

  567. Staudemaier, L.: Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481 (1898)

    Article  Google Scholar 

  568. Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490 (2008)

    Article  Google Scholar 

  569. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008)

    Article  Google Scholar 

  570. Eigler, S., Enzelberger-Heim, M., Grimm, S., Hofmann, P., Kroener, W., Geworski, A., Dotzer, C., Röckert, M., Xiao, J., Papp, C., Lytken, O., Steinrück, H.-P., Hirsch, A.: Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013)

    Article  Google Scholar 

  571. Athanasios, B., Bourlinos, D.G., Petridis, D., Szabo, T., Szeri, A., Dekany, I.: Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir. 19, 6050 (2003)

    Article  Google Scholar 

  572. Schniepp, H.c., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 110, 8535 (2006)

    Article  Google Scholar 

  573. McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396 (2007)

    Article  Google Scholar 

  574. Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 3394 (2007)

    Article  Google Scholar 

  575. Cote, L.J., Kim, F., Huang, J.: Langmuir−Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043 (2009)

    Article  Google Scholar 

  576. Xu, Y., Bai, H., Lu, G., Li, C., Shi, G.: Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856 (2008)

    Article  Google Scholar 

  577. Somani, P.R., Somani, S.P., Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56 (2006)

    Article  Google Scholar 

  578. Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H.J., Mullen, K.: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 42167 (2008)

    Google Scholar 

  579. Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., Müllen, K.: Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed. 47, 2990–2992 (2008)

    Article  Google Scholar 

  580. Simpson, C.D., Brand, J.D., Berresheim, A.J., Przybilla, L., Rader, H.J., Mullen, K.: Synthesis of a giant 222 carbon graphite sheet. Chem.-Eur. J. 8, 1424–1429 (2002)

    Article  Google Scholar 

  581. Chen, L., Hernandez, Y., Feng, X., Müllen, K.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)

    Article  Google Scholar 

  582. Tang, L., Li, X., Ji, R., Teng, K.S., Tai, G., Ye, J., Wei, C., Lau, S.P.: Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22(12), 5676 (2012)

    Article  Google Scholar 

  583. Lara-Avila, S., Kalaboukhov, A., Paolillo, S., Syväjä, M., Yakimova, R., Fal’ko, V., Tzalenchuk, A., Kubatkin, S.: SiC graphene suitable for quantum hall resistance metrology, Science Brevia (2009)

    Google Scholar 

  584. Sutter, P.: Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8(3), 171–172 (2009)

    Article  Google Scholar 

  585. Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4(1), 30–33 (2008)

    Article  Google Scholar 

  586. Sutter, P.: Epitaxial graphene: how silicon leaves the scene. Nat. Mater. 8, 171–172 (2009)

    Article  Google Scholar 

  587. Rolings, E., Gweon, G.-H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A.V., First, P.N., de Heer, W.A., Lanzara, A.: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids. 67, 2172 (2006)

    Article  Google Scholar 

  588. Virojanadara, C., Syväjarvi, M., Yakimova, R., Johansson, L.I.: Homogeneous large-area graphene layer growth on 6H -SiC(0001). Phys. Rev. B. 78, 245403 (2008)

    Article  Google Scholar 

  589. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellog, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, D., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009)

    Article  Google Scholar 

  590. Kim, D.Y., Sinha-Ray, S., Park, J.-L., Lee, J.-G., Cha, Y.-H., Bae, S.-H., Ahn, J.-H., Jung, Y.C., Kim, S.M., Yarin, A.L., Yoon, S.S.: Supersonic spray creates high-quality graphene layer. Adv. Funct. Mater. 24(31), 4986–4995 (2014)

    Article  Google Scholar 

  591. MIT Technology Review: How to make graphne using supersonic buckyballs. https://www.technologyreview.com/s/539911/how-to-make-graphene-using-supersonic-buckyballs/. Accessed June 2016

  592. Chiu, P.L., Mastrogiovanni, D.D.T., Wei, D., Lous, C., Jeong, M., Yu, G., Saad, P., Flach, C.R., Mendelsohn, R.: Microwave- and notrionium ion-enabled rapid and direct production of highly conductive low-oxygen graphene. J. Am. Chem. Soc. 134(13), 5850–5856 (2012)

    Article  Google Scholar 

  593. Patel, M., Feng, W., Svaram, K., Khoshi, M.R., Huang, R., Sun, J., Rabie, E., Flach, C., Mendelsohn, R., Garfunkel, E., He, H.: Microwave enabled one-pot, one-step fabrication and notrogen doping of holey graphene oxide for catalytic applications. Small. 11(27), 3358–3368 (2015)

    Article  Google Scholar 

  594. Kim, J., Lee, G., Kim, J.: Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation. Appl. Phys. Lett. 107(3), 033104 (2015)

    Article  Google Scholar 

  595. Campos-Delgado, J., Romo-Herrera, J.M., Jia, X., Cullen, D.A., Muramatsu, H., Kim, Y.A., Hayashi, T., Ren, Z., Smith, D.J., Okuno, Y., Ohba, T., Kanoh, H., Kaneko, K., Endo, M., Terrones, H., Dresselhaus, M.S., Terrones, M.: Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773 (2008)

    Article  Google Scholar 

  596. Kula, P., Pietrasik, R., Dybowski, K., Atraszkiewicz, R., Szymanski, W., Kolodziejczyk, L., Niedzielski, P., Nowak, D.: Single and multilayer growth of graphene from the liquid phase. Appl. Mech. Mater. 510, 8–12 (2014)

    Article  Google Scholar 

  597. Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C. 113, 4257–4259 (2009)

    Article  Google Scholar 

  598. Chen, Y., Zhao, H., Sheng, L., Yu, K., An, J., Xu, Y., Ando, Y., Zhao, X.: Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures. Chem. Phys. Lett. 538, 72–76 (2012)

    Article  Google Scholar 

  599. Shen, B., Ding, J., Yan, X., Feng, W., Li, J., Xue, Q.: Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Appl. Surf. Sci. 258, 4523–4531 (2012)

    Article  Google Scholar 

  600. Wang, X.K., Lin, X.W., Mesleh, M., JArrold, M.F., Dravid, V.P., Ketterson, J.B., Chang, R.P.H.: J. Mater. Res.I 10, 1977 (1995)

    Google Scholar 

  601. Wang, X.K., Lin, X.W., Dravid, V.P., Ketterson, J.B., Chang, R.P.H.: Carbon nanotubes synthesized in a hydrogen arc discharge. Appl. Phys. Lett. 66, 2430 (1995)

    Article  Google Scholar 

  602. Panchokarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., Rao, C.N.R.: Synthesis, structure, and properties of boronand nitrogen-doped graphene. Adv. Mater. 21, 4726 (2009)

    Google Scholar 

  603. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010)

    Article  Google Scholar 

  604. Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.X., Fu, Q., Ma, X., Xue, Q., Sun, G., Bao, X.: Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188 (2011)

    Article  Google Scholar 

  605. Brumfiel, G.: Nanotubes cut to ribbons new techniques open up carbon tubes to create ribbons. Nature (2009)

    Google Scholar 

  606. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 458(7240), 872–876 (2009)

    Article  Google Scholar 

  607. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)

    Article  Google Scholar 

  608. Chakrabarti, A., Lu, J., Skrabutenas, J.C., Xu, T., Xiao, Z., Maguire, J.A., Hosmane, N.S.: Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011)

    Article  Google Scholar 

  609. Kurzweil: Carbon nanotubes as reinforcing bars to strengthen graphene and increase conductivity. http://www.kurzweilai.net/carbon-nanotubes-as-reinforcing-bars-to-strengthen-graphene-and-increase-conductivity. Accessed June 2016

  610. Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)

    Article  Google Scholar 

  611. Treossi, E., Melucci, M., Liscio, A., Gazzano, M., Samori, P., Palermo, V.: High-contrast visualization of graphene oxide on dye-senstized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576 (2009)

    Article  Google Scholar 

  612. Park, J.S., Reina, A., Saito, R., Kong, J., Dresselhaus, G., Dresselhaus, M.S.: G’ band Raman spectra of single, double and triple layer graphene. Carbon. 47, 1303 (2009)

    Article  Google Scholar 

  613. Kim, J., Cote, L.J., Kim, F., Huang, J.: Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260 (2009)

    Article  Google Scholar 

  614. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al.: Raman spectrum of graphene and graphnen layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  615. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Nature. 458, 872 (2009)

    Article  Google Scholar 

  616. Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V., Tour, J.M.: ACS Nano. 4, 1949 (2010)

    Article  Google Scholar 

  617. Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Ning Lau, C., de Heer, W.A., Conrad, E.H., Haddon, R.C.: Nano Lett. 10, 4061 (2010)

    Article  Google Scholar 

  618. Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: J. Mater. Chem. 19, 7098 (2009)

    Article  Google Scholar 

  619. Vadukumpully, S., Gupta, J., Zhang, Y., Xu, C.Q., Valiyaveettil, S.: Nanoscale. 3, 303 (2011)

    Article  Google Scholar 

  620. He, H., Gao, C.: Chem. Mater. 22, 5054 (2010)

    Article  Google Scholar 

  621. Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J.: Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46, 7340 (2010)

    Article  Google Scholar 

  622. Liu, Y., Zhou, J., Zhang, X., Liu, Z., Wan, X., Tian, J., Wang, T., Chen, Y.: Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon. 47, 3113 (2009)

    Article  Google Scholar 

  623. Yu, D., Yang, Y., Durstock, M., Baek, J.B., Dai, L.: Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano. 4, 5633 (2010)

    Article  Google Scholar 

  624. Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., Yin, S., Chen, Y., Wei, J.: Adv. Funct. Mater. 19, 894 (2009)

    Article  Google Scholar 

  625. Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275 (2009)

    Article  Google Scholar 

  626. Karousis, N., Sandanayaka, A.S.D., Hasobe, T., Economopoulos, S.P., Sarantopoulou, E., Tagmatarchis, N.: J. Mater. Chem. 21, 109 (2011)

    Article  Google Scholar 

  627. Liu, Z.B., Xu, Y.F., Zhang, X.Y., Zhang, X.L., Chen, X.L., Tian, J.G.: J. Phys. Chem. B. 113, 9681 (2009)

    Article  Google Scholar 

  628. Zhang, X., Feng, Y., Huang, D., Li, Y., Feng, W.: Carbon. 48, 3236 (2010)

    Article  Google Scholar 

  629. Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prud’Homme, R.K., Brinson, L.C.: Nat. Nanotechnol. 3, 327 (2008)

    Article  Google Scholar 

  630. Das, B., Eswar Prasad, K., Ramamurty, U., Rao, C.N.R.: Nanotechnol. 20 (125705) (2009)

    Google Scholar 

  631. Liu, Z., Robinson, J.T., Sun, X., Dai, H.: J. Am. Chem. Soc. 130, 10876 (2008)

    Article  Google Scholar 

  632. Salavagione, H.J., Gomez, M.A., Martınez, G.: Macromol. 42, 6331 (2009)

    Article  Google Scholar 

  633. Cheng, H.C., Shiue, R.J., Tsai, C.C., Wang, W.H., Chen, Y.T.: ACS Nano. 5, 2051 (2011)

    Article  Google Scholar 

  634. Liang, Y.Y., Wu, D.Q., Feng, X. L., Müllen, K.: Adv. Mater. 21, 1679 (2009)

    Google Scholar 

  635. Zhang, X.Y., Li, H.P., Cui, X.L., Lin, Y.: J. Mater. Chem. 20, 2801 (2010)

    Article  Google Scholar 

  636. Noble 3D Printers: Graphenite™ WX™ For Lost Wax Casting. https://www.noble3dprinters.com/product/graphenite-wx-lost-wax-casting/. Accessed June 2016

  637. Head: Graphenext. http://www.head.com/us/sports/tennis/technology/graphene-xt/. Accessed June 2016

  638. Huntsman: Huntsman advanced materials and Haydale devlop graphnen enhanced Araldite® resin. http://www.huntsman.com/advanced_materials/Applications/itemrenderer?p_rendertitle=no&p_renderdate=no&p_renderteaser=no&p_item_id=997718783&p_item_caid=1223. Accessed June 2016

  639. Composites World: Haydale, Huntsman to work together on graphene enhanced polymer resins. http://www.compositesworld.com/news/haydale-huntsman-to-work-together-on-graphene-enhanced-polymer-resins. Accessed June 2016

  640. Thomas Swan: Elicarb® Graphene. http://www.thomas-swan.co.uk/advanced-materials/elicarb%C2%AE-graphene. Accessed June 2016

  641. Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., Cheng, M.C.-C.: Carbon dioxide gas sensor using a graphene sheet. Sen. Actuators B. 157, 310–313 (2011)

    Article  Google Scholar 

  642. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  Google Scholar 

  643. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Nat. Mater. 6, 652 (2007)

    Article  Google Scholar 

  644. Novoselov, K., Geim, A.: Mater. Technol. 22, 178–179 (2007)

    Google Scholar 

  645. Sun, J., Muruganathan, M., Mizuta, H.: Room temperature detection of individual molecular physisoprtion using suspended bilayer graphene. Sci. Adv. 2(4), e1501518 (2016)

    Article  Google Scholar 

  646. Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H.: ACS Nano. 3, 301 (2009)

    Article  Google Scholar 

  647. Ganhua, L., Ocola, L.E., Chen, J.: Reduced graphene oxide for room-temperature gas sensors. Nanotechnol. 20, 445502 (2009)

    Article  Google Scholar 

  648. Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E.: Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137 (2008)

    Article  Google Scholar 

  649. Jung, I., Dikin, D., Park, S., Cai, W., Mielke, S.L., Ruoff, R.S.: Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J. Phys. Chem. C. 112, 20264 (2008)

    Article  Google Scholar 

  650. Shafiei, M., Spizzirri, P.G., Arsat, R., Yu, J., du Plessis, J., Dubin, S., et al.: Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C. 114, 13796 (2010)

    Article  Google Scholar 

  651. Arsat, R., Breedon, M., Shafiei, M., Spizziri, P.G., Gilje, S., Kaner, R.B., et al.: Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem. Phys. Lett. 467, 344 (2009)

    Article  Google Scholar 

  652. Joshi, R.K., Gomez, H., Alvi, F., Kumar, A.: Graphene films and ribbons for sensing of O2 and 100 ppm of CO and NO2 in practical conditions. J. Phys. Chem. C. 114, 6610 (2010)

    Article  Google Scholar 

  653. Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H.: Practical chemical sensors from chemically derived graphene. ACS Nano. 3(2), 301–306 (2009)

    Article  Google Scholar 

  654. Nallon, E.C., Schnee, V.P., Bright, C., Polcha, M.P., Qilang, L.: Chemical discrimination with an unmodified graphene chemical sensor. ACS Sens. 1(1), 26–31 (2016)

    Article  Google Scholar 

  655. Rangel, N.L., Seminario, J.M.: Vibronics and plasmonics based graphene sensors. J. Chem. Phys. 132, 125102 (2010)

    Article  Google Scholar 

  656. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 22(10), 1027–1036 (2010)

    Article  Google Scholar 

  657. Liu, Y., Dong, X., Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012)

    Article  Google Scholar 

  658. McCreery, R.L.: Chem. Rev. 108, 2646 (2008)

    Article  Google Scholar 

  659. Niwa, O.L, Jia, J., Sato, Y., Kato, D., Kurita, R., Maruyama, K., Suzuki, K., Hirono, S.: J. Am. Chem. Soc. 128, 7144 (2006)

    Google Scholar 

  660. Zhou, M., Zhai, Y.M., Dong, S.J.: Anal. Chem. 81, 5603 (2009)

    Article  Google Scholar 

  661. Shan, C.S., Yang, H.F., Song, J.F., Han, D.X., IVaska, A., Niu, L.: Anal. Chem. 81, 2378 (2009)

    Article  Google Scholar 

  662. Kang, X.H., Wang, J., Wu, H., Aksay, A.I., Liu, J., Lin, Y.H.: Biosens. Bioelectron. 25, 901 (2009)

    Article  Google Scholar 

  663. Tehrani, Z.: Generic epitaxial graphene biosensors for ultrasnensitive detection of cancer risk biomarker. 2D Mater. 1, 025004 (2014)

    Article  Google Scholar 

  664. Park, D.-W., Schendel, A.A., Mikael, S., Brodnick, S.K., Roichner, T.J., Ness, J.P., Hayat, M.R., Atry, F., Frye, S.T., Pashaie, R., Thongpang, S., Ma, Z., Williams, J.C.: Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014)

    Article  Google Scholar 

  665. He, Q.Y., Sudibya, H.G., Yin, Z.Y., Wu, S.X., Li, H., Boey, F., et al.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano. 4, 3201 (2010)

    Article  Google Scholar 

  666. Mao, S., Lu, G., Yu, K., Bo, Z., Chen, J.: Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22, 3521 (2010)

    Article  Google Scholar 

  667. Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnol. 11, 566–572 (2016)

    Article  Google Scholar 

  668. Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y.: ACS Nano. 4, 1790 (2010)

    Article  Google Scholar 

  669. Zhang, B., Cui, T.: An ultrasenstivie and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl. Phys. Lett. 98, 073116 (2011)

    Article  Google Scholar 

  670. Mohanty, N., Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4468–4476 (2008)

    Article  Google Scholar 

  671. Keeley, G.P., et al.: Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 20(36), 7864–7869

    Google Scholar 

  672. Kang, X., et al.: A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 81(3), 754–759

    Google Scholar 

  673. Zhou, M., Zhai, Y.M., Dong, S.J.: Anal. Chem. 81, 5603 (2009)

    Article  Google Scholar 

  674. Tang, L.H., Wang, Y., Li, Y.M., Feng, H.B., Lu, J., Li, J.H.: Adv. Funct. Mater. 19, 2782 (2009)

    Google Scholar 

  675. Wang, Y., Li, Y.M., Tang, L.H., Lu, J., Li, J.H.: Electrochem. Commun. 11, 889 (2009)

    Article  Google Scholar 

  676. Alwarappan, S., Erdem, A., Liu, C., Li, C.Z.: J. Phys. Chem. C. 113, 8853 (2009)

    Article  Google Scholar 

  677. Shang, N.G., Papalonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S.S., Marchetto, H.: Adv. Funct. Mater. 18, 3506 (2008)

    Google Scholar 

  678. Zhou, M., Zhai, Y.M., Dong, S.J.: Anal. Chem. 81, 5603 (2009)

    Article  Google Scholar 

  679. Li, J., Guo, S.J., Zhai, Y.M., Wang, E.K.: Anal. Chim. Acta. 649, 196 (2009)

    Article  Google Scholar 

  680. Li, J., Guo, S.J., Zhai, Y.M., Wang, E.K.: Electrochem. Commun. 11, 1085 (2009)

    Article  Google Scholar 

  681. Kawano, Y.: Wide-band frequency-tunable terhertz and infrared detection with graphene. Nanotechnol. 24(21), 214004 (2013)

    Article  Google Scholar 

  682. Petruk, O., Szewczyk, R., Ciuk, T., Strupiński, W., Salach, J., Nowvicki, M., Pasternak, I., Winiarski, W., Tszcinka, K.: Sensitivity and offset voltage testing in the hall-effect sensors made of graphene. Adv. Intell. Syst. Comput. 267, 631–640 (2014)

    Google Scholar 

  683. Dauber, J., Sagade, A.A., Oellers, M., Watanabe, K., Taniguchi, T., Neumaier, D., Stampfer, C.: Ultra-senstive Hall sensors based on graphnen encapsulated in hexagonal boron nitride. Appl. Phys. Lett. 106, 193501 (2015)

    Article  Google Scholar 

  684. Li, X., Zhu, M., Du, M., Lv, Z., Zhang, L., Li, Y., Yang, Y., Yang, T., Li, X., Wang, K., Zhu, H., Fang, Y.: High detectivity graphene-silicon heterojunction photodetector. Small. 2(5), 595–601 (2015)

    Google Scholar 

  685. Ghosh, S., Sarker, B.K., Chunder, A., Zhai, L., Khondaker, S.I.: Position dependent photodetector from large area reduced graphenen oxide thin films. Appl. Phys. Lett. 96, 163109 (2010)

    Article  Google Scholar 

  686. R & D Magazine: Bosch announces breakthrough in graphene sensor technology. http://www.rdmag.com/news/2015/06/bosch-announces-breakthrough-graphene-sensor-technology. Accessed June 2016

  687. Kazakova, O., et al.: Optimization of 2 DEG InAs/GaSb hall sensors for single particle detection. IEEE Trans. Magn. 44(11), 4480–4483 (2008)

    Article  Google Scholar 

  688. Pisana, S., et al.: Graphene magnetic field sensors. IEEE Trans. Mag. 46(6), 1910–1913 (2010)

    Article  Google Scholar 

  689. Boone, T.D., et al.: Temperature dependence of magnetotransport in extraordinary magnetoresistance devices. IEEE Trans. Magn. 42(10), 3270–3272 (2006)

    Article  Google Scholar 

  690. Kuzmenko, A.B., et al.: Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 4 (2008)

    Article  Google Scholar 

  691. Booth, T.J., et al.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8(8), 2442–2446 (2008)

    Article  Google Scholar 

  692. Boland, C.S., Khan, U., Backes, C., O’Neill, A., McCauley, J., Duane, S., Shanker, R., Liu, Y., Jurewicz, I., Dalton, A.B., Coleman, J.N.: Sensitive, high-Strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano. 8(9), 8819–8830 (2014)

    Article  Google Scholar 

  693. Yao, F., Güneş, F., Ta, H.Q., Lee, S.M., Chae, S.J., Sheem, K.Y., Cojocaru, C.S., Xie, S.S., Lee, Y.H.: Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012)

    Article  Google Scholar 

  694. IEEE Spectrum: Faster and cheaper for graphene in Li-ion batteries. http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/faster-and-cheaper-process-for-graphene-in-liion-batteries. Accessed June 2016

  695. Brownson, D.A.C., Kampouris, D.K., Banks, C.E.: An overview of graphnen in energy production and storage applications. J. Power Sources. 196, 4873–4885 (2011)

    Article  Google Scholar 

  696. Paek, S.-M., Yoo, E., Honma, I.: Nano Lett. 9, 72 (2009)

    Article  Google Scholar 

  697. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Electrochim. Acta. 55, 3909 (2010)

    Article  Google Scholar 

  698. Guo, P., Song, H., Chen, X.: Electrochem. Commun. 11, 1320 (2009)

    Article  Google Scholar 

  699. Yang, S., Feng, X., Ivanovici, S., Müllen, K.: Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materiels for lithium storage. Angew Chem. Int. Ed. 49, 8408 (2010)

    Article  Google Scholar 

  700. Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J.T., Liang, Y., et al.: Mn3O4 graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978 (2010)

    Article  Google Scholar 

  701. Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., et al.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano. 4, 3187 (2010)

    Article  Google Scholar 

  702. Larcher, D., Beattie, S., Morcrette, M., Edstrom, K., Jumas, J.-C., Tarascon, J.-M.: Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17, 3759 (2007)

    Article  Google Scholar 

  703. Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., et al.: Graphen-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22, 5306 (2010)

    Article  Google Scholar 

  704. Lee, J.K., Smith, K.B., Hayner, C.M., Kung, H.H.: Silicon nanoparticles-graphene paper composites for Li ion batter anodes. Chem. Commun. 46, 2025 (2010)

    Article  Google Scholar 

  705. Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)

    Article  Google Scholar 

  706. Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., Jiao, Z.: Chem. Mater. 21, 3136 (2009)

    Article  Google Scholar 

  707. Wu, Z.S., Ren, W., Xu, L., Li, F., Cheng, H.M.: ACS Nano. 5, 5463 (2011)

    Article  Google Scholar 

  708. Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: ACS Nano. 4, 6337 (2010)

    Article  Google Scholar 

  709. Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., Lin, Y.: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010)

    Article  Google Scholar 

  710. David, L., Bhandavat, R., Barrera, U., Singh, G.: Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nature Comm. 7, (2016)

    Google Scholar 

  711. Liu, C., Alwarappan, S., Chen, Z., Kong, X., Li, C.-Z.: Biosens. Bioelectron. 25, 1829 (2010)

    Article  Google Scholar 

  712. Jafri, R.I., Rajalakshmi, N., Ramaprabhu, S.: J. Mater. Chem. 20, 7114 (2010)

    Article  Google Scholar 

  713. Seger, B., Kamat, P.V.: Electrocatyltically active graphene-platiunum nanocomposites. Role of 2-D carbon support for PEM fuel cells. J. Phys. Chem. C. 113, 7990 (2009)

    Article  Google Scholar 

  714. Kou, R., Shao, Y., Wang, D., Engelhard, M.H., Kwak, J.H., Wang, J., et al.: Enhanced activity and stability of Pt catalysts on functionalized graphnen sheets for electrocatalytic oxygen reduction. Electrochem Commun. 11, 954 (2009)

    Article  Google Scholar 

  715. Yumura, T., Kimura, K., Kobayashi, H., Tanaka, R., Okumura, N., Yamabe, T.: The use of nanometer-sized hydrographene species for support material for fuel cell electrode catalyists: a theoretical proposal. Phys. Chem. Chem. Phys. 11, 8275 (2009)

    Article  Google Scholar 

  716. Hu, S., Lozado-Hidalgo, M., Wang, F.C., Mishchenko, A., Schedin, F., Nair, R.R., Hill, E.W., Boukhvaolv, D.W., Katsnelson, M.I., Dryfe, R.A.W., Grigorieva, I.V., Wu, H.A., Geim, A.K.: Proton transport through one-atom-thick crystals. Nature. 516, 227–230 (2014)

    Article  Google Scholar 

  717. Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., Lin, Y.: J. Mater. Chem. 20, 7491 (2010)

    Article  Google Scholar 

  718. Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T., Lin, J.: J. Mater. Chem. 21, 8038 (2011)

    Article  Google Scholar 

  719. Sheng, Z.H., Shao, L., Chen, J.J., Bao, W.J., Wang, F.B., Xia, X.H.: ACS Nano 5, 4350 (2011); Huang, Y., Liang, J., Chen, Y.: An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)

    Google Scholar 

  720. Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., Govindaraj, A., Rao, C.N.R.: J. Chem. Sci. 120, 9 (2008)

    Article  Google Scholar 

  721. Kim, T.Y., Lee, H.W., Stoller, M., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S., Suh, K.S.: ACS Nano. 5, 436 (2011)

    Article  Google Scholar 

  722. Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z.: Nano Lett. 10, 4863 (2010)

    Article  Google Scholar 

  723. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-Based Ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  Google Scholar 

  724. Wu, Z.-S., Wang, D.-W., Ren, W., Zhao, J., Zhou, G., Li, F., et al.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595 (2010)

    Article  Google Scholar 

  725. Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., et al.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano. 4, 1227 (2010)

    Article  Google Scholar 

  726. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., et al.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C. 113, 13103 (2009)

    Article  Google Scholar 

  727. Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and th4eir polyaniline nanocomposites for energy storage. Chem. Mater. 21, 5004 (2009)

    Article  Google Scholar 

  728. Chen, S., Zhu, J.W., Wu, X.D., Han, Q.F., Wang, X.: Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano. 4, 2822 (2010)

    Article  Google Scholar 

  729. Yu, D., Dai, L.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467 (2009)

    Article  Google Scholar 

  730. Wu, Z.S., Ren, W.C., Wang, D.W., Li, F., Liu, B.L., Cheng, H.M.: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano. 4, 5835 (2010)

    Article  Google Scholar 

  731. Zhu, Y.W., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapcitors. Carbon. 48, 2118 (2010)

    Article  Google Scholar 

  732. Du, X., Guo, O., Song, H., Chen, X.: Electrochim. Acta. 55, 4812 (2010)

    Article  Google Scholar 

  733. Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., Wei, F.: Carbon. 48, 487 (2010)

    Article  Google Scholar 

  734. Chen, Y., Zhang, X., Yu, P., Ma, Y.: J. Power Sources. 195, 3031 (2010)

    Article  Google Scholar 

  735. Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y., Sun, Z.: Electrochim. Acta. 55, 4170 (2010)

    Article  Google Scholar 

  736. Chen, S., Zhu, J., Wang, X.: J. Phys. Chem. C. 114, 11829 (2010)

    Article  Google Scholar 

  737. R & D Magazine: Laser-induced graphene “super” for electronics. http://www.rdmag.com/news/2015/01/laser-induced-graphene-super-electronics. Accessed June 2016

  738. R & D Magazine: Quick-charging hybrid supercapacitors. http://www.rdmag.com/news/2015/04/quick-charging-hybrid-supercapacitors. Accessed June 2016

  739. Peng, Z., Ye, R., Mann, J.A., Zakhidov, D., Li, Y., Smalley, P.R., Lin, J., Tour, J.M.: Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano. 9(6), 5868–5875 (2015)

    Article  Google Scholar 

  740. Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., et al.: Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon. 48, 487 (2010)

    Article  Google Scholar 

  741. Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: ACS Appl. Mater. Inter. 2, 821 (2010)

    Article  Google Scholar 

  742. Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: Electrochem. Commun. 11, 1158 (2009)

    Article  Google Scholar 

  743. Zhang, K., Zhang, L.L., Zhao, X.S., Wu, J.: Chem. Mater. 22, 1392 (2010)

    Article  Google Scholar 

  744. Zhang, L.L., Zhao, S., Tian, X.N., Zhao, X.S.: Langmuir. 26, 17624 (2010)

    Article  Google Scholar 

  745. Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Chem. Commun. 47, 5753 (2011)

    Article  Google Scholar 

  746. Chen, S., Zhu, J., Wu, X., Han, Q., Wang, X.: ACS Nano. 4, 2822 (2010)

    Article  Google Scholar 

  747. Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  Google Scholar 

  748. Wang, Y., Chen, X., Zhong, Y., Zhu, F., Loh, K.P.: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95, 063302 (2009)

    Article  Google Scholar 

  749. Li, X., Zhu, H., Wang, K., Anyuan, C., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D.: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22(25), 2743–2748 (2010)

    Article  Google Scholar 

  750. Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisqurt, J., Snaith, H.J., Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014)

    Article  Google Scholar 

  751. De Arco, L.W., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., Zhou, C.: Continuous highly glexible, and transparent graphene gilms by vhemical vapor deposition for organic photovoltaics. ACS Nano. 4(5), 2865 (2010)

    Article  Google Scholar 

  752. Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P.: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 4(1), 43–48 (2010)

    Article  Google Scholar 

  753. Lin, Y., Norman, C., Srivastava, D., Azough, F., Wang, L., Robbins, M., Simpson, K., Freer, R., Kinloch, I.A.: Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces. 7(29), 15898–15908 (2015)

    Article  Google Scholar 

  754. Geng, X., Niu, L., Xing, Z., Song, R., Liu, G., Sun, M., et al.: Aqueous-processable noncovalent chemically converted graphene – quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638 (2010)

    Article  Google Scholar 

  755. Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., et al.: Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano. 4, 3033 (2010)

    Article  Google Scholar 

  756. Xiang, Q., Yu, J., Jaroniec, M.: J. Am. Chem. Soc. 134, 6575 (2012)

    Article  Google Scholar 

  757. Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., Aksay, I.A.: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano. 4(10), 6203–6211 (2010)

    Article  Google Scholar 

  758. Inhabitat: Graphene-based solar cells could yield 60% efficiency. http://inhabitat.com/graphene-based-solar-cells-could-yield-60-efficiency/. Accessed June 2016

  759. Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano. 8(3), 2864–2872 (2014)

    Article  Google Scholar 

  760. Burress, J., Gadipelli, S., Ford, J., Simmons, J., Zhou, W., Yildirim, T.: Angew. Chem. Int. Ed. 49, 8902 (2010)

    Article  Google Scholar 

  761. Ao, Z.M., Jiang, Q., Zhang, R.Q., Tan, T.T., Li, S.: Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105, 074307 (2009)

    Article  Google Scholar 

  762. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., et al.: Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 47, 922 (2009)

    Article  Google Scholar 

  763. Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.-K.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)

    Article  Google Scholar 

  764. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., Chen, Y.: Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 47, 922–925 (2009)

    Article  Google Scholar 

  765. Wu, B., Tuncer, H.M., Naeem, M., Yang, B., Cole, M.T., Milne, W.I., Hao, Y.: Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fraction bandwidth at 140 GHz. Sci. Rep. 4, 4130 (2014)

    Article  Google Scholar 

  766. Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunneling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)

    Article  Google Scholar 

  767. Yang, J.W., Lee, G., Kim, J.S., Kim, K.S.: J. Phys. Chem. Lett. 2, 2577 (2011)

    Article  Google Scholar 

  768. Jin, Z., Yao, J., Kittrell, C., Tour, J.M.: ACS Nano. 5, 4112 (2011)

    Article  Google Scholar 

  769. Park, J., Lee, W.H., Huh, S., Sim, S.H., Kim, S.B., Cho, K., Hong, B.H., Kim, K.S.: J. Phys. Chem. Lett. 2, 841 (2011)

    Article  Google Scholar 

  770. Park, J., Jo, S.B., Yu, Y.J., Kim, Y., Yang, J.W., Lee, W.H., Kim, H.H., Hong, B.H., Kim, P., Cho, K., Kim, K.S.: Adv. Mater. 24, 407 (2012)

    Article  Google Scholar 

  771. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  Google Scholar 

  772. Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Phys. Rev. Lett. 100, 016602 (2008)

    Google Scholar 

  773. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Solid State Commun. 146, 351 (2008)

    Article  Google Scholar 

  774. Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today. 60, 35 (2007)

    Google Scholar 

  775. Chen, J.-H., Ishigami, M., Jang, C., Hines, D.R., Fuhrer, M.S., Williams, E.D.: Printed graphene circuits. Adv. Mater. 19(21), 3623–3627 (2007)

    Article  Google Scholar 

  776. Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K.: Chaotic Dirac billiard in graphene quantom dots. Science. 320(5874), 356–358 (2008)

    Article  Google Scholar 

  777. Jia, C., Migliore, A., Xin, N., Huang, S., Wang, J., Yang, Q., Wang, S., Chen, H., Wang, D., Feng, B., Liu, Z., Zhang, G., Qu, D.-H., Tian, H., Ratner, M.A., Xu, H.Q., Nitzan, A., Guo, X.: Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science. 352(6292), 1443–1445 (2016)

    Article  Google Scholar 

  778. Halford, B.: Diarylethene molecular switch has staying power. Chem. Eng. News. 94(25), 5 (2016)

    Google Scholar 

  779. Georgia Tech Research News: Carbon-based electronics: researchers develop foundation for circuitry and devices based on graphite. http://gtresearchnews.gatech.edu/newsrelease/graphene.htm. Accessed June 2016

  780. Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron Device Lett. 28(4), 1–12 (2007)

    Article  Google Scholar 

  781. Kedzierski, J., Hsu, P.-L., Healey, P., Wyatt, P., Keast, C., Sprinkle, M., Berger, C., de Heer, W.: Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Devices. 55, 2078 (2008)

    Article  Google Scholar 

  782. Moon, J.S., Curis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., Vanmil, B., Myers-Ward, R., Eddy, C., Gaskill, D.K.: Epitaxial-graphene RF field-effect transistors on Si-Face 6H-SiC substrates. IEEE Electron Device Lett. 30(6), 650–652 (2009)

    Article  Google Scholar 

  783. Sordan, R., Traversi, F., Russo, V.: Logic gates with a single graphene transistor. Appl. Phys. Lett. 94, 073305 (2009)

    Article  Google Scholar 

  784. Chang, H., Sun, Z., Yuan, Q., Ding, F., Tao, X., Yan, F., et al.: Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv. Mater. 22, 4872 (2010)

    Article  Google Scholar 

  785. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839 (2009)

    Article  Google Scholar 

  786. (a) Lee, W.H., Park, J., Sim, S.H., Lim, S., Kim, K.S., Hong, B.H., Cho, K.: J. Am. Chem. Soc. 133, 4447 (2011); (b) Lee, W.H., Park, J., Sim, S.H., Jo, S.B., Kim, K.S., Hong, B.H., Cho, K.: Adv. Mater. 3, 1752 (2011)

    Google Scholar 

  787. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T., Hshieh, G.W., Jung, S.J., Bonaccorso, F., Paul, P.J., Chu, D.P., Ferrari, A.C.: Ink-jet printed graphene electronics. ACS Nano. 6, 2992 (2012)

    Article  Google Scholar 

  788. MIT Technology Review: Printed graphene transistors promise a flexible electronic future. https://www.technologyreview.com/s/518606/printed-graphene-transistors-promise-a-flexible-electronic-future/. Accessed June 2016

  789. Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  790. The physics arXiv blog: Graphene transistors clocked at 26 GHz. http://arxivblog.com/?p=755. Accessed June 2016

  791. Traversi, F., Russo, V., Sordan, R.: Integrated complementary graphene inverter. Appl. Phys. Lett. 94, 223312 (2009)

    Article  Google Scholar 

  792. Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.-Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science. 327(u), 662 (2010)

    Article  Google Scholar 

  793. Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A., Avouris, P., Jenkins, K.A.: Wafer-Scale Graphene Integrated Circuit. Science. 332(6035), 1294–1297 (2011)

    Article  Google Scholar 

  794. Physics World: Graphene circuit breaks the gigahertz barrier. http://physicsworld.com/cws/article/news/2013/jun/17/graphene-circuit-breaks-the-gigahertz-barrier. Accessed June 2016

  795. Skrypnychuk, V., Boulanger, N., Yu, V., Hilke, M., Mannsfeld, S.C.B., Toney, M.F., Barbero, D.R.: Enhanced verticle charge transport in a semiconducting P3HT thin film on single layer graphene. Adv. Funct. Mat. 25(5), 664–670 (2014)

    Article  Google Scholar 

  796. Ming, L., Xin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature. 474, 64–67 (2011)

    Article  Google Scholar 

  797. Phys.org: Graphene could lead to faster chips. phys.org/news/2009-03-graphene-faster-chips.html. Accessed June 2016

    Google Scholar 

  798. Zhou, Q., Zheng, J., Onishi, S., Crommie, M.F., Zettl, A.K.: Graphene electrostatic microphone and ultrasonic radio. PNAS. 112(29), 1–5 (2015)

    Article  Google Scholar 

  799. Mikhailov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.: Condens. Matter. 20, 1–13 (2008)

    Google Scholar 

  800. Wang, X., Zhi, L.J., Mullen, K.: Nano Lett. 8, 323 (2008)

    Article  Google Scholar 

  801. Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitzed solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  Google Scholar 

  802. Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P.: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 4(1), 43–48 (2010)

    Article  Google Scholar 

  803. New Atlas: First flexible graphene-based display created. http://www.gizmag.com/graphene-flexible-electrophoretic-display/33765/. Accesed June 2016

  804. Optics.org: Flexible, inorganic LEDs and solar cells grown on graphene. http://optics.org/news/5/9/45. Accessed June 2016

  805. Anguita, J.V., Ahmad, M., Haq, S., Allam, J., Silva, S.R.P.: Ultra-broadband light trapping nusing nanotextured decoupled graphene multilayers. Sci. Adv. 2(2), e1501238 (2016)

    Article  Google Scholar 

  806. Fabro, A., et al.: Graphene-based interfaces do not alter target nerve cells. ACS Nano. 10(1), 615–623 (2016)

    Article  Google Scholar 

  807. Lalwani, G., Henslee, A.M., Farshid, B., Lin, L., Kasper, F.K., Qin, Y.-X., Mikos, A.G., Sitharaman, B.: Two-dimensional nanostructure- reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules. 14(3), 900–909 (2013)

    Article  Google Scholar 

  808. Kanakia, S., Toussaint, J.D., Choudhury, S.M., Lalwani, G., Tembulkar, T., Button, T., Shroyer, K.R., Moore, W., Sitharaman, B.: Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent. Int. J. Nanomed. 8, 2821–2833 (2013)

    Google Scholar 

  809. Lalwani, G., Sundaraj, J.L., Schaefer, K., Button, T., Sitharaman, B.: Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging – X-ray computed tomography contrast agent. J. Mater. Chem. B Mater Biol. Med. 2(22), 3519–3530 (2014)

    Article  Google Scholar 

  810. Abdul, K.R., Kafafy, R., Salleh, H.M., Faris, W.F.: Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes. Nanotechnol. 23(45), 455106 (2012)

    Article  Google Scholar 

  811. Min, S.K., Kim, W.Y., Cho, Y., Kim, K.S.: Nat. Nanotechnol. 6, 162 (2011)

    Article  Google Scholar 

  812. Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sun, H., Yang, B.: Chem. Commun. 47, 6858 (2011)

    Article  Google Scholar 

  813. Hu, S.H., Chen, Y.W., Hung, W.T., Chen, I.W., Chen, S.Y.: Adv. Mater. 24, 1748 (2012)

    Article  Google Scholar 

  814. Mao, X., Tian, D., Li, H.: Chem. Commun. 48, 4851 (2012)

    Article  Google Scholar 

  815. Das, T.K., Prusty, S.: Graphene-based polymer composites and their applications. Polym.-Plast. Technol. Eng. 52, 319–331 (2013)

    Article  Google Scholar 

  816. Yan, Z., et al.: Rebar Graphene. ACS Nano. 8(5), 5061–5068 (2014)

    Article  Google Scholar 

  817. Kim, T., Park, J., Sohn, J., Cho, D., Jeon, S.: Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano. 10(4), 4770–4778 (2016)

    Article  Google Scholar 

  818. Cohen-Tanugi, D., Grossman, J.C.: Water desalination across nanoporous graphene. Nano Lett. 12(7), 3602–3608 (2012)

    Article  Google Scholar 

  819. Romanchuk, A.Y., Slesarev, A.S., Kalmykov, S.N., Kosynkint, D.V., Tour, J.M.: Graphene oxide for effective radionuclide removal. Phy. Chem. Chem. Phy. 15, 2321–2327 (2013)

    Article  Google Scholar 

  820. Rice University News & Media: Another tiny miracle: graphene oxide soaks up radioactive waste. http://news.rice.edu/2013/01/08/another-tiny-miracle-graphene-oxide-soaks-up-radioactive-waste/. Accessed June 2016

  821. Xu, J., Wang, L., Zhu, Y.: Langmuir. 28, 8418 (2012)

    Article  Google Scholar 

  822. Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Science. 313, 951 (2006)

    Article  Google Scholar 

  823. Zhao, G., Li, J., Ren, X., Chen, C., Wang, X.: Environ. Sci. Technol. 45, 10454 (2011)

    Article  Google Scholar 

  824. Zhao, G., Jiang, L., He, Y., Li, J., Dong, H., Wang, X., Hu, W.: Adv. Mater. 23, 3959 (2011)

    Article  Google Scholar 

  825. Chandra, V., Kim, K.S.: Chem. Commun. 47, 3942 (2011)

    Article  Google Scholar 

  826. Geng, Z., Lin, Y., Yu, X., Shen, Q., Ma, L., Li, Z., Pan, N., Wang, X.J.: Mater. Chem. 22, 3527 (2012)

    Article  Google Scholar 

  827. Chandra, V., Park, J., Chun, Y., Woo Lee, J., Hwang, I.C., Kim, K.S.: ACS Nano. 4, 3979 (2010)

    Article  Google Scholar 

  828. Zhang, J., Xiong, Z., Zhao, X.S.J.: Mater. Chem. 21, 3634 (2011)

    Article  Google Scholar 

  829. Chandra, V., Yu, S.U., Kim, S.H., Yoon, Y.S., Kim, D.Y., Kwon, A.H., Meyyappan, M., Kim, K.S.: Chem. Commun. 48, 735 (2012)

    Article  Google Scholar 

  830. Mishra, A.K., Ramaprabhu, S.J.: Mater. Chem. 22, 3708 (2012)

    Article  Google Scholar 

  831. Phys.org: Graphene proves a long-lasting lubricant. http://phys.org/news/2014-10-graphene-long-lasting-lubricant.html. Accessed June 2016

  832. Wei, Y., Xie, H.: Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A. 375(10), 1323–1328 (2011)

    Article  Google Scholar 

  833. R & D Magazine: Graphene-copper sandwich may improve, shrink electronics. http://www.rdmag.com/news/2014/03/graphene-copper-sandwich-may-improve-shrink-electronics. Accessed June 2016

  834. Bomgardner, M.M.: Biobased firms win funding. Chem. Eng. News. 93(9), 15 (2015)

    Article  Google Scholar 

  835. Jia, C., Migliore, A., Xin, N., Huang, S., Wang, J., Yang, Q., Shuopei, W., et al.: Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science. 352(6292), 1443–1445 (2016)

    Article  Google Scholar 

  836. Cambridge Dictionary: Graphene. http://dictionary.cambridge.org/dictionary/english/graphene?a=british. Accessed June 2016

  837. Wessling, B.: Synth. Met. 93, 143 (1998)

    Article  Google Scholar 

  838. Wallace, G.G., Spinks, G.M., Teasdale, P.R.: Conductive electroactive polymers: intelligent materials systems. Technomic (1996)

    Google Scholar 

  839. Malinauskas, A., Malinauskiene, J., Ramanavičius, A.: Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnol. 16, R51–R62 (2005)

    Article  Google Scholar 

  840. Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38(8), 2397–2409 (2009)

    Article  Google Scholar 

  841. Ito, T., Shirakawa, H., Ikeda, S.: J. Plym. Sci. Plym. Chem. Edu. 12, 11 (1974)

    Article  Google Scholar 

  842. Letheby, H.: J. Chem. Soc. 15, 161 (1862)

    Article  Google Scholar 

  843. Mohilner, D.M., Adams, R.N., Arlgersinger Jr., W.J.: J. Am. Chem. Soc. 84, 3618 (1962)

    Article  Google Scholar 

  844. Gardini, G.P.: Adv. Heterocycl. Chem. 15, 67 (1973)

    Article  Google Scholar 

  845. Angeli, A.: Gazz. Chim. Ital. 46, 279 (1916) (1916)

    Google Scholar 

  846. Lund, H.: Acta Chem. Scand. 11, 1323 (1957)

    Article  Google Scholar 

  847. Peover, M.E., White, B.S.: J. Electroanal. Chem. 13, 93 (1967)

    Article  Google Scholar 

  848. Osa, T., Yildiz, A., Kuwana, T.: J. Am. Chem. Soc. 91, 3994 (1969)

    Article  Google Scholar 

  849. Armour, M., Gavies, A.G., Upadhyay, J., Wasserman, A.: J. Polym. : Sci. A1, 1527 (1967)

    Google Scholar 

  850. Jozefowicz, M., Yu, L.T., Belorgey, G., Buvet, R.: J. Polym. Sci. Part C. 16, 2943 (1969)

    Article  Google Scholar 

  851. Dall'Ollio, A., Dascola, Y., Varacca, V., Bocchi, V.: Comptes Rendus. C267, 433 (1968)

    Google Scholar 

  852. (a) Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G.: Phys. Rev. Lett. 39, 1089 (1977); (b) Genies, W.M., Bidan, G., Diaz, A.: J. Electroanal. Chem. 149, 101 (1983)

    Google Scholar 

  853. (a) Diaz, A.F., Kanazawa, K.K., Gardini, G.P.: J. Chem. Soc. Chem. Commun. 635 1979; (b) Scott, J.C., Pfluger, P., Krounbi, M.T., Street, G.B.: Phys. Rev. B 28, 2140 (1983); (c) Chen, J., Heeger, A.J.: Synth. Met. 24, 311 (1988)

    Google Scholar 

  854. Salzner, U.: Electronic structure of conducting organic polymers: insights from time-dependent density functional theory. WIREs Comput. Mol. Sci. 4(6), 601–622 (2014)

    Article  Google Scholar 

  855. Brazovskii, S., Kirova, N.: Physical theory of scitons in conducting polymers. Chem. Soc. Rev. 39, 2453–2465 (2010)

    Article  Google Scholar 

  856. Brédas, J.L., Street, G.B.: Acc. Chem. Res. 18, 309 (1985)

    Article  Google Scholar 

  857. Brédas, J.L., Scott, J.C., Yakushi, K., Street, G.B.: Phys. Rev. 30, 1023 (1984)

    Article  Google Scholar 

  858. Guay, J., Leclerc, M., Dao, L.H.: J. Electroanal. Chem. 251, 31 (1988)

    Article  Google Scholar 

  859. Kitani, A., Yano, J., Kunai, A., Sasaki, K.: J. Electroanal. Chem. 221, 69 (1987)

    Article  Google Scholar 

  860. Basescu, N., Liu, Z.-X., Moses, D., Heeger, A.J., Naarmann, H., Theophilou, N.: Long mean free path coherent transport in doped polyacetylene. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of conjugated polymers, vol. 76, p. 18. Springer, Berlin/Hedelberg (1987)

    Chapter  Google Scholar 

  861. Laks, B., Galvao, D.S.: Phys. Rev. B: Condens. Matter. 56, 967 (1997)

    Article  Google Scholar 

  862. Chance, R.R., Brédas, J.L., Silbey, R.: Phys. Rev. B. 29, 4491 (1984)

    Article  Google Scholar 

  863. Schimmel, T., Gläser, D., Schwoerer, M., Naarmann, H.: Properties of highly conducting polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 49. Kluwer Academic Publishers, Norwell (1991)

    Chapter  Google Scholar 

  864. Kuwabara, M., Abe, S., Ono, Y.: Synth. Met. 85, 1109 (1997)

    Article  Google Scholar 

  865. Roth, S., Kaiser, M., Reichenbach, J.: Physica Scripta. T45, 230 (1992)

    Article  Google Scholar 

  866. Bott, D.C.: Structural basis for semiconducting and metallic polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1191. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  867. Roth, S.: Conductive polymers in molecular electronics: conductivity and photoconductivity. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 129. Adam Hilger, New York (1991)

    Google Scholar 

  868. Kivelson, S., Heeger, A.J.: Synth. Met. 22, 371 (1988)

    Article  Google Scholar 

  869. Pietronero, L.: Synth. Met. 8, 225 (1983)

    Article  Google Scholar 

  870. Mao, H., Pickup, P.G.: J. Am. Chem. Soc. 112, 1776 (1990)

    Article  Google Scholar 

  871. Aldissi, M.: Transport properties-semiconductor to metal transition. In: Inherently conducting polymers: processing, fabrication, applications, limitations, p. 43. Noyes Data Corporation, New Jersey (1989)

    Google Scholar 

  872. Rehwald, W.; Kiessm H.G. Charge transport in polymers. In Conjugated conducting polymers, Springer Ser. Solid-State Sci.; Kiess, H. Ed.; Springer, New York, 1992; Vol. 102, p. 158.

    Google Scholar 

  873. Ochmanska, J., Pickup, P.G.: J. Electroanal. Chem. 297, 211 (1991)

    Article  Google Scholar 

  874. Mott, N.F., Davis, E.A.: Electronic processes in non-crystalline materials, 3rd edn. Clarendon, Oxford (1979)

    Google Scholar 

  875. Schäfer-Siebert, D., Roth, S.: Limitation of the conductivity of polyacetylene by conjugational defects. Synthetic Metals. 28(3), (1989)

    Google Scholar 

  876. Hauser, J.J.: J. Non-Cryst. Solids 23, 21 (1977); (b) Singh, R., Narula, A.K., Tandon, R.P., Mansingh, A., Chandra, S.: J. Appl. Phys. 81, 3726 (1997); (c) Sheng, P.: Phys. Rev. B 21, 2180 (1980)

    Google Scholar 

  877. Paasch, G., Lehmann, G., Wuckel, H.: Properties of highly conducting polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 49. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  878. Kivelson, S.: Phys. Rev. B. 21, 3798 (1982)

    Article  Google Scholar 

  879. Kivelson, S., Heeger, A.J.: Phy. Rev. Lett. 55, 308 (1985)

    Article  Google Scholar 

  880. Heeger, A.J.: Polyacetylene, new concepts and new phenomena. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 729. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  881. Yoon, C.O., Reghu, M., Moses, D., Heeger, A.J., Cao, Y., Chen, T.-A., Wu, X., Rieke, R.D.: Synth. Met. 75, 229 (1995)

    Article  Google Scholar 

  882. Plocharski, J.: Mechanisms of conductivity in conjugated polymers and relations to moprhology. In: Plocharski, J., Roth, S. (eds.) Material science forum, vol. 42, p. 17. Trans Tech Publications, Switzerland (1989)

    Google Scholar 

  883. Roth, S.: Conducting polymers- present state of physical understanding. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 1. Trans tech Publications, Switzerland (1989)

    Google Scholar 

  884. Pfluger, P.: Electronic structure and transport in the organic ‘amorphous semi conductor’ polypyrrole. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1369. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  885. Kanazawa, K.K., Diaz, A.F., Gill, W.D., Grant, P.M., Street, G.B., Gardini, G.P., Kwak, J.F.: Synth. Met. 1, 329 (1979)

    Article  Google Scholar 

  886. Epstein, A.J.: AC conductivity of polyacetylene: distinguishing mechanisms of charge transport. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1047. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  887. Sariciftci, N.S., Kobryanskii, V.M., Reghu, M., Smilowitz, L., Halvorson, C., Hagler, T.W., Mihailovic, D., Heeger, A.J.: Synth. Met. 53, 161 (1993)

    Article  Google Scholar 

  888. Epstein, A.J., MacDiarmid, A.G.: The controlled electromagnetic response of polyanilines and its application to technologies. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 141. Adam Hilger, New York (1991)

    Google Scholar 

  889. (a) Wang, Z.H., Ray, A., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B 43, 4373 (1991); (b) Courves, L.D., Porter, S.J.: Synth. Met. 28, C761 (1989)

    Google Scholar 

  890. Wang, Z.H., Scherr, E.M., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B. 45, 4190 (1992)

    Article  Google Scholar 

  891. Burns, A., Wang, Z.H., Du, G., Joo, J., Epstein, A.J., Osaheni, J.A., Jenekhe, S.A., Wang, C.S.: In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materiels. IN Mat. Res. Soc. Symp, vol. 247, p. 735. Materials Reasearch Society, Pittsburgh (1992)

    Google Scholar 

  892. Heeger, A.J.: Conducting polymers: The route from fundamental science to technology. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 1. Adam Hilger, New York (1991)

    Google Scholar 

  893. Epstein, A.J., Rommelmann, H., Abkowitz, M., Gibson, H.W.: Phys. Rev. Lett. 47, 1549 (1981)

    Article  Google Scholar 

  894. Javadi, H.H.S., Cromack, K.R., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B. 39, 3579 (1989)

    Article  Google Scholar 

  895. Lee, K., Reghu, M., Yuh, E.L., Sariciftci, N.S., Heeger, A.J.: Synth. Met. 68, 287 (1995)

    Article  Google Scholar 

  896. Sieger, K., Gill, W.D., Clark, T.C., Street, G.B.: Am. Phys. Soc. (1978)

    Google Scholar 

  897. Reghu, M., Yoon, C.O., Moses, D., Cao, Y., Heeger, A.J.: Synth. Met. 69, 329 (1995)

    Article  Google Scholar 

  898. (a) Basescu, N., Liu, Z.-X., Moses, D., Heeger, A.J., Naarmann, H., Theophilou, N.: Nature 327, 403 (1987); (b) Maddison, D.S., Unsworth, J.: Synth. Met. 22, 257 (1988)

    Google Scholar 

  899. Ferraris, J.P., Webb, A.W., Weber, D.C., Fox, W.B., Carpenter, E.R., Brant, P.: Solid State Commun. 35, 15 (1980)

    Article  Google Scholar 

  900. Fukuhara, T., Masubuchi, S., Kazama, S.: Synth. Met. 92, 229 (1998)

    Article  Google Scholar 

  901. Bao, Z.-X., Liu, C.X., Pinto, N.J.: Synth. Met. 87, 147 (1997)

    Article  Google Scholar 

  902. Heeger, A.J., Smith, P.: Solution processing of conducting polymers: opportunities for science and technology. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 141. Kluwer Academic Publishers, Norwell (1991)

    Google Scholar 

  903. MacDiarmid, A.G., Epstein, A.J.: The polyanilines: potential technology based on new chemistry and new properties. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 117. Adam Hilger, New York (1991)

    Google Scholar 

  904. Burroughes, J.H., Friend, R.H.: The semiconductor device physics of polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) The novel science and technology of highly conducting and nonlinear optically active materials, p. 555. Kluwer Academic Publishers, Norwell (1991)

    Google Scholar 

  905. Aldissi, M.: Doping of conjugated polymers: conducting polymers. In: Inherently conducting polymers: processing, fabrication, applications, limitations, vol. 989, p. 40. Noyes Data Corporation, New Jersey (1989)

    Google Scholar 

  906. (a) Paloheimo, J., Punkka, E., Stubb, H., Kuivavainen, P.: Polymer field-effect transistors for transport property studies. In: Metzger, R.M. (ed.) Proceedings of NATO ASI conference on Lower Dimensional Systems and Molecular Electronics, Soetses, Greece, June 12–23, p. 989. Plenum Press, New York (1990);(b) Punkka, E.; Isotalo, M.; Ahlskog, M.; Subb, H. Effects of humidy and heat on the conductivity of Poly(3-Alkylltheriophenes), Espoo. Finland.

    Google Scholar 

  907. Sato, M.-A., Tanaka, S., Kaeriyama, K.: J. Chem. Soc., Chem. Commun. 713, (1985)

    Google Scholar 

  908. Sato, M.-A., Tanaka, S., Kaeriyama, K.: Synth. Met. 18, 229 (1987)

    Article  Google Scholar 

  909. Peierls, R.E.: Quantum theory of solids, p. 108. Clarendon, Oxford (1955)

    Google Scholar 

  910. Dai, Y., Chodhury, S., Blaisten-Barojas, E.: Density functional theory study of the structure and energetics of negatively charged pyrrole oligomers. Quantum Chem. 111(10), 2295–2305 (2011)

    Article  Google Scholar 

  911. Tretiak, S., Igumenshchev, K., Chernyak, V.: Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Phys. Rev. B. 71, 033201 (2005)

    Article  Google Scholar 

  912. Whangbo, M.-H., Hoffmann, R., Woodward, R.B.: Proc. Royal Soc. Lond. A. 366, 23 (1979)

    Article  Google Scholar 

  913. Hoffmann, R.: J. Chem Phys. 39, 1397 (1963)

    Article  Google Scholar 

  914. Delhalle, J., Delhalle, S., André, J.M., Pireaux, J.J., Saudano, R., Verbist, J.J.: J. Electron. Spectrosc. Relat. Phenom. 12, 293 (1977)

    Article  Google Scholar 

  915. Elsenbaumer, R.L., Marynick, D.S., Seong, S., Meline, R.L.: Sulfur containing conjugated polymers with interesting electronic properties. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Mat. Res. Soc. Symp. Proc., Electrical, electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 221. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  916. Pomerantz, M., Wang, J., Seong, S., Starkey, K.P., Nugyen, L., Marynick, D.S.: A new dithiophene fused p-phenylene vinylene vonducting polymer. Synthesis and study. In: Mat. Res. Soc. Symp. Proc., Electrical optical, and magnetic properties of organic solid state materials, vol. 328, p. 227. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  917. Beck, F.: Metalloberflaeche. 46, 177 (1992)

    Google Scholar 

  918. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.F.: J. Am. Chem. Soc. 107, 3092 (1985)

    Google Scholar 

  919. Ford, W.K., Duke, C.B., Paton, A.: J. Chem. Phys. 77, 4564 (1982)

    Article  Google Scholar 

  920. Ford, W.K., Duke, C.B., Salaneck, W.R.: J. Chem. Phys. 77, 5030 (1982)

    Article  Google Scholar 

  921. Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. B. 22, 2099 (1980)

    Article  Google Scholar 

  922. Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. Lett. 42, 1698 (1979)

    Article  Google Scholar 

  923. (a)Kiess, H.G.: Conjugated conducting polymers. In: Kiess, H. (ed.) Springer Ser. Sold-State Sci, vol. 102, p. 1. Springer (1992.); (b) Baeriswyl, D., Campbell, D.K., MAzumdar, S: An overview of the theory of pi-conjugated polymers. In: Conjugated conducting polymers, Springer Ser. Solid-State Sci., Vol. 102, p. 7. Springer, New York (1992)

    Google Scholar 

  924. Mazumdar, S., Chandross, M.: Theory of photoexcitations in phenylene-based polymers. In: Yang, S.C., Chandrasekhar, P. (eds.) Proc. SPIE, 2428: optical and photonic applications of electroactive and conducting polymers, vol. 1995, p. 62. SPIE-The International Society for Optical Engineering, Bellingham (2528)

    Google Scholar 

  925. Grant, P.M., Batra, I.P.: Solid State Commun. 29, 225 (1979)

    Article  Google Scholar 

  926. Brédas, J.L., Chance, R.R., Silbey, R.: Phys. Rev. B. 26, 5843 (1982)

    Article  Google Scholar 

  927. Kertesz, M., Hughbanks, T.R.: Synth. Met. 69, 699 (1995)

    Article  Google Scholar 

  928. Brédas, J.L.: Electronic structure of highly conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 859. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  929. Pollak, M., Knotek, M.L.: J. Non-Cryst. Solids. 32, 141 (1979)

    Article  Google Scholar 

  930. (a) Yamamoto, T., Sanechika, K., Yamamoto, A.: J. Polym. Sci. Polym. Lett. Ed. 18, 9 (1980); (b) Lin, J.W.P., Dudek, L.P.: J. Polym. Sci. Polym. Lett. Ed. 18, 2869 (1980)

    Google Scholar 

  931. Brédas, J.L., Heeger, A.J., Wudl, F.: J. Chem. Phys. 85, 4673 (1986)

    Article  Google Scholar 

  932. Tanaka, C., Tanaka, J.: Energy band structure for metallic polyacetylene. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Mat. Res. Soc. Symp. Proc., Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 577. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  933. Brédas, J.L., Thémans, B., Fripiat, J.G., André, J.M., Chance, R.R.: Phys. Rev. B. 29, 6761 (1984)

    Article  Google Scholar 

  934. Lazzaroni, R., Rachidi, S., Brédas, J.L.: Theoretical investigation of chain flexibility in polythiophene and polypyrrole. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 13. Adam Hilger, New York (1991)

    Google Scholar 

  935. Mele, E.J.: Phonmons and the Peierls instability in polyacetylene. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 795. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  936. Stafström, S.: Electronic properties of heavily doped trans-polyacetylene. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 113. Kluwer Academic Publishers, Norwell (1991)

    Chapter  Google Scholar 

  937. Chandross, M., Shimoi, Y., Mazumdar, S.: Synth. Met. 85, 1001 (1997)

    Article  Google Scholar 

  938. Gallagher, F.B., Spano, F.C.: Synth. Met. 85, 1007 (1997)

    Article  Google Scholar 

  939. Senevirathne, M.S., Nanayakkara, A., Senadeera, G.K.R.: A theoretical investigation of band gaps of conducting polymers with heterocycles. J. Natn. Sci. Foundation Sri Lanka. 39(2), 183–185 (2011)

    Article  Google Scholar 

  940. Thémans, B., Salaneck, W.R., Brédas, J.L.: Synth. Met. 28, C359 (1989)

    Article  Google Scholar 

  941. (a) Nicholas, G., Durand, P.: J. Chem. Phys. 70, 2020 (1979); 72, 453 (1980); (b) André, J.M., Burke, L.A., Delhalle, J., Nicolas, G., Durand, P.: Int. J. Quantum Chem. Symp. 13, 283 (1979)

    Google Scholar 

  942. Brédas, J.L., Chance, R.R., Silbey, R., Nicolas, G., Durand, P.: J. Chem. Phys. 75, 255 (1981)

    Article  Google Scholar 

  943. Delamer, M., Lacaze, P.C., Dumousseau, J.Y., Dubois, J.E.: Electrochim. Acta. 27, 61 (1982)

    Article  Google Scholar 

  944. Tanaka, J., Tanaka, M.: Optical spectra of conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1269. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  945. Mazumdar, S., Chandross, M.: Theory of photoexcitations in phenylene-based polymers. In: Yang, S.C., Chandrasekhar, P. (eds.) Proc. SPIE, 2528: optical and photonic applications of electroactive and conducting polymers, p. 62. SPIE-The International Society for Optical Engineering, Bellingham (1995)

    Google Scholar 

  946. Furukawa, Y., Tazawa, S., Fuji, Y., Harada, I.: Synth. Met. 24, 329 (1988)

    Article  Google Scholar 

  947. Yano, J.L J. Electrochem. Soc. 144, 477 (1997)

    Google Scholar 

  948. Inganäs, O.: Electroactive polymers in large area chromogenics. In: Lampert, C.M., Granqvist, C.G. (eds.) Proc. SPIE, Large-area chromogenics: materials and devices for transmittance control, vol. IS4, p. 328. SPIE Optical Engineering Press, Bellingham (1990)

    Google Scholar 

  949. Mastragostino, M.: Electrochromic devices. In: Scrosati, B. (ed.) Applications of electroactive polymers, p. 223. Chapman & Hall, New York (1993)

    Chapter  Google Scholar 

  950. Kim, E., Lee, K.-Y., Lee, M.-H., Shin, J.-S., Rhee, S.B.: Synth. Met. 85, 1367 (1997)

    Article  Google Scholar 

  951. Yamasaki, S., Terayama, K., Yano, J.: J. Electrochem. Soc. 143, L212 (1996)

    Article  Google Scholar 

  952. Tourillon, G.: Polythiophene and its dervatives. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 293. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  953. Neugebauer, R., Neckel, A., Brinda-Konopil, N.: In situ infrared spectro-electrochemical investigations of polythiophenes. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of polymers and related compounds, vol. 69, p. 226. Springer, New York

    Google Scholar 

  954. Meador, M.A., Gaier, J.R., Good, B.S., Sharp, G.R., Meador, M.A.: A review of properties and potential aerospace applications of electrically conducting polymers. In: Internal report national aeronautics and space administration, pp. 1–21. Lewis Research Center, Cleveland (1989)

    Google Scholar 

  955. Yang, S.C.: Conducting polymer as electrochromic material: polyaniline. In: Lampert, C.M., Granqvist, C.G. (eds.) Proc. SPIE, Large-area chromogenics, materials and devices for transmittance control, vol. IS4, p. 335. SPIE Optical Engineering Press, Washington, DC (1990)

    Google Scholar 

  956. Chandrasekhar, P., Gumbs, R.W.: J. Electrochem. Soc. 138, 1337 (1991)

    Article  Google Scholar 

  957. Onoda, M., Iwasa, T., Kawai, T., Nakayama, J., Nakahara, H., Yoshino, K.: J. Electrochem. Soc. 140, 397 (1993)

    Article  Google Scholar 

  958. Guay, J., Paynter, R., Dao, L.H.: Macromolecules. 23, 3598 (1990)

    Article  Google Scholar 

  959. Duffie, J.A., Beckman, W.A.: Radiation characteristics of opaque materials. In: Solar engineering of thermal processes, p. 184. Wiley, New York (1991)

    Google Scholar 

  960. Wake, L.V.: Principles and formulation of solar reflecting and low IR emitting coatings for defense use, p. AD-A218429. Avail. Fr. Defense Technical Information Center, Washington, DC (1989)

    Google Scholar 

  961. Inganäs, O., Gustafsson, G., Salaneck, W.R.: Synth. Met. 28, C377 (1989)

    Article  Google Scholar 

  962. Gustafsson, G., Inganäs, O., Salaneck, W.R., Laakso, J., Loponen, M., Taka, T., Österholm, J.-E., Stubb, H., Hjertberg, T.: Processable conducting poly (3-alkylthiopenes). In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 315. Kluwer Academic Publishers, Norwell (1991)

    Chapter  Google Scholar 

  963. Inganäs, O., Salaneck, W.R., Österholm, J.-E., Laakso, J.: Synth. Met. 22, 395 (1988)

    Article  Google Scholar 

  964. Hirota, N., Hisamatsu, N., Maeda, S., Tsukahara, H., Hyodo, K.: Synth. Met. 80, 67 (1996)

    Article  Google Scholar 

  965. Patil, A.O.: Synth. Met. 28, C495 (1989)

    Article  Google Scholar 

  966. Liu, M., Gregory, R.V.: Synth. Met. 72, 45 (1995)

    Article  Google Scholar 

  967. Lanzi, M., Bizzarri, P.C., Casa, C.D.: Synth. Met. 89, 181 (1997)

    Article  Google Scholar 

  968. Chandrasekhar, P., Zay, B.J., Lawrence, D., Caldwell, E., Sheth, R., Stephan, R., Cornwell, J.: Variable-emittance IR-electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes and semiconductor/polymer coatings, for spacecraft thermal control. Appl. Polymer. 131(19), 40850 (2014)

    Google Scholar 

  969. Quill Work V.4

    Google Scholar 

  970. Diaz, A.F., Castillo, J.I., Logan, J.A., Lee, W.-Y.: J. Electroanal. Chem. 129, 115 (1981)

    Article  Google Scholar 

  971. Kawai, T., Iwasa, T., Onada, M., Sakamoto, T., Yoshino, K.: J. Electrochem. Soc. 139, 3404 (1992)

    Article  Google Scholar 

  972. Diaz, A.F., Bargon, J.: Electrochemical synthesis of conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 81. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  973. Gopal, J., Vanhouten, K., Cowan, D.O., Poehler, T.O., Madsen, P.V., Searson, P.C.: Diether substitued polyanilines: Novel electrode materials. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Mat. Res. Soc. Symp. Proc.: electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 607. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  974. Goldenberg, L.M., Petty, M.C., Monkman, A.P.: J. Electrochem. Soc. 141, 1573 (1994)

    Article  Google Scholar 

  975. Guay, J., Dao, L.H.: J. Electroanal. Chem. 274, 135 (1989)

    Article  Google Scholar 

  976. Arbizzani, C., Mastragostino, M., Dellepiane, G., Piaggio, P.: Chemical and electrochemical doping of PPS in sulfuric acid. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Mat. Res. Soc. Symp. Roc.: electrical, optical, and magnetic properties of organic solid State materials, vol. 247, p. 717. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  977. (a) Oyama, N., Sato, M., Ohsaka, T.: Synth. Met. 29, E501 (1989). (b) Helbig, M., Hörhold. Elec. Prop. of Polymers 107, 321 (1992)

    Google Scholar 

  978. Chandrasekhar, P., Zay, B.J., Cai, C., Chai, Y., Lawrenced, D.: Matched-dual-polymer elecctrochromic lesnes, using new cathodically coloring conducting polymers, with exceptional performance and incorporated into automated sunglasses. J. Appl. Polym. Sci. 131, 547–557 (2014.) 41043-1 – 41043-21

    Google Scholar 

  979. (a) Camurlu, P., Toppare, L.: J. Macromol. Sci. Pure Appl. Chem. 43, 449 (2006); (b) Gazotti, W.A., Casalbore-Miceli, G., Geri, A., De Paoli, M.-A: Adv. Mater. 10, 60 (1998)

    Google Scholar 

  980. Pickup, P.G., Osteryoung, R.A.: J. Am. Chem. Soc. 195, 271 (1985)

    Google Scholar 

  981. LaCroix, J.C., Diaz, A.F.: Makromol. Chem., Macromol. Symp. 8, 17 (1987)

    Article  Google Scholar 

  982. LaCroix, J.C., Diaz, A.F.: J. Electrochem. Soc. 135, 1457 (1988)

    Article  Google Scholar 

  983. LaCroix, J.C., Kanazawa, K.K., Diaz, A.: J. Electrochem. Soc. 136, 1308 (1989)

    Article  Google Scholar 

  984. Oyama, N., Hirabayashi, K., Ohsaka, T.: Bull. Chem. Soc. Jpn. 59, 2071 (1986)

    Article  Google Scholar 

  985. Bedioui, F., Bernard, P., Moisy, P., Bied-Charreton, C., Devynck, J.: Poly(Pyrrole-Cobaltpoprhyrin) film modified rlectrodes: preparation and catalytic application. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 221. Trans Tech Publications, Switzerland (1989)

    Google Scholar 

  986. Levi, M.D.: Mechanism and kinetics of dark redox reactions at polythiophene film electrodes. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 101. Trans Tech Publications, Switzerland (1989)

    Google Scholar 

  987. Gardini, G.P.: The oxidation of monocyclic pyrroles. Adv. Heterocycl. Chem. 15, 67–98 (1973)

    Article  Google Scholar 

  988. Zahradnik, R.: In: Snyder, J.P. (ed.) Nonbenzenoid aromatic compounds, pp. 1–80. Academic Press, Inc., New York (1971)

    Google Scholar 

  989. Bargon, J., Mohmand, S., Waltman, R.J.: IBM J. Res. Develop. 27, 330 (1983)

    Google Scholar 

  990. Tourillon, G., Garnier, F.: J. Electroanal. Chem. 161, 51 (1984)

    Article  Google Scholar 

  991. Tourillon, G., Garnier, F.: J. Electroanal. Chem. 135, 173 (1982)

    Article  Google Scholar 

  992. Street, G.B., Clarke, T.C.: IBM J. Res. Dev. 25, 51 (1981)

    Article  Google Scholar 

  993. Delamer, M., Lacaze, P.C., Dumousseau, J.Y., Dubois, J.E.: Electrochim. Acta. 27, 61 (1982)

    Article  Google Scholar 

  994. Walker, D.G., Wilson, N.E., Jr.: U.S. Patent 3,437,569, (1969); Wisdon, N.E., Jr.: U.S. Patent 3,437,57, 1969

    Google Scholar 

  995. Street, G.B., Clarke, T.C., Krounbi, M., Kanazawa, K.K., Lee, V., Pfluger, P., Scott, J.C., Weiser, G.: Mol. Cryst. Liq. Cryst. 83, 253 (1982)

    Article  Google Scholar 

  996. Street, G.B., Geiss, R.H., Lindsey, S.E., Nazzal, A., Pfluger, P.: In: Reineker, P., Haken, H., Wolf, H.C. (eds.) Proc. Conf. Electronic excitation interaction processes Org. Molec. aggregates, p. 242. Springer, New York (1983)

    Google Scholar 

  997. Diaz, A.F., Crowley, J.I., Bargon, J., Gardini, G.P., Torrance, J.B.: J. Electroanal. Chem. 121, 355 (1981)

    Article  Google Scholar 

  998. Ohsaka, T., Hirabayashi, K., Oyama, N.: Bull. Chem. Soc. Jpn. 59, 3423 (1986)

    Article  Google Scholar 

  999. (a) Chandrasekhar, P.: Flexible electrochromic window materials based on Poly(Diphenyl Amine) and related conducting polymers, Final Technical Report, Grant No. DE-FG05-93ER81631/A00(1,2,3) for the U.S. Department of Energy, Oak Ridge/Washinton, DC (1998); (b) Chandrasekhar, P.: Flexible electrochromic window materials based on Poly(Diphenyl Amine) and related conducting polymers, Final Report, Grant No. DE-FG05-93ER81631 for the U.S. Department of Energy, Washington, DC (1994)

    Google Scholar 

  1000. Hoier, S.N., Park, S.-M.: J. Electrochem. Soc. 140, 2454 (1993)

    Article  Google Scholar 

  1001. Johnson, B.J., Park, S.-M.: J. Electrochem. Soc. 143, 1277 (1996)

    Article  Google Scholar 

  1002. Pickup, P.G., Osteryoung, R.A.: J. Am. Chem. Soc. 106, 2294 (1984)

    Article  Google Scholar 

  1003. (a) Chandrasekhar, P., Masulaitis, A.M., Gumbs, R.W.: Synth. Met. 36, 303 (1990); (b) Wudl, F., Ikenoue, Y., Patil, A. O. In: Prasad, P.N., Ulrich, D.R. (eds.) Nonlinear optical and electroactive polymers. p. 393 Plenum, New York (1988)

    Google Scholar 

  1004. Chandrasekhar, P.: Flexible, visible/IR flat panel electrochromics based on poly (Diphenyl Amine) and related conducting polymers, Final Report, Contract No. N00014-95-C-0069 Office of Naval Research, Arlington, Virginia (1995)

    Google Scholar 

  1005. Heinze, J., Dietrich, M.: Cyclic voltammetry as a tool for characterizing conducting polymers. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 79. Trans Tech Publications, Switzerland (1989)

    Google Scholar 

  1006. Segawa, H., Shimidzu, T., Honda, K.: J. Chem. Soc. Chem. Commun. 132 (1989)

    Google Scholar 

  1007. Smyrl, W.H., Lien, M.: Electrical and electrochemical properties of electronically conducting polymers. In: Srosati, B. (ed.) Applications of electroactive polymers, p. 29. Chapman & Hall, New York (1993)

    Chapter  Google Scholar 

  1008. Han, J.H., Motobe, T., Whang, Y.E., Miyata, S.: Synth. Met. 45, 261–1991

    Google Scholar 

  1009. Street, G.B.: Polyrrole from powders to plastics. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 265. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1010. Krische, B., Zagorska, M.: In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 79. Transtech Publications, Switzerland (1989)

    Google Scholar 

  1011. (a) Kossmehl, G., Chatzitheodorou, G.: Mol. Cryst. Liq. Cryst. 83, 291 (1982); (b) Kossmehl, G., Chatzitheodorou, G.: Makromol. Chem. Rap. Commun. 2, 551 (1981)

    Google Scholar 

  1012. Angelopoulos, M., Shaw, J.M., Kaplan, R.D., Perrault, S.: J. Vac. Sci. Tech. B7, 1519 (1989)

    Article  Google Scholar 

  1013. Elsenbaumer, R.L., Jen, K.Y., Oboodi, R.: Synth. Met. 15, 169 (1986))

    Article  Google Scholar 

  1014. Machida, S., Miyata, S., Techagumpuch, A.: Synth. Met. 31, 311 (1989)

    Article  Google Scholar 

  1015. Whang, Y.E., Han, J.H., Nalwa, H.S., Watanabe, T., Miyata, S.: Synth. Met. 41–43, 3043 (1991)

    Article  Google Scholar 

  1016. (a) Katz, T.J., Lee, S.J.: J. Am. Chem. Soc. 102, 422 (1980); (b) Katz, T.J., Lee, S.J., Shippey, M.A.: J. Mol. Cat. 8, 219 (1980)

    Google Scholar 

  1017. Rubner, M., Deits, W.: J. Polym. Sci. Polym. Chem. Ed. 20, 2043 (1982)

    Google Scholar 

  1018. Masuda, J., Takahashi, T., Higashimura, T.: J. Chem. Soc. Chem. Commun. 1297 (1982)

    Google Scholar 

  1019. Thakur, M., Lando, J.B.: Macromolecules 16, 143 (1983)

    Google Scholar 

  1020. Hotta, S., Soga, M., Sonoda, N.: Synth. Met. 26, 267 (1988)

    Google Scholar 

  1021. Feast, W.J.: Synthesis of conducting polymers. In: p (ed.) Handbook of conducting olymers, vol. 1, p. 1. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1022. Brown, A.R., Greenham, N.C., Gymer, R.W., Pichler, K., Bradley, D.D.C., Friend, R.H., Burn, P.L., Kraft, A., Holmes, A.B.: Conjugated polymer light-emitting diodes. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 87. Kluwer Academic Publisdhers, Boston (1993)

    Chapter  Google Scholar 

  1023. Bao, Z., Yu, L.: In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528. SPIE Optical Engineering Press, Bellingham; Proc. SPIE (1995)

    Google Scholar 

  1024. Freund, M.S., Karp, C., Lewis, N.S.: Curr. Sep. 13, 6 (1994)

    Google Scholar 

  1025. Aldissi, M.: J. Polym. Sci. Polym. Lett. Ed. 23, 167 (1985)

    Google Scholar 

  1026. Alva, K.S., Kumar, J., Marx, K.A., Tripathy, S.K.: Macromolecules 30, 4024 (1997)

    Google Scholar 

  1027. Cruz, G.J., Morales, J., Castillo-Ortega, M.M., Olayo, R.: Synth. Met. 88, 213 (1997)

    Google Scholar 

  1028. Schäfer, O., Greiner, A., Pommerehne, J., Guss, W., Vestweber, H., Tak, H.Y., Bässler, H., Schmidt, C., Lüssem, G., Schartel, B., Stümpflen, V., Wendorff, J.H., Spiegel, S., Möller, C., Spiess, H.W.: Synth. Met. 82,1 (1996)

    Google Scholar 

  1029. Francois, B., Mermilliod, N., Zuppiroli, L.: Synth. Met. 4, 131 (1981)

    Google Scholar 

  1030. Liu, J.-M., Sun, L., Hwang, J.-H., Yang, S.C.: Novel template guided synthesis of polyaniline. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 601. Materials, Reasearch Society, Pittsburgh (1992)

    Google Scholar 

  1031. Shimidzu, T., Iyoda, T., Segawa, H., Fujitsuka, M.: Functionalizations of conducting polymers by mesoscopically structural control and by molecular combination of reactive moiety. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 13. Kluwer Academic Publishers, Boston (1993)

    Chapter  Google Scholar 

  1032. Chiang, C.K., Druy, M.A., Gau, S.C., Heeger, A.J., Louis, E.G., MacDiarmid, A.G., Park, Y.W., Shirakawa, H.: J. Am. Chem. Soc. 100, 1013 (1978)

    Google Scholar 

  1033. Selig, H., Holloway, J.H., Pron, A., Billaud, D.: J. Phys. Paris C3, 179 (1983)

    Google Scholar 

  1034. Shirakawa, H., Kobayashi, T.: J. Phys. Paris C3, 3 (1983)

    Google Scholar 

  1035. Billaud, D., Kulszewicz, I., Pron, A., Bernier, P., Lefrant, S.: J. Phys. Paris C3, 33 (1983)

    Google Scholar 

  1036. Pekker, S., Jánossy, A.: Chemistry of doping and distribution of dopants in polyacetylene. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 45. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1037. Boils, D., Schue, F., Sledz, J., Giral, L.: J. Phys. Paris C3, 189 (1983)

    Google Scholar 

  1038. André, J.J., Bernard, M., Francois, B., Mathis, C.: J. Phys. Paris C3, 199 (1983)

    Google Scholar 

  1039. Francois, B., Mathis, C.: J. Phys. Paris C3, 21 (1983)

    Google Scholar 

  1040. Pron, A.: Synth. Met. 46, 277 (1992)

    Google Scholar 

  1041. Bidan, G., Blohorn, B., Ehui, B., Lapkowski, M., Kern, J.M., Sauvage, J.P.: Electrochemical behaviour of some hybridized conducting polymers: recent developments. In: Plocharski, J., Roth, S. (eds.) Materials science forum: electrochemistry of conductive polymers, pp. 51–62. Trans Tech Publications, Brookfield (1989)

    Google Scholar 

  1042. Girard, F., Ye, S., Bélanger, D.: J. Electrochem. Soc. 142, 2296 (1995)

    Google Scholar 

  1043. Reynolds, J.R., Pyo, M., Qiu, Y.-J.: J. Electrochem. Soc. 141, 35 (1994)

    Google Scholar 

  1044. Hotta S., Hosaka, T., Shimotsuma, W.: Synth. Met. 6, 69 (1983)

    Google Scholar 

  1045. Sung, H., Lee, T., Paik, W.-K.: Synth. Met. 69, 485 (1995)

    Google Scholar 

  1046. Lim, J.Y., Paik, W.-K., Yeo, I.-H.: Synth. Met. 69, 451 (1995)

    Google Scholar 

  1047. Kudoh, Y., Tsuchiya, S., Kojima, T., Fukuyama, M., Yoshimura, S.: Synth. Met. 41–43, 1133 (1991)

    Google Scholar 

  1048. Cao, Y., Smith, P.: Polymer papers. UNIAX Coproration, Santa Barbara (1992)

    Google Scholar 

  1049. Armes, S.P., Vincent, B.: J. Chem Soc. Chem. Commun. 288 (1987)

    Google Scholar 

  1050. Pryzyluski, J., Zagórska, M., Conder, K.: Pron, A., Polymer 23, 1872 (1982)

    Google Scholar 

  1051. Zagórska, M., Pron, A., Pryzyluski, J., Krische, B., Ahlgren, G.: J.C.S. Chem. Comm. 1125 (1983)

    Google Scholar 

  1052. Liu, Y., Xu, Y., Zhu, D.: Synth. Met. 90, 143 (1997)

    Google Scholar 

  1053. Tong, Z.S., Wu, M.Z., Pu, T.S., Zhou, F., Liu, H.Z.: Synth. Met. 68, 125 (1995)

    Google Scholar 

  1054. Clarke, T.C., Krounbi, M.T., Lee, V.Y., Street, G.B.: J. Chem. Soc. Chem. Commun. 384 (1981)

    Google Scholar 

  1055. Pitchuman, S., Willig, F.: J. Chem. Soc. Chem. Commun. 809 (1983)

    Google Scholar 

  1056. Laakso, J., Österholm, J.-E., Nyholm, P.: Synth. Met. 28, C467 (1989)

    Google Scholar 

  1057. Wang, C.S., Lee, C.Y.-C., Arnold, F.E.: Mechanical and electrical properties of heat-treated ladder polymer fiber. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 747. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1058. Angelopoulos, M., Shaw, J.M., Lee, K.L.: Mat. Res. Soc. Symp. Proc. 214, 137 (1991)

    Google Scholar 

  1059. Hotta, S., Rughooputh, S.D.D.V., Heeger, A.J.: Synth. Met. 22, 79 (1987)

    Google Scholar 

  1060. MacDiarmid, A.G., Epstein, A.J.: Faraday Discuss. Chem. Soc. 88, 317 (1989)

    Google Scholar 

  1061. (a) Galvin, M.E., Wnek, G.E.: Polym. Commun. 23, 795 (1982); (b) Galvin, M.E., Dandreux, G.F., Wnek, G.E. In: Davidson, T. (ed.) Polymers in electronics. American Chemical Society, Washington, DC, p. 507 (1984)

    Google Scholar 

  1062. Wessling, B. In: Electronic properties of conjugated polymers (Kirchberg II). p. 407

    Google Scholar 

  1063. Wnek, G.E.: Electrically conductive polymer composites. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 205. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1064. Yin, X.H., Yoshino, K., Hashizume, K., Isa, I.: Jpn. J. Appl. Phys. Part 1, 36, 3537 (1997)

    Google Scholar 

  1065. MacDiarmid, A.G., Epstein, A.J.: Polyaniline: interrelationships between molecular weight, morpholoy, Donnan potential and conductivity. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 545. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1066. Malhotra, B.D., Ghosh, S., Chandra, R.: J. Appl. Polym. Sci. 40, 1049 (1990)

    Google Scholar 

  1067. Wang, Y., Rubner, M.F.: Fabrication of an electrically conducting full-interpenetrating polymer network. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 27, p. 759. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1068. Concentrates. Chem. Eng. News, 72(39), 24 (1994)

    Google Scholar 

  1069. Cosnier, S., Innocent, C.: J. Electroanal. Chem. 328, 361 (1992)

    Google Scholar 

  1070. Stanke, D., Hallensleben, M.L., Toppare, L.: Synth. Met. 72, 95 (1995)

    Google Scholar 

  1071. Stanke, D., Hallensleben, M.L., Toppare, L.: Synth. Met. 72, 89 (1995)

    Google Scholar 

  1072. Nazzal, A.I., Street, G.B.: J. Chem. Soc. Chem. Commun. 375 (1985)

    Google Scholar 

  1073. Bidan, G., Divisia-Blohorn, B., Kern, J.M., Sauvage, J.P.: J. Chem. Soc. Chem. Commun. 723 (1988)

    Google Scholar 

  1074. Demoustier-Champagne, S., Ferain, E., Jerome, C., Jerome, R., Legras, R.: Eur. Polym. J. 34, 1767 (1998)

    Google Scholar 

  1075. Demoustier-Champagne, S., Stavaux, P. Y.: Chem. Mater. 11, 829 (1999)

    Google Scholar 

  1076. Delvaux, M., Duchet, J., Stavaux, P. Y., Legras, R., Demoustier-Champagne, S:, Synth. Met. 113, 275 (2000)

    Google Scholar 

  1077. Mazur, M., Tagowska, M., Palys, B., Jackowska, K.: Electrochem. Commun. 5, 403 (2003)

    Google Scholar 

  1078. Duvail, J. L., Retho, P., Garreau, S., Louarn, G., Godon, C., Demoustier-Champagne, S.: Synth. Met. 131, 123 (2002)

    Google Scholar 

  1079. Jerome, C., Labaye, D., Bodart, I., Jerome, R.: Synth. Met. 101, 3 (1999)

    Google Scholar 

  1080. Qu, L.T., Shi, G.Q., Chen, F., Zhang, J.X.: Macromolecules 36, 1063–1067 (2003)

    Google Scholar 

  1081. Qu, L.T., Shi, G.Q., Yuan, J.Y., Han, G.Y., Chen, F.: J. Electroanal. Chem. 561, 149–156 (2004)

    Google Scholar 

  1082. Qu, L.T., Shi, G.Q.: J. Polym. Sci. Polym. Chem. 42, 3170–3177 (2004)

    Google Scholar 

  1083. Li, X.H., Lu, M., Li, H.L.: J. Appl. Polym. Sci. 81, 3002 (2001)

    Google Scholar 

  1084. Lu, M., Li, X.H., Guo, X.Y., Li, H.L.: Chem. J. Chin. Univ. 12, 2331 (2002)

    Google Scholar 

  1085. Fu, M.X., Chen, F., Zhang, J.X., Shi, G.Q.: J. Mater. Chem. 12, 2331 (2002)

    Google Scholar 

  1086. Lee, J. Y., Park, S.M.: Electrochem. Soc. 147, 4189 (2000)

    Google Scholar 

  1087. Choi, S.J., Park, S.N.: Adv. Mater. 12, 1547 (2000)

    Google Scholar 

  1088. Park, S.M., Lee, J.Y., Choi, S.J.: Synth. Met. 121, 1297 (2001)

    Google Scholar 

  1089. Martin, C.R.: Acc. Chem. Res. 28, 61 (1995)

    Google Scholar 

  1090. Bein, T., Enzel, P.: Inclusion of conducting polymers in inorganic hosts: towards conducting nanostructures. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 51. Kluwer Academic Publishers, Boston (1993)

    Chapter  Google Scholar 

  1091. Wu, C.-G., Bein, T.: Stud. Surf. Sci. Catal. 84, 2269 (1994)

    Google Scholar 

  1092. Mehrotra, V., Giannelis, E.P. In: Schaefer, D.W., Mark, J.E. (eds.) Polymer based molecular composites; Mat. Res. Soc. Symp. Roc., p. 171 (1990)

    Google Scholar 

  1093. Brandt, P., Fischer, R.D., Martinez, E.S., Calleja, R.D.: Angew. Chem. Int. Ed. Engl. 28, 1265 (1989)

    Google Scholar 

  1094. Wu, C.-G., Bein, T.: Science 264, 1757 (1994)

    Google Scholar 

  1095. Wu, C.-G., Chen, J.-Y.: Chem. Mater. 9, 399 (1997)

    Google Scholar 

  1096. Qi, Z., Bruce, L.R.: Proc. – Electrochem. Soc. 97–5, 173 (1997)

    Google Scholar 

  1097. Tang, Z.Y., Liu, S.Q., Tang, Z.X., Dong, S.J., Wang, E. K.: Electrochem. Commun. 2, 32 (2000)

    Google Scholar 

  1098. Liu, J., Lin, Y.H., Liang, L., Voigt, J.A., Huber, D.L., Tian, Z.R., Coker, E., McKenzie, B., McDermott, M.J.: Chem. Eur. J. 9, 605 (2003)

    Google Scholar 

  1099. Ge, D.T., Wang, J.X., Wang, Z., Wang, S.C.: Synth. Met. 132, 93 (2002)

    Google Scholar 

  1100. Noll, J.D., Nicholson, M.A., Van Patten, P.G., Chung, C.W., Myrick, M.L.: J. Electrochem. Soc. 145, 3320 (1998)

    Google Scholar 

  1101. Yang, Y.S., Liu, J., Wan, M.X.: Nanotechnol. 13, 771 (2002)

    Google Scholar 

  1102. Cai, X.W., Gao, J.S., Xie, Z.X., Xie, Y., Tian, Z.Q., Mao, B.W.: Langmuir 14, 2508 (1998)

    Google Scholar 

  1103. Jahromi, S., Dijkstra, J., Van der Vegte, E., Mostert, B.: Chem. Phys. Chem. 3, 693 (2002)

    Google Scholar 

  1104. Nyffenegger, R.M., Penner, R.M.: J. Phys. Chem. 100, 17041 (1996)

    Google Scholar 

  1105. Zhang, H.P., Luo, J., Huang, H.G., Wu, L.L., Lin, Z.H.: Chem. Phys. Lett. 326, 169 (2000)

    Google Scholar 

  1106. Smith, J.A., Josowicz, M., Janta, J.: J. Electrochem. Soc. 150, 384 (2003)

    Google Scholar 

  1107. Henry, M.C., Hsueh, C.C., Timko, B.P., Freund, M.S.: J. Electrochem. Soc. 148, D155 (2002)

    Google Scholar 

  1108. Cioffi, N., Torsi, L., Sabbitini, L., Zambonin, P.G., Bleve-Zacheo, T.: J. Electroanal. Chem. 488, 42 (2000)

    Google Scholar 

  1109. Cioffi, N., Torsi, L., Losito, I., Sabbitini, L., Zambonin, P.G.,Bleve-Zacheo, T.: Electrochim. Acta 46, 4205 (2001)

    Google Scholar 

  1110. Tsakova, V., Winkels, S., Schultze, J.W.: J. Electroanal. Chem. 500, 574 (2001)

    Google Scholar 

  1111. Hepel, M.: J. Electrochem. Soc. 145, 124 (1998)

    Google Scholar 

  1112. Grzeszczuk, M., Poks, P.: Electrochim. Acta 45, 4171 (2000)

    Google Scholar 

  1113. Choi, J.H., Park, K.W., Lee, H.K., Kim, Y.M., Lee, J.S., Sung, Y.E.: Electrochim. Acta 48, 2781 (2003)

    Google Scholar 

  1114. Chen, G.Z., Shaffer, M.S.P., Coleby, D., Dixon, G., Zhou, W.Z., Fray, D.J., Windle, A.H.: Adv. Mater. 12, 522 (2000)

    Google Scholar 

  1115. Chen, J.H., Huang, Z.P., Wang, D.Z., Yang, S.X., Wen, J.G., Ren, Z.R.: Appl. Phys. A 73, 129 (2001)

    Google Scholar 

  1116. Chen, J.H., Huang, Z.P., Wang, D.Z., Yang, S.X., Li, W.Z., Wen, J.G, Ren, Z.F.: Synth, Met. 125, 289 (2001)

    Google Scholar 

  1117. Huang, J.E., Li, X.H., Xu, J.C., Li, H.L.: Carbon, 41, 2731 (2003)

    Google Scholar 

  1118. Tahhan, M., Truong, V.T., Spinks, G.M., Wallace, G.G.: Smart Mater. Struct. 12, 626 (2003)

    Google Scholar 

  1119. Raspopov, L.N., Matkovskii, P.Ye., Belov, G.P., Noskova, V.N., Russiyan, L.N., Davydova, G.I., Shtarkin, V.A., Rudakov, V.M., Yusupbekov, A.Kh.: Vysokomol.Soedinen. 33a, 425 (1991)

    Google Scholar 

  1120. Kminek, I., Trekoval, J.: Makromol. Chem., Rapid Commun. 5, 53 (1984)

    Google Scholar 

  1121. Aldissi, M.: J. Chem. Soc. Chem. Commun. 1347 (1984)

    Google Scholar 

  1122. Malhotra, B.D., Kumar, N., Ghosh, S., Singh, K.K., Chandra, S.: Synth. Met. 31, 155 (1989)

    Google Scholar 

  1123. Iyoda, T., Ohtani, A., Shimidzu, T., Honda, K.: Synth. Met. 18, 725 (1987)

    Google Scholar 

  1124. Shimidzu, T.: Functionalized conducting polymer membranes/films. In: Scrosati, B. (ed.) Applications of Electroactive Polymers, vol. 283. Chapman & Hall, New York, USA (1993)

    Google Scholar 

  1125. Spangler, X.W., Thurmond, J.W., Li, H., He, M., Ghosal, S., Zhang, Y., Casstevens, M.K., Burzynski, R.: New copolymers for applications as organic LEDs. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 46. SPIE-The International Society for Optical Engineering, Bellingham (1995)

    Chapter  Google Scholar 

  1126. Yang, Z., Geise, H.J.: Synth. Met. 47, 105 (1992)

    Google Scholar 

  1127. Ochmanska, J., Pickup, P.G.: J. Electroanal. Chem. 297, 197 (1991)

    Google Scholar 

  1128. Cho, H.N., Kim, D.Y., Kim, J.K., Kim, C.Y.: Synth. Met. 91, 293 (1997)

    Google Scholar 

  1129. Beggiato, G., Casalbore-Miceli, G., Geri, A., Berlin, A., Pagani, G.: Synth. Met. 82, 11 (1996)

    Google Scholar 

  1130. Malliaras, G.G., Herrema, J.K., Wildeman, J., Wieringa, R.H., Gill, R.E., Lampoura, S.S., Hadziioannou, G.: Adv. Mater. 5, 721 (1993)

    Google Scholar 

  1131. Millan Rodriguez, J., Martinez Albillos, G., Gomez-Elvira Gonzales, J. M.: Conducting polymers based on copolymers of indole, thiophene, and pyrrole for use in electric applications. Appl. 930015528, Jan 1993, p.8

    Google Scholar 

  1132. Mazeikiene, R., Malinauskas, A.: Synth. Met. 92, 259 (1998)

    Google Scholar 

  1133. Yang, C.-H., Wen, T.-C.: J. Electrochem. Soc. 144, 2078 (1997)

    Google Scholar 

  1134. 380. Benjamin, I., Faraggi, E.Z., Cohen, G., Chayet, H., Davidov, D., Neumann, R., Avny, Y.: Synth. Met. 84, 401 (1997)

    Google Scholar 

  1135. (a) Wessling, R.A., Zimmerman, R.G., Ray, G: Polyelectrolytes from bis sulfonium salts. US 3401152 A, 10 Sept 1968; (b) Lenz, R.W., Han, C., Smith, J.S., Karasz, S.E.: J. Polym. Sci., Polym. Chem. 26, 3241 (1988)

    Google Scholar 

  1136. Genies, E.: Intrinsically conducting polymers from fundamental to applied research. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 75. Kluwer Academic Publishers, Boston (1993)

    Chapter  Google Scholar 

  1137. Gregory, R.V., Kimbrell, W.C., Kuhn, H.H.: Synth. Met. 28, C823 (1989)

    Google Scholar 

  1138. Kuhn, H.H., Kimbrell, W.C., Fowler, J.E., Barry, C.N.: Synth. Met. 55–57, 3707 (1993)

    Google Scholar 

  1139. Kuhn, H.H.: Characterization and application of polypyrrole-coated textiles. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 25. Kluwer Academic Publishers, Boston (1993)

    Google Scholar 

  1140. Naarmann, H: BASF Plastics, Research and Development, Report No. KVX 8611e, 10.1986 p. 37/38, USP: 4738757 v. 12.02.81 BASF AG/FRG, (1986)

    Google Scholar 

  1141. Genies, E.M., Petrescu, C., Olmedo, L.: Synth. Met. 41–43, 665 (1991)

    Google Scholar 

  1142. Li, C., Song, Z.: Synth. Met. 40, 23 (1991)

    Google Scholar 

  1143. Zhang, H., Li, C.: Synth. Met. 44, 143 (1991)

    Google Scholar 

  1144. Ojio, T., Miyata, S.: Polymer J. 18, 95 (1986)

    Google Scholar 

  1145. Rabek, J.F., Lucki, J., Kereszti, H., Krische, B., Qu, B.J., Shi, W.F.: Synth. Met. 45, 335 (1991)

    Google Scholar 

  1146. Jousse, F., Hourquebie, P., Deleuze, C., Olmedo, L.: Synthesis and microwave characterization of polypyrrole-PVC blends. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 705. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1147. Zinger, B., Kijel, D.: Synth. Met. 41–43, 1013 (1991)

    Google Scholar 

  1148. Wiersma, A.E., vd Steeg, L.M.A., Jongeling, T.J.M.: Synth. Met. 71, 2269 (1995)

    Google Scholar 

  1149. Lafosse, X.: Synth. Met. 68, 227 (1995)

    Google Scholar 

  1150. Sun, Y., Ruckenstein, E.: Synth. Met. 72, 261 (1995)

    Google Scholar 

  1151. Morita, M., Hashida, I., Masato, N.: J. Appl. Polym. Sci. 36, 1639 (1989)

    Google Scholar 

  1152. Galvin, M.E., Wnek, G.E.: Polym. Comm. 23, 795 (1982)

    Google Scholar 

  1153. (a) Rubner, M.F., Tripathy, S.K., Geroger, J., Jr., Cholewa, P.: Macromolecules, 16, 870 (1980); (b) Rubner, M.F., Tripathy, S.K., Georger, J., Jr., Cholewa, P.: Macromolecules 16, 870 (1983)

    Google Scholar 

  1154. Przyluski, J., Zukowska, G.: Polimery 42, 229 (1997)

    Google Scholar 

  1155. Xie, H.-Q., Liu, H., Liu, Z.-H., Guo, J.-S.: Die Angewandte Makromolekulare Chemie 243, 117 (1996)

    Google Scholar 

  1156. Oh, S.Y., Koh, H.C., Choi, J.W., Rhee, H.-W., Kim, H.S.: Polym. J. (Tokyo) 29, 404 (1997)

    Google Scholar 

  1157. Ramachandran, K., Lerner, M.M.: J. Electrochem. Soc. 144, 3739 (1997)

    Google Scholar 

  1158. Bao, J.-S., Xu, C.C., Cai, W., Bi, X.-T.: Electrically conductive composite of polypyrrole and liquid crystalline aromatic copolyamide. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 699. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1159. Niwa, O., Hikita, M., Tamamura, T.: Synth. Met. 18, 677 (1987)

    Google Scholar 

  1160. De Paoli, M.A., Waltman, R.J., Diaz, A.F., Bargon, J.: J. Polym. Sci.: Polym. Chem. Ed. 23, 1687 (1985)

    Google Scholar 

  1161. Lindsey, S.E., Street, G.B.: Synth. Met. 10, 67 (1984/85)

    Google Scholar 

  1162. Selampinar, F., Akbulut, U., Yildiz, E., Güngör, A., Toppare, L.: Synth. Met. 89, 111 (1997)

    Google Scholar 

  1163. Bi, X., Pei, Q.: Synth. Met. 22, 145 (1987)

    Google Scholar 

  1164. Bozkurt, A., Akbulut, U., Toppare, L.: Synth. Met. 82, 41 (1996)

    Google Scholar 

  1165. Stockton, W.B., Rubner, M.F.: Electrically conducting compatible blends of polyaniline/ poly (Vinyl Pyrrolidone). In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 257. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1166. Yang, Z., Geise, H.J.: Synth. Met. 47, 105 (1992)

    Google Scholar 

  1167. Ogura, K., Kokura, M., Nakayama, M.: J. Electrochem. Soc. 142, L152 (1995)

    Google Scholar 

  1168. Pron, A., Österholm, J-E., Smith, P., Heeger, A.J., Laska, J., Zagorska, M.: Synth. Met. 55–57, 3520 (1993)

    Google Scholar 

  1169. Laska, J., Pron, A., Zagórska, M., Lapkowski, S., Lefrant, S.: Synth. Met. 69, 113 (1995)

    Google Scholar 

  1170. Gonçalves, D., Waddon, A., Karasz, F.E., Akcelrud, L.: Synth. Met. 74, 197 (1995)

    Google Scholar 

  1171. Banerjee, P., Mandal, B.M.: Synth. Met. 74, 257 (1995)

    Google Scholar 

  1172. Tan, L.-S., Simko, S.R., Bai, S.J., Vaia, R.A., Spry, R.J.: Polym. Prepr. 38, 239 (1997)

    Google Scholar 

  1173. Kulkarni, V.G.: Processing of polyanilines. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, vol. 45. Kluwer Academic Publishers, Boston (1993)

    Google Scholar 

  1174. Shacklette, L.W., Han, C.C., Luly, M.H.: Synth. Met. 55–57, 3532 (1993)

    Google Scholar 

  1175. Heeger, A.J., Smith, P.: Solution processiong of conducting polymers: opportunities for science and technology. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 141. Kluwer Academic Publishers, Norwell (1991)

    Google Scholar 

  1176. Yoshino, K., Onoda, M., Sugimoto, R.: Jpn. J. Appl. Phys. 27, L2034 (1988)

    Google Scholar 

  1177. Yang, J.P., Rannou, P., Planès, J., Pron, A., Nechtschein, M.: Synth. Met. 93, 169 (1998)

    Google Scholar 

  1178. Mandal, T.K., Mandal, B.M.: Synth. Met. 80, 83 (1996)

    Google Scholar 

  1179. Chiang, L.Y., Wang, L.Y., Kuo, C.S., Lin, J.G., Huang, C.Y.: Synth. Met. 84, 721 (1997)

    Google Scholar 

  1180. Liao, D.C., Hsieh, K.H., Chern, Y.C., Ho, K.S.: Synth. Met. 87, 61 (1997)

    Google Scholar 

  1181. Li, S., White, H.S.: J. Electrochem. Soc. 140, 2473 (1993)

    Google Scholar 

  1182. Andreatta, A., Heeger, A.J., Smith, P.: Polym. Commun. 31, 275 (1990)

    Google Scholar 

  1183. Hsu, C.-H., Vaca-Segonds, P., Epstein, A.J.: Synth. Met. 41–43, 1005 (1991)

    Google Scholar 

  1184. Nemoto, H., Marks, T.J., De Groot, D.C., Kannewurf, C.R.: Chem. Mater. 2, 349 (1991)

    Google Scholar 

  1185. Chiang, C.K., Druy, M.A., Gau, S.C., Heeger, A.J., Louis, E.J., MacDarmid, A.G., Park, Y.W., Shirakawa, H.: J. Am. Chem. Soc. 100, 1014 (1980)

    Google Scholar 

  1186. Heffner, G.W., Pearson, D.S.: Synth. Met. 44, 341 (1991)

    Google Scholar 

  1187. Kathirgamanathan, P., Qayyum, M.M.B.: J. Electrochem. Soc. 141, 147 (1994)

    Google Scholar 

  1188. Kathirgamanathan, P., Boland, B.: J. Electrochem. Soc. 140, 2815 (1993)

    Google Scholar 

  1189. Naarmann, H., Kohler, G., Schlag, J.: Continuous production of polypyrrole films. US 4468291 A, 28 Aug 1984

    Google Scholar 

  1190. Andreatta, A., Cao, Y., Chiang, J.C., Heeger, A.J., Smith, P.: Synth. Met. 26, 383 (1988)

    Google Scholar 

  1191. Frommer, J.E.: Acc. Chem. Res. 19, 2 (1986)

    Google Scholar 

  1192. Cao, Y., Smith, P., Heeger, J.: Synth. Met. 32, 263 (1989)

    Google Scholar 

  1193. Kim, I.W., Lee, J.Y., Lee, H.: Synth. Met. 78, 177 (1996)

    Google Scholar 

  1194. Sun, L., Yang, S.C., Liu, J.: Conducting polymer with improved long-time stability: plyanline-polyelectrolyte complex. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 167. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1195. Sun, L., Yang, S.C.: Solution processable conducting polymer: polyaniline-polyelectrolyte complexes. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 209. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1196. Angelopoulos, M., Patel, N., Shaw, J.M.: Water soluble polyanilines: properties and applications. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) electrical optical, and magnetic properties of organic solid state materials, vol. 328, p. 173. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1197. Bates, N., Cross, M., Lines, R., Walton, D.: J. Chem. Soc. Chem. Commun. 871 (1985)

    Google Scholar 

  1198. Fan, F.-R., Bard, A.J.: J. Electrochem. Soc. 133, 301 (1986)

    Google Scholar 

  1199. Shi, S., Wudl, F.: Macromolecules 23, 2119 (1990)

    Google Scholar 

  1200. Reynolds, J.R., Child, A.D., Ruiz, J.P., Musfeldt, J.L., Sankaran, B., Larmat, F., Balanda, P., Tanner, D.B.: Optical absorption, luminescence, and redox switching properties of polyphenylene derivatives. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, pp. 328–191. Materials Resaerch Society, Pittsburgh (1994)

    Google Scholar 

  1201. Yue, J., Epstein, A.J.: J. Am. Chem. Soc. 112, 2800 (1990)

    Google Scholar 

  1202. Kim, E., Lee, M.-H., Moon, B.S., Lee, C., Rhee, S.B.: J. Electrochem. Soc. 141, L26 (1994)

    Google Scholar 

  1203. Yang, C.-H., Wen, T.-C.: J. Electrochem. Soc. 141, 2624 (1994)

    Google Scholar 

  1204. (a) Patil, A.O., Ikenoue, Y., Basescu, N., Colaneri, N., Chen, J., Wudl, F., Heeger, A.J.: Synth. Met. 20, 151 (1987); (b) Patil, A.O., Ikenoue, Y., Wudl, F., Heeger, A.J.: J. Am. Chem. Soc. 109, 1858 (1987); (c) Ikenoue, Y., Chiang, J., Patil, A.O., Wudl, F., Heeger, A.J.: J. Am. Chem. Soc. 110, 2983 (1988)

    Google Scholar 

  1205. Sato, M-A., Tanaka, S., Kaeriyama, K.: J. Chem. Soc. Chem. Commun. 873 (1986)

    Google Scholar 

  1206. Jen, K-Y., Miller, G.G., Elsenbaumer, R.L.: J. Chem. Soc. Chem. Commun. 1346 (1986)

    Google Scholar 

  1207. Österholm, J.-E., Laakso, J., Nyholm, P., Isotalo, H., Stubb, H., Inganäs, O., Salaneck, W.R.: Synth. Met. 28, C435 (1992)

    Google Scholar 

  1208. Patel, G.N., Chance, R.R., Witt, J.D.: J. Polym. Sci. Polym. Lett. Ed. 16, 607 (1978)

    Google Scholar 

  1209. Patel, G.N., Chance, R.R., Witt, J.D.: J. Chem. Phys. 70, 4387 (1979)

    Google Scholar 

  1210. Plachetta, C., Schulz, R.C.: Makromol. Chem. Rapid. Commun. 3, 815 (1982)

    Google Scholar 

  1211. Liu, M., Gregory, R.V.: Synth. Met. 72, 45 (1995)

    Google Scholar 

  1212. Yoshino, K., Nakajima, S., Fuji, M., Sugimoto, R.-I.: Polym. Commun. 28, 309 (1987)

    Google Scholar 

  1213. Isotalo, H., Laakso, J., Kuivalainen, P., Stubb, H., Österholm, J.-E., Yli-Lahti, P.: Physica Status Solidi (b), 154, 305 (1989)

    Google Scholar 

  1214. Virtanen, E., Laakso, J., Ruohonen, H., Väkiparta, K., Järvinen, H., Jussila, M., Passiniemi, P., Österholm, J.-E.: Synth. Met. 84, 113 (1997)

    Google Scholar 

  1215. Kulkarni, V.G.: Synth. Met. 71, 2129 (1995)

    Google Scholar 

  1216. Bjorklund, R.B., Liedberg, B.: J. Chem. Soc. Chem. Connun. 1293 (1986)

    Google Scholar 

  1217. Armes, S.P.: Potential applications of conducting polymer colloids. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 35. Kluwer Academic Publishers, Boston Massachusetts, USA (1993)

    Chapter  Google Scholar 

  1218. Mattes, B.R., Knobbe, E.T., Fuqua, P.D., Nishida, F., Chang, E.W., Pierce, B. M., Dunn, B., Kaner, R.B.: Synth. Met. 41–43, 3183 (1991)

    Google Scholar 

  1219. (a) Rose, T.L., Liberto, M.C.: Synth. Met. 31, 395 (1989); (b) Defieuw, G., Samijn, R., Hoogmartens, I., Vanderzande, D., Gelan, J.: Synth. Met. 55-57, 3702 (1993)

    Google Scholar 

  1220. Wiersma, A.E., vd Steeg, L.M.A., Jongeling, T.J.M.: Synth. Met. 71, 1995 (2269)

    Google Scholar 

  1221. Andreatta, A., Tokito, S., Moulton, J., Smith, P., Heeger, A.J.: Processing of high-performance conducting polymers. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 105. Adam Hilger, New York (1991)

    Google Scholar 

  1222. Yoshino, K., Nakajima, S., Fuji, M., Sugimoto, R.-I.: Polym. Commun. 28, 310(1987)

    Google Scholar 

  1223. Tokito, S., Smith, P., Heeger, A.J.: Synth. Met. 36, 183 (1990)

    Article  Google Scholar 

  1224. Mattes, B.R., Wang, H.L., Yang, D., Zhu, Y.T., Blumenthal, W.R., Hundley, M.F.: Synth. Met. 84, 45 (1997)

    Article  Google Scholar 

  1225. Proceedings of the DARPA Active Polymers Workshop hosted by Institute for Defense Analyses, Baltimore, Maryland, USA, p.C7, 15 Nov 1996

    Google Scholar 

  1226. Hagiwara, T., Hirasaka, M., Sato, K., Yamaura, M.: Synth. Met. 36, 241 (1990)

    Article  Google Scholar 

  1227. Rubner, M.F., Skotheim, T.A.: Controlled molecular assemblies of electrically conductive polymers. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 363. Kluwer Academic Publishers, Norwell (1991)

    Chapter  Google Scholar 

  1228. (a) Hong, K., Rubner, M.F.: Thin Solid Films 160, 187 (1988); (b) Hong, K., Rubner, M.F.: Thin Solid Films 179, 215 (1989); (c) Hong, K., Rosner, R.B., Rubner, M.F.: Chem. Mater. 2, 82 (1990)

    Google Scholar 

  1229. Logsdon, P.B., Pfleger, J., Prasad, P.N.: Synth. Met. 26, 369 (1988)

    Article  Google Scholar 

  1230. Era, M., Kamiyama, K., Yoshiura, K., Momii, T., Murata, H., Tokito, S., Tsutsui, T., Saito, S.: Thin Solid Films. 179, 1 (1989)

    Article  Google Scholar 

  1231. Cheung, J.H., Rosner, R.B., Rubner, M.F.: New strategies for preparing electrically conductive Langmuir-Blodgett films. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 859. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1232. (a) Watanabe, I., Hong, K., Rubner, M.F.: J. Chem. Soc. Chem. Commun. 123 (1989) (b) Watanabe, I., Hong, K., Rubner, M.F., Loh, I.H.: Synth. Met. 28, C473 (1989); (c) Watanabe, I., Hong, K., Rubner, M.F.: Thin Solid Films 179, 199 (1989); (d) Watanabe, I., Hong, K., Rubner, M.F.: Langmuir: 6, 1164 (1990)

    Google Scholar 

  1233. Plank, R.V., DiNardo, N.J., Vohs, J.M.: Synth. Met. 89, 1 (1997)

    Article  Google Scholar 

  1234. Zhou, J., Wipf, D.O.: J. Electrochem. Soc. 144, 1202 (1997)

    Article  Google Scholar 

  1235. ang, J., Oh, J.H., Stucky, G.D.: Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew. Chem. Int. Ed. 41(21), 4016–4019 (2002); (a) Grossman, C., Heflin, J.R., Wong, K.Y., Zamani-Khamiri, O., Garito, A.F. In: Messier, J., Kajzar, F., Prasa, D.P., Ulrich, D.R. (eds.) Nonlinear optical effects in organic polymers. Kluwer, Dordrecht, p. 61–781989; (b) Chandrasekhar, P., Thorne, J.R.G., Hochstrasser, R.M.: Appl. Phys. Lett. 59, 1661 (1991), and references therein; (c) Chandrasekhar, P., Thorne, J.R.G., Hochstrasser, R.M.: Synth Met. 53, 175 (1993), and references therein. (d) Chandrasekhar, P., Naishadham, K. (1999)

    Google Scholar 

  1236. Leclerc, M., Diaz, F.M., Wegner, G.: Makromol. Chem. 190, 3105 (1989)

    Article  Google Scholar 

  1237. Liao, H., Y., S.C.: The 1.5eV polaron transition of polyaniline: the spectra electrochemical resolution into sub-bands. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 741. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1238. Furukawa, N., Nishio, K.: Lithium batteries with polymer electrodes. In: Scrosati, B. (ed.) Applications of electroactive polymers, p. 150. Chapman & Hall, New York (1993)

    Chapter  Google Scholar 

  1239. Kanamura, K., Kawai, Y., Yonezawa, S., Takehara, Z.: J. Electrochem. Soc. 142, 2894 (1995)

    Article  Google Scholar 

  1240. Naarman, H.: Snythesis, properties and applications of perconjugated systems. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology. Kluwer Academic Publishers, Boston (1993)

    Google Scholar 

  1241. Oh, E.J., Min, Y., Wiesinger, J.M., Manohar, S.K., Scherr, E.M., Prest, P.J., MacDiarmid, A.G., Epstein, A.J.: Synth. Met. 55–57, 977 (1993)

    Article  Google Scholar 

  1242. Lazzaroni, R., Rachidi, S., Brédas, J.L.: Theoretical investigation of chain flexibility in polythiophene and polypyrrole. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 13. Adam Hilher, New York (1991)

    Google Scholar 

  1243. Bueche, F.: Physical properties of polymers, pp. 6–8. Interscience Publishers, New York (1962)

    Google Scholar 

  1244. Nazzal, A., Street, G.B.: J. Chem. Soc., Chem. Commun. 83 (1983)

    Google Scholar 

  1245. Avlyanov, J.K., Josefowicz, J.Y., MacDiarmid, A.G.: Synth. Met. 73, 205 (1995)

    Article  Google Scholar 

  1246. Rolland, M. Abadie, M. Cadene, M. J. Phys. Orsay Fr. 44, C3 (1984)

    Google Scholar 

  1247. Aldissi, M., Schue, F., Giral, L., Rolland, M.: Polymer. 23, 246 (1982)

    Article  Google Scholar 

  1248. Angelopoulous, M., Liao, Y.-H., Furman, B., Graham, T.: Solvent and salt effects on the morphological structure of polyaniline. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers. SPIE-The International Society for Optical Engineering, Bellingham, vol. 2528, p. 230 (1995)

    Google Scholar 

  1249. MacDiarmid, A.G., Epstein, A.J.: Synth. Met. 65, 103 (1994)

    Article  Google Scholar 

  1250. Buckley, L.J., Joseflowicz, J.Y., Xie, L.: Polyaniline surface morpholoy during the eDoping process using atomic force microscopy. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 197. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1251. Aldissi, M.: Stabiliy and stabilization of pristine and doped polymers. In: Inherently conducting polymers: processing fabrication, applications, limitations, p. 52. Noyes Data Corporations, New Jersey (1989)

    Google Scholar 

  1252. Silk, T., Hong, Q., Tamm, J., Compton, R.G.: Synth. Met. 93, 59 (1998)

    Article  Google Scholar 

  1253. a) Jenekhe, S.: Priv. Commun. (1985); (b) Jenekhe, S.A.: Macromolecules 19, 2663 (1986); (c) Jenekhe, S.A.: Nature 322, 345 (1986)

    Google Scholar 

  1254. Patil, A.O., Wudl, F.: Macromolecules. 21, 540 (1988)

    Article  Google Scholar 

  1255. Bräunling, H., Jira, R.: Synth. Met. 20, 375 (1987)

    Article  Google Scholar 

  1256. Street, G.B., Lindsey, S.E., Nazzai, A.I., Wynne, K.J.: Mol. Cryst. Liq. Cryst. 118, 137 (1985)

    Article  Google Scholar 

  1257. Fukuda, T., Takezoe, H., Ishikawa, K., Fukuda, A., Woo, H.S., Jeong, S.K., Oh, E.J., Suh, J.S.: Synth. Met. 69, 175 (1995)

    Article  Google Scholar 

  1258. Pouget, J.P., Jozefowicz, M.E., Tang, X., MacDiarmid, A.G., Epstein, A.J.: Macromolecules. 24, 779 (1991)

    Article  Google Scholar 

  1259. Pouget, J.B., Laridjani, M., Jozefowicz, M.E., Epstein, A.J., Scherr, E.M., MacDiarmid, A.G.: Structural aspects of polyaniline family of electronic polymers. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 589. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1260. Tsukamooto, J., Takahashi, A.: Structure and morphology of metallic-conductive polyacetylene. In: Electrical, optical and magnetic properties of organic solid state materials, vol. 247, p. 711. Materials, Research Society, Pittsburgh (1992)

    Google Scholar 

  1261. Wegner, G.: Molecular metals, vol. 1, p. 209. Plenum, New York (1979)

    Book  Google Scholar 

  1262. van der Pauw, L.J.: Phillips Tech. Rev. 20, 220 (1958-1959)

    Google Scholar 

  1263. Montgomery, H.C.: J. Appl. Phys. 42, 2971 (1971)

    Article  Google Scholar 

  1264. Logan, B.F., Rice, S.O., Wick, R.F.: J. Appl. Phys. 42, 2975 (1971)

    Article  Google Scholar 

  1265. Hermann, G.J., Resetar-Racine, T.M., Hale, J., Stevens, W.C., Del Vecchio, J.A., Sturm, E.A.: Metallized fiber smoke material with tailored degradability. In: Proceedings of the smoke/obscurants smyposium XV, vol. 1, p. 63. Chemical Research, Development & Engineering Center, Aberdeen (1991)

    Google Scholar 

  1266. Shibuya, M., Nishina, T., Matsue, T., Uchida, I.: J. Electrochem. Soc. 143, 3157 (1996)

    Article  Google Scholar 

  1267. Hoa, D.T., Kumar, T.N.S., Punekar, N.S., Srinivasa, R.S., Lal, R., Contractor, A.Q.: Anal. Chem. 64, 2645 (1992)

    Article  Google Scholar 

  1268. Schiavon, G., Sitran, S., Zotti, G.: Synth. Met. 32, 209 (1989)

    Article  Google Scholar 

  1269. Paul, E.W. Ricco, A.J., Wrighton, M.S.: J. Phys. Chem. 89, 1441 (1985), and references therein

    Google Scholar 

  1270. Thackeray, J.W., Wrighton, M.S.: J. Phys. Chem. 90, 6674 (1986), and references therein

    Google Scholar 

  1271. Guillaud, G., Rosenberg, N.: J. Phys. E. 13, 1287 (1980)

    Article  Google Scholar 

  1272. Buravov, L.I., Shchegolev, I.F.: Prib. Tekh. Eksp. 4, 171 (1971)

    Google Scholar 

  1273. (a) Epstein, A.J., Rommelmann, H., Bigelow, R., Gibson, H.W., Hoffman, D., Tanner, D.B.: Phys. Rev. Lett. 50, 1866 (1983); (b) Epstein, A.J.; Rommelmann, H.; Bigelow, R., Gibson, H.W., Hoffman, D., Tanner, D.B.: Phys. Rev. Lett. 51, 2020 (1983)

    Google Scholar 

  1274. Electrochemistry and Corrosion Overview and Techniques, Application Note Corr 4, EG&G Princeton Applied Research Corp., USA (1997)

    Google Scholar 

  1275. Nogueira, J.S., Mattoso, L.H.C., Lepienski, C.M., Faria, R.M.: Synth. Met. 69, 259 (1995)

    Article  Google Scholar 

  1276. Amemiya, T., Hashimoto, K., Fujishima, A.: Dynamics of electrochromic phenomena in organic conducting polypyrrole films. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 613. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1277. Passiniemi, P., Väkiparta, K.: Synth. Met. 69, 237 (1995)

    Article  Google Scholar 

  1278. Singh, R., Narula, A.K., Tandon, R.P.: Synth. Met. 82, 63 (1996)

    Article  Google Scholar 

  1279. (a) Bernier, P.: The magnetic properties of conjugated polymers: ESR studies of undoped and doped systems.; In Handbook of conducting polymers; Skotheim, T. A. Ed. Marcel Dekker, Inc., New York, 1986; Vol. 2, p.1099.; (b) Catellani, M., Porzio, W., Musco, A., Pontellini, R: Synthesis and characterization of soluble alkyl substitued poly (2,5-Thienylene Vinylenes). In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical optical and magnetic properties of organic solid state materialsMaterials Research Society, Pittsburgh, Vol. 247, p. 681 (1992);

    Google Scholar 

  1280. Aldissi, M.: Synthesis of conjugated polymers. In: Inherently conducting polymers: processing, fabrication, applications, limitations, p. 2. Noyes Data Corporation, New Jersey (1989)

    Google Scholar 

  1281. Kiess, H.G., Harbeke, G.: Optical properties of conducting polymers. In: Kiess, H.G. (ed.) Conjugated conducting polymers, vol. 102, p. 175. Springer, New York

    Google Scholar 

  1282. Hotta, S., Rughooputh, S.D.D.V., Heeger, A.J.: Synth. Met. 22, 79 (1987)

    Article  Google Scholar 

  1283. Hayes, W., Pratt, F.L., Wong, K.S., Kaneto, K., Yoshino, K.: J. Phys. C18, L555 (1985)

    Google Scholar 

  1284. Shacklette, L.W., Chance, R.R., Ivory, D.M., Miller, G.G., Baughman, R.H.: Synth. Met. 1, 307 (1980)

    Article  Google Scholar 

  1285. Nguyên, M.T., Dao, L.H.: J. Chem. Soc. Chem. Commun. 1221 (1990), and references therein

    Google Scholar 

  1286. Jones, M.B., Kovacic, P., Lanska, D.: J. Polym. Sci. Polym. Letts. 19, 89 (1981)

    Article  Google Scholar 

  1287. Chien, J.C.W., Capistran, J.D., Karasz, F.E., Dickinson, L.C., Schen, M.A.: J. Polym. Sci. Lett. 21, 93 (1983)

    Article  Google Scholar 

  1288. Wegner, G.: Angew, Chem. Int. Ed. 20, 361 (1981)

    Article  Google Scholar 

  1289. Soga, K., Kawakami, S., Shirakawa, H., Ideda, S.: Makromol. Chem. Rap. Commun. 1, 523 (1980)

    Article  Google Scholar 

  1290. Davied, S., Nicolau, Y.F., Melis, F., Revillon, A.: Synth. Met. 69, 125 (1995)

    Article  Google Scholar 

  1291. Cao, Y., Andreatta, A., Heeger, A.J., Smith, P.: Polymer. 30, 2305 (1989)

    Article  Google Scholar 

  1292. Plachetta, C., Schulz, R.C.: Makromol. Chem. Rapid Commun. 3, 815 (1982)

    Google Scholar 

  1293. Hoffman, H. Krömer, H. Kuhn, R. Polymeranalytik I.: Georg Thieme Verlag Stuttgart S. 303 (1977)

    Google Scholar 

  1294. Seery, T.A.P., Angelopoulos, M., Levon, K., Seghal, A.: Synth. Met. 84, 79 (1997)

    Article  Google Scholar 

  1295. Mulazzi, E., Bivio, G.P., Lefrant, S., Faulques, E., Perrin, E.: Synth. Met. 17, 325 (1987)

    Article  Google Scholar 

  1296. Yong, C., Renyan, Q.: Solid State Commun. 54, 211 (1985)

    Article  Google Scholar 

  1297. Steigmeier, E.F., Auderset, H., Kobel, W., Baeriswyl, D.: Synth. Met. 17, 219 (1987)

    Article  Google Scholar 

  1298. Botta, C., Luzzati, S., Bolognesi, A., Tubino, R., Borghesi, A.: Photoinduced absorption spectroscopy of poly-3-alkylthiophenes. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 669. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1299. Hankin, S.H.W., Sandman, D.J.: Recent studies of Raman spectroscopy of polydiacetylene crystals: poly-Ipudo. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 661. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1300. Fong, Y., Chen, C., Schlenoff, J.B.: In-situ montoring of the kinetics and mechanism of conducting polymer synthesis. In: Chiuang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 246, p. 693. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1301. (a) Lefrant, S., Mévellec, J.Y., Buisson, J.P., Perrin, E., Eckhardt, H., Han, C.C., Jen, K.Y.: In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of conjugated conducting polymers III: basica models and application, vol. 91, p. 123. Springer, New York (1989); (b) Kuzmany, H., Genies, E.M., Syed, A.: Resonance Raman scattering from polyaniline. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of polymers and related compounds, vol. 69, p. 223. Springer, New York (1989)

    Google Scholar 

  1302. Sakamoto, A., Furukawa, Y., Tasumi, M., Noguchi, T., Ohnishi, T.: Synth. Met. 69, 439 (1995)

    Article  Google Scholar 

  1303. Kastner, J., Kuzmany, H., Vegh, D., Landl, M., Cuff, L., Kertesz, M.: Synth. Met. 69, 593 (1995)

    Article  Google Scholar 

  1304. Jen, A.K.-Y., Drzewinski, M., Chin, H.H., Boara, G.: Highly conducting and thermally stable conjugated polymers. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 687. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1305. Buckley, L.J., Eashoo, M.: Synth. Met. 78, 1 (1996)

    Article  Google Scholar 

  1306. Kulkarni, V.G., Mathew, W.R., Wessling, B., Merkle, H., Blaettner, S.: Synth. Met. 41–43, 1009 (1991)

    Article  Google Scholar 

  1307. Mathys, G.I., Truong, V.-T.: Snyth. Met. 89, 103 (1997)

    Article  Google Scholar 

  1308. Yue, J., Epstein, A.J.: Macromolecules. 24, 4441 (1991)

    Article  Google Scholar 

  1309. Nakajima, T. Kawagoe, T. Synth. Met. 28, C629 (1989), and references therein

    Google Scholar 

  1310. Salaneck, W.R., Thomas, H.R., Duke, C.B., Paton, A., Plummer, E.W., Heeger, A.J., MacDiarmid, A.G.: J. Chem. Phys. 71, 2044 (1979)

    Article  Google Scholar 

  1311. Hsu, S.L., Signorelli, A.J., Pez, G.P., Baughman, R.H.: J. Chem. Phys. 69, 106 (1978)

    Article  Google Scholar 

  1312. Salaneck, W.R., Thomas, H.R., Bigelow, R.W., Duke, C.B., Plummer, E.W., Heeger, A.J., MacDiarmid, A.G.: J. Chem. Phys. 72, 3674 (1980)

    Article  Google Scholar 

  1313. Nguyen, T.P., Amgaad, K., Cailler, M., Tran, V.H., Lefrant, S.: Synth. Met. 69, 495 (1995)

    Article  Google Scholar 

  1314. Jira, R. Braunling, H.: Synth. Met. 17, 691 (1987), and references therein

    Google Scholar 

  1315. Kahol, P.K., Clark, W.G., Mehring, M.: Magnetic properties of conjugated polymers. In: Kiess, H. (ed.) Conjugated conducting polymers, vol. 102, p. 217. Springer, New York (1992.) and references therein

    Chapter  Google Scholar 

  1316. Yannoni, C.S.: Accts. Chem. Res. 15, 201 (1982)

    Article  Google Scholar 

  1317. Gustafsson, G., Inganas, O., Salaneck, W.R., Laasko, J., Loponen, M., Taka, T., Osterholm, J.-E., Stubb, H., Hjertberg, T.: Processable conducting poly(3-Alkylthiopenes). In: Bredas, J.L., Silbey, R. (eds.) Conjugated polymers, p. 315. Kluwer Academic Publishers, Dordrecht (1991)

    Chapter  Google Scholar 

  1318. Elsenbaumer, R.L., Jen, K.Y., Miller, G.G., Eckhardt, H., Shacklette, L.W., Jow, R.: Springer Ser. Solid- State Sci. 76, 400 (1987)

    Google Scholar 

  1319. Bargon, J., Mohmand, S., Waltman, R.J.: IBM J. Res. Develop. 27, 330 (1983)

    Article  Google Scholar 

  1320. (a) Clarke, T.C., Scott, J.C.: NMR studies of polyacetylene. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1127. Marcel Dekker, Inc., New York (1986); (b) Thomann, H. ENDOR studies of polyacetylene. In: Skotheim, T. A. (ed.) Handbook of conducting polymers, vol. 2, p. 1157. Marcel Dekker, Inc., New York (1986); and references therein

    Google Scholar 

  1321. Yannoni, C.S., Clarke, T.C.: Phys. Rev. Lett. 51, 1191 (1983)

    Article  Google Scholar 

  1322. Fincher Jr., C.R., Chen, C.-E., Heeger, A.J., MacDiarmid, A.G., Hastings, J.B.: Phys. Rev. Lett. 48, 100 (1982)

    Article  Google Scholar 

  1323. Heinmaa, I., Alla, M., Vainrub, V., Lippmaa, E., Khidelkel, M.L., Kotov, A.I., Kozub, G.I.: J. Phys. Colloq. 44, C3–357 (1983)

    Article  Google Scholar 

  1324. Keiser, H., Beccu, U.D., Gutjahr, M.A.: Electrochim. Acta. 21, 539 (1976)

    Article  Google Scholar 

  1325. Wnek, G.E., Chien, J.C.W., Karasz, F.E., Lillya, C.P.: Polymer. 20, 144 (1979)

    Article  Google Scholar 

  1326. Scott, J.C. Pfluger, P. Krounbi, M.T. Street, G.B. Phys. Rev. B 28, 2140 (1983), and references therein

    Google Scholar 

  1327. Tanaka, K., Shichiri, T., Yoshizawa, K., Yamabe, T., Hotta, S., Shimotsuma, W., Yamanchi, J., Deguchi, Y.: Solid State Commun. 51, 565 (1984)

    Article  Google Scholar 

  1328. Kobayashi, M., Chen, J., Chung, T.C., Moraes, F., Heeger, A.J., Wudl, F.: Synth. Met. 9, 77 (1984)

    Article  Google Scholar 

  1329. Chien, J.C.W., Karasz, F.E., Wnek, G.E., MacDiarmid, A.G., Heeger, A.J. J. Polym. Sci. Polym. Lett. Ed. 18, 45 (1980) and references therein

    Google Scholar 

  1330. Su, W.P.: Solid State Commun. 35, 899 (1980)

    Article  Google Scholar 

  1331. Thomann, H. Electronic resonance of the solid state. In: Weil, J. (ed.) Can. Che. Soc. Symp. Ser. 1986

    Google Scholar 

  1332. Cailleau, H., Girad, A., Moussa, F., Zeyen, C.M.E.: Solid State Commun. 29, 259 (1979)

    Article  Google Scholar 

  1333. Heeger, A.J. MacDiarmid, A.G. Mol. Cryst. Liq. Cryst. 77, A1 (1981), and references therein

    Google Scholar 

  1334. Genoud, F., Ménardo, C., NEchtschein, M.: Electrochemical cycling of polyaniline: proton transfer and ESR susceptibility. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 85. Trans Tech Publications, Switzerland (1989)

    Google Scholar 

  1335. Javadi, H. H.S. Laversanne, R. Epstein, A.J. Kohli, R.K. Scheer, E.M. MacDiarmid, A.G. Synth. Met. 29, E-439 (1989)

    Google Scholar 

  1336. Wang, Z.H., Javadi, H.H.S., Ray, A., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B. 42, 5411 (1990)

    Article  Google Scholar 

  1337. Flood, J.D., Heeger, A.J.: Phys. Rev. B. 28, 2356 (1983)

    Article  Google Scholar 

  1338. Moraes, F., Schaffer, H., Kobayashi, M., Heeger, A.J., Wudl, F.: Phys. Rev. B. 30, 2948 (1984)

    Article  Google Scholar 

  1339. Kispert, L.D., Files, L.A., Frommer, J.E., Shacklette, L.W., Chance, R.R.: J. Chem. Phys. 78, 4858 (1983)

    Article  Google Scholar 

  1340. Raynor, J.B.: Mater. Sci. Forum. 21, 11 (1987)

    Article  Google Scholar 

  1341. Thomann, H., Dalton, L.R., Tomkiewicz, Y., Shiren, N.S., Clarke, T.C.: Phys. Rev. Lett. 50, 533 (1983)

    Article  Google Scholar 

  1342. Kuroda, S.-I., Noguchi, T., Ohnishi, T.: Synth. Met. 69, 423 (1995)

    Article  Google Scholar 

  1343. Crecelius, G.: Electron energy loss spectroscopy in the study of conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1233. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1344. (a) Ritsko, J.J.: Mater. Sci. 7, 337 (1981); (b) Ritsko, J.J.: Phys. Rev. B26, 2192 (1982)

    Google Scholar 

  1345. Ritsko, J.J., Crecelius, G., Fink, J.: Phys. Rev. B27, 4902 (1983)

    Article  Google Scholar 

  1346. Ritsko, J.J., Fink, J., Crecelius, G.: Solid State Commun. 46, 477 (1983)

    Article  Google Scholar 

  1347. Naishadham, K.: Microwave characterizatioln of polymeric materials with potential applications in electromagnetic interference (EMI) shielding. Int. SAMPE Electron. Conf. 7, 252 (1994), and references therein

    Google Scholar 

  1348. Naishadham, K.: Private Communication (1988)

    Google Scholar 

  1349. Stenger-smith, J. J.: NAWCP, China Lake, Califronia, USA, Private Communication (1998)

    Google Scholar 

  1350. Radar Cross Section Handbook. Plenum Press, New York (1970); Several Volumes

    Google Scholar 

  1351. Naishadham, K., Kadaba, P.K.: IEEE Trans. Microwave Theor. Techn. 39, 1158 (1991), and refs. therein

    Google Scholar 

  1352. Epstein, A.J., MacDiarmid, A.G.: The controlled electromagnetic response of playanilines and its application to technologies. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 141. Adam Hilger, New York (1991)

    Google Scholar 

  1353. Epstein, A.J., Joo, J., Kohlman, R.S., MacDiarmid, A.G., Weisinger, J.M., Min, Y., Pouget, J.P., Tsukamoto, J.: The metallic state of conducting polymers: microwave dielectric response and optical conductivity. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 145. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1354. Hourquebie, P., Olmedo, L., Deleuze, C.: Microwave properties of conductive polymer composites. In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Electronic properties of polymers: orientation and dimensionality of conjugated systems, vol. 107, p. 125. Springer, New York (1992)

    Chapter  Google Scholar 

  1355. Henry, F., Pichot, C., Kamel, A., Aaser, M.S.E.: Colloid Polym. J. 267, 48 (1989), and references therein

    Google Scholar 

  1356. Olmedo, L., Hourquebie, P., Jousse, F.: Synth. Met. 69, 205 (1995)

    Article  Google Scholar 

  1357. Hourquebie, P.: Influence of structural parameters of conducting polymers on their microwave properties. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 239. Materials research Soceity, Pittsburgh (1994)

    Google Scholar 

  1358. Shim, H.-K., Kim, H.-J., Ahn, T., Kang, I.-N., Zyung, T.: Synth. Met. 91, 289 (1997)

    Article  Google Scholar 

  1359. Tubino, R., Botta, C., Destri, S., Porzio, W., Rossi, L.: Optical properties and photoexcitations in regularly alternating conjugated copolymers. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 673. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1360. Greenham, N.C., Cacialli, F., Bradley, D.D.C., Friend, R.H., Moratti, S.C., Holmes, A.B.: Cyano-derivative of poly (P-Phenylene Vinylene) for use in thin-film light-emitting diodes. In: Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 351. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1361. Orenstein, J.: Photoexcitations of conjugated polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 2, p. 1297. Marcel Dekker, Inc, New York (1986)

    Google Scholar 

  1362. Garten, F., Vrijmoeth, J., Schlatmann, A.R., Gill, R.E., Klapwijk, T.M., Hadziioannou, G.: Effect of the top electrode work function on the rectification ratio of Light Emitting Diodes (LEDs) based on poly(3-octylthiophene). In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 81. SPIE-The International Society for Optical Engineering, Bellingham (1995.) and reference therein

    Chapter  Google Scholar 

  1363. Vardeny, Z., Ehrenfreund, E., Brafman, O. Heeger, A.J. Wudl, F.: Synth. Met. 18, 183 (1987), and references therein

    Google Scholar 

  1364. Moraes, F., Schaffer, H., Kobayashi, M., Heeger, A.J.: Wudl Phys. Rev. B 30, 2948 (1984)

    Google Scholar 

  1365. Masters, J.G., MacDiarmid, A.G., Kim, K., Ginder, J.M., Epstein, A.J.: Bull. Am. Phys. Soc. 36, 377 (1991)

    Google Scholar 

  1366. Hilberer, A., Wildeman, J., Brouwer, H.-J., Garten, F., Hadziioannou, G.: Conjugated block copolymers for light-emitting diodes. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 74. SPIE-The International Society for Optical Engineering, Bellinghma (1995)

    Chapter  Google Scholar 

  1367. Epstein, A.J.: The polyaniliens: model systems for diverse electronic phenomena. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 211. Kluwer Academic Publishers, Norwell (1991)

    Chapter  Google Scholar 

  1368. Schulz, B., Kaminorz, Y., Brehmer, L.: Synth. Met. 84, 449 (1997)

    Article  Google Scholar 

  1369. Dridi, C., Chaieb, A., Hassen, F., Majdoub, M., Gamoudi, M.: Synth. Met. 90, 233 (1997)

    Article  Google Scholar 

  1370. Kim, H.-K., Ryu, M.-K., Kim, K.-D., Lee, J.-H., Park, J.-W.: Synth. Met. 91, 297 (1997)

    Article  Google Scholar 

  1371. (a) Dagani, R.: Devices based on electro-optic polymers begin to enter marketplace. Chem. Eng. News. 74(10), 22–27 (1996); (b) Marder, Perry, Staehelin, M., Zysset, B., et al.: Science 271, 335 (1996)

    Google Scholar 

  1372. Spence, R.: Aluminum with fluorinated ligands. Chem. Eng. News. 74(21), 4–1996

    Google Scholar 

  1373. Sauteret, C., Hermann, J.-P., Frey, R., Pradère, F., Ducuing, J., Baughman, R.H., Chance, R.R.: Phys. Rev. Lett. 36, 956 (1976)

    Article  Google Scholar 

  1374. Drury, M.R.: Solid State Commun. 68, 417 (1988)

    Article  Google Scholar 

  1375. Dennis, W.M., Blau, W., Bradley, D.J.: Appl. Phys. Lett. 47, 200 (1985)

    Article  Google Scholar 

  1376. Sinclair, M., McBranch, D., Moses, D., Heeger, A.J.: Synth. Met. 28, D645 (1989)

    Article  Google Scholar 

  1377. Chollet, P.-A., Kajzar, F., Messier, J.: Synth. Met. 18, 459 (1987)

    Article  Google Scholar 

  1378. Kanetake, T., Ishikawa, K., Hasegawa, T., Koda, T., Takeda, K., Hasegawa, M., Kubodera, K., Kobayashi, H.: Appl. Phys. Lett. 54, 2287 (1989)

    Article  Google Scholar 

  1379. Neher, D., Wolf, A., Bubeck, C., Wegner, G.: Chem. Phys. Lett. 163, 116 (1989)

    Article  Google Scholar 

  1380. Byrne, H.J., Blau, W., Jen, K.-Y.: Synth. Met. 32, 229 (1989)

    Article  Google Scholar 

  1381. Ghoshal, S.K.: Chem. Phys. Lett. 158, 65 (1989)

    Article  Google Scholar 

  1382. Lindle, J.R., Bartoli, F.J., Hoffman, C.A., Kim, O.-K., Lee, Y.S., Shirk, J.S., Kafafi, Z.H.: Appl. Phys. Lett. 56, 712 (1990)

    Article  Google Scholar 

  1383. Cao, X.F., Jiang, J.P., Bloch, D.P., Hellwarth, R.W., Yu, L.P., Dalton, L.: J. Appl. Phys. 65, 5012 (1989)

    Article  Google Scholar 

  1384. Agrawal, A.K., Jenekhe, S.A., Vanherzeele, H., Meth, J.S.: Third-order nonlinear optical properties of a series of systematically designed conjugated rigid-rod polyquinolines. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 253. Materials Research Society, Pittsburgh

    Google Scholar 

  1385. Guo, D., Mazumadar, S., Stegeman, G.I., Cha, M., Neher, D., Aramaki, S., Torruellas, W., Zanoni, R.: Nonlinear optics of linear conjugated polymers. In: Electrical, optical, and magnetic properties of organic solid state materials, vol. 147, p. 151. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1386. Samoc, M., Samoc, A., Luther-Davies, B., Scherf, U.: Synth. Met. 87, 197 (1997)

    Article  Google Scholar 

  1387. Moon, K.-J., Lee, K.-S., Shim, H.-K.: Synth. Met. 71, 1719 (1995)

    Article  Google Scholar 

  1388. Spangler, C.W., He, M.Q., Laquindanum, J., Dalton, L., Tang, N., Partanen, J., Hellwarth, R.: Bipolaron formation and nonlinear optical properties in bis-thienyl polyenes. In: Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 655. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1389. Okawa, H., Wada, T., Sasabe, H.: Synth. Met. 84, 265 (1997)

    Article  Google Scholar 

  1390. Meyer, R.K., Benner, R.E., Vardeny, Z.V., Liess, M., Ozaki, M., Yoshino, K., Ding, Y., Barton, T.: Synth. Met. 84, 549 (1997)

    Article  Google Scholar 

  1391. Matsuda, H., Shimada, S., Takeda, H., Masaki, A., Van Keuren, E., Yamada, S., Hayamizu, K., Nakanishi, F., Okada, S., Nakanishi, H.: Synth. Met. 84, 909 (1997)

    Article  Google Scholar 

  1392. Tripathy, S.K., Kim, W.H., Masse, C.E., Bihari, B., Kumar, J.: Novel polydiacetylenes as materials for second and third order nonlinear optics. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 667. Materials Research Society, Pittsburgh (1994.) and references therein

    Google Scholar 

  1393. Cai, Y.M., Jen, A.K.-Y., Liu, Y.J., Chen, T.A.: Highly active and thermally stable nonlinear optical polymers for electro-optical applications. In: Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 128. SPIE-The International Society for Optical Engineering, Bellingham (1995)

    Chapter  Google Scholar 

  1394. Shank, C.V., Yen, R., Fork, R.L., Orenstein, J., Baker, G.L.: Phys. Rev. B. 49, 1660 (1982)

    Google Scholar 

  1395. Zheng, L.X., Feng, Z.G., Knopf, F.C.: Polymer Prepr. 37, 107 (1996), and references therein

    Google Scholar 

  1396. Vardeny, Z., Strait, J., Moses, D., Chung, T.-C., Heeger, A.J.: Phys. Rev. Lett. 49, 1657 (1982)

    Article  Google Scholar 

  1397. Kobayashi, T.: Synth. Met. 71, 1663 (1995)

    Article  Google Scholar 

  1398. Oamg, Y., Prasad, P.N.: J. Chem. Phys. 93, 2201 (1990)

    Article  Google Scholar 

  1399. Weinberger, B.R., Kaufer, J., Heeger, A.J., Pron, A., MacDiarmid, A.G.: Phys. Rev. B. 20, 223 (1979)

    Article  Google Scholar 

  1400. Epstein, A.J., Rommelmann, H., Druy, M.A., Heeger, A.J., MacDiarmid, A.G.: Solid State Commun. 38, 683 (1981)

    Article  Google Scholar 

  1401. Shirakawa, H., Ito, T., Ikeda, S.: Makromol. Chem. 179, 1565 (1978)

    Article  Google Scholar 

  1402. Mizoguchi, K., Kachi, N., Sakamoto, H., Kume, K., Yoshioka, K., Masubuchi, S., Kazama, S.: Synth. Met. 84, 695 (1997)

    Article  Google Scholar 

  1403. Kitao, S., Matsuyama, T., Seto, M., Maeda, Y., Masubuchi, S., Kazama, S.: Synth. Met. 69, 371 (1995)

    Article  Google Scholar 

  1404. Suwalski, J., Pron, A., Zucharski, Z.: Mater. Sci. Forum. 21, 125 (1987)

    Article  Google Scholar 

  1405. Hepel, M., Chen, Y.-M., Stephenson, R.: J. Electrochem. Soc. 143, 498 (1996)

    Article  Google Scholar 

  1406. Thyssen, A., Hochfeld, A., Schultze, J.W.: Investigations of the anodic polymerisation of ortho- and meta-toludine with the EQMB. In: Plocharski, J., Roth, S. (eds.) Materials science forum, vol. 42, p. 151. Trans Tech Publications, Switzerland (1989)

    Google Scholar 

  1407. Shilov, V.E., Shilova, A.S.: Application of neutron spectoscopy in investigation of magnetic state of pi-electron systems. In: Gordeev, M.E. (ed.) Fiz.-Khim. Metody Issled. Strukt. Din. Mol. Sist. Mater. Vseros. Sovesch, vol. 2, p. 134 (1994)

    Google Scholar 

  1408. Wei, Z.X., Zhang, L.J., Yu, M., Yang, Y.S., Wan, M.X.: Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers. Adv. Mater. 15, 1382–1385 (2003)

    Article  Google Scholar 

  1409. Long, Y.-Z., Meng-Meng, L., Changzhi, G., Meixiang, W., Jean-Luc, D., Zongwen, L., Zhiyong, F.: Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Progress in Polymer Science. 36, 1415–1442 (2011)

    Article  Google Scholar 

  1410. urcell, K.F., Kotz, J.C.: Inorganic chemistry, p. 973. WB Saunders Co, Philadelphia (1977), and refs therein

    Google Scholar 

  1411. Nigrey, R.J., Heeger, A.J., MacDiarmid, A.G.: Mol. Crist. Liq. Crist. 83, 309 (1982)

    Article  Google Scholar 

  1412. Kuzmany, H.: Pure Appl. Chem. 57, 235 (1985)

    Article  Google Scholar 

  1413. Bernier, P., Rolland, M., Linaya, C., Aldissi, M.: Polymer. 21, 7 (1980)

    Article  Google Scholar 

  1414. Chien, J.C.W., Karasz, F.E., Wnek, G.E., Heeger, A.J., MacDiarmid, A.G.: J. Poly. Sci. Polym. Lett. Ed. 18, 45 (1980)

    Google Scholar 

  1415. Daniels, W.E.: J. Org. Chem. 29, 2936 (1964)

    Article  Google Scholar 

  1416. Luttinger, L.B.: Chem. And Ind. (1960)

    Google Scholar 

  1417. Aldissi, M., Linaya, C., Sledz, J., Schue, F., Giral, L., Fabre, J.M., Rolland, M.: Polymer. 23, 243 (1982)

    Article  Google Scholar 

  1418. MacInnes Jr., D., Druy, M.A., Nigrey, P.J., Nairns, D.P., MacDiarmid, A.G., Heeger, A.J.: J. Chem. Soc. Chem. Commun. 317 (1981)

    Google Scholar 

  1419. Kaner, R.B., MacDiarmid, A.G.: Synth. Met. 14, 3 (1986)

    Article  Google Scholar 

  1420. Schacklette, L.W., Toth, J.E., Murthy, N.S., Baughman, R.H.: J. Electrochem. Soc. 132, 1529 (1985)

    Article  Google Scholar 

  1421. Farrington, G.C., Scrosati, B., Frydrych, D., de Nuzzio, J.: J. Electrochem. Soc. 131, 7 (1984)

    Article  Google Scholar 

  1422. Chiang, C.K., Blubaugh, E.A., Yap, W.T.: Polymer. 25, 1112 (1984)

    Article  Google Scholar 

  1423. Kietz, K.H., Beck, F.: J. Appl. Electrochem. 15, 159 (1985)

    Article  Google Scholar 

  1424. Nigrey, P.J., MacDiarmid, A.G., Heeger, A.J.: J.C.S. Chem. Comm. 594 (1979)

    Google Scholar 

  1425. Will, F.G.: J. Electrochem. Soc. 132, 743 (1985)

    Article  Google Scholar 

  1426. Begin, D., Billaud, D., Goulon, G.: Synth. Met. 11, 29 (1985)

    Article  Google Scholar 

  1427. Jánossy, A., Pogány, L, Pekker, S. Swietlik, R.: Mol. Cryst. Liq. Cryst. 77, 185(1981)

    Google Scholar 

  1428. Benoit, C., Rolland, M., Aldissi, M., Rossi, A., Cadene, M., Bernier, P.: Phys. Stat. Sol. A. 68, 209 (1981)

    Article  Google Scholar 

  1429. Yamamoto, T., Yamamoto, A.: Chem. Soc. Jap. Chem. Lett. 353 (1977)

    Google Scholar 

  1430. Shirakawa, H., Ikeda, S.: Synth. Met. 1, 175 (1979/80)

    Article  Google Scholar 

  1431. Lugli, G., Pedretti, U., Perego, G.: J. Polym. Sci.: Polym. Lett. 23, 129 (1985)

    Google Scholar 

  1432. Leising, G., Uitz, R., Ankele, B., Ottinger, W., Stelzer, F.: Mol. Cryst. Liq. Cryst. 117, 327 (1985)

    Article  Google Scholar 

  1433. Naarmann, H., Theophilou, N.: Synth. Met. 22, 1 (1987)

    Article  Google Scholar 

  1434. Swager, T.M., Dougherty, D.A., Grubbs, R.H.: J. Am. Chem. Soc. 110, 2973 (1988)

    Article  Google Scholar 

  1435. Masuda, T., Higashimura, T.: Adv. Polym. Sci. 81, 121 (1986)

    Google Scholar 

  1436. Wagner, G.: Pure Appl. Chem. 49, 443 (1997)

    Google Scholar 

  1437. Aime, J.-P.: Structural characterization of conjugated polymer solutions in the undoped and doped state. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, p. 229. Kluwer Academic Publishers, Norwell (1991)

    Chapter  Google Scholar 

  1438. (a) Patel, G.N.: J. Polym. Sci. Letters Ed. 16, 607 (1978); (b) Patel, G.N., Walsh, E.K.: J. Polym. Sci. Lett. Ed. 17, 203 (1979)

    Google Scholar 

  1439. Patel, G.N., Witt, J.D., Khanna, Y.P.: J. Polym. Sci. Polym. Phys. Ed. 18, 1383 (1980)

    Article  Google Scholar 

  1440. Yang, Y., Lee, J.Y., Li, L., Kumar, J., Jain, A.K., Tripathy, S.K.: Polarization dependent photocurrent in thin film polydiacetylene single crystals. In: Chiang, L.Y., Garito, A.F., Sandma, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state, vol. 247, p. 729. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1441. (a)Kajzar, F., Messier, J.: Third order nonlinear optical effects in conjugated polymers. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nopnlinear optically active materials, p. 509. Kluwer Academic Publishers, Norwell (1991); (b) Singh, B. P., Prasad, P. N.: J. Opt. Soc. Am. B5, 453 (1988); (c) Blau, W.: Opt. Commun. 64, 85 (1987)

    Google Scholar 

  1442. Ohnuma, H., Hasegawa, K., Se, K., Kotaka, T.: Macromolecules. 18, 2341 (1985)

    Article  Google Scholar 

  1443. Winter, M., Grupp, A., Mehring, M., Sixl, H.: Chem. Phys. Lett. 133, 482 (1987)

    Article  Google Scholar 

  1444. Elsenbaumer, R.L., Shacklette, L.W.: Pheneylene-based conducting polymers. In: Skotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 213. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1445. Diaz, A.F., Hall, B.: IBM J. Res. Dev. 27, 342 (1983)

    Article  Google Scholar 

  1446. Otero, T.F., Rodríguez, J.: Electrochemomechanical and electrochemopositioning devices: artificial muscles. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 179. Kluwer Academic Publishers, Boston (1993.) and references therein

    Chapter  Google Scholar 

  1447. Salmon, M., Diaz, A.F., Logan, A.J., Krounbi, M., Bargon, J.: Mol. Cryst. Liq. Cryst. 83, 1297 (1983)

    Google Scholar 

  1448. Ouyang, J., Li, Y.: Polymer. 38, 3997 (1997)

    Article  Google Scholar 

  1449. Diaz, A.F., Kanazawa, K.K.: In: Miller, J.S. (ed.) Extended linear chain compounds, p. 417. Plenum, New York (1982)

    Google Scholar 

  1450. Bargon, J., Mohmand, S., Waltman, R.J.: IBM, J. Res. Dev. 27, 330 (1983)

    Article  Google Scholar 

  1451. Salmon, M., Diaz, A., Goitia, J.: Chemically modified surfaces. In: Miller J. S. (ed.) Catalysis and electrocatalysis; Am. Chem. Soc. Symp. Ser. vol. 192, p. 65(1982)

    Google Scholar 

  1452. (a) Epstein, A.J., Ginder, J.M., Zuo, F., Bigelow, R.W., Woo, H.-S., Tanner, D.B., Richter, A.F., Huang, W.- S., MacDiarmid, A.G.: Synth. Met. 18, 303 (1987); (b) Ginder, J.M., Richter, A.F., MacDiarmid, A.G., Epstein, A.J.: Solid State Commun. 63, 97 (1987)

    Google Scholar 

  1453. Shacklette, L.W., Han, C.C.: Solubility and dispersion characteristics of polyaniline. In: Dalton, L.R. (ed.) Electrical, optical, and magnetic properities of organic solid state materials, vol. 328, p. 157. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1454. MacDiarmid, A.G., Epstein, A.J.: Conducting polymers: past, present, and future… . In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 133. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1455. (a) Andreatta, A., Cao, Y., Chiang, J.C., Heeger, A.J., Smith, P.: Synth. Met. 26, 383 (1988); (b) Cao, Y., Smith, P., Heeger, J.: Synth. Met. 32, 263 (1989)

    Google Scholar 

  1456. Tang, H., Kitani, A., Shiotani, M.: J. Electrochem. Soc. 143, 3079 (1996)

    Article  Google Scholar 

  1457. Pham, M.C., Piro, B., Bassaoui, E.A., Hedayatullah, M., Lacroix, J.-C., Novak, P., Haas, O.: Synth. Met. 92, 197 (1998)

    Article  Google Scholar 

  1458. Hwang, G.-W., Wu, K.-Y., Hua, M.-Y., Lee, S.-T., Chen, S.-A.: Synth. Met., 92, 39 1998

    Google Scholar 

  1459. Naoi, K., Kawase, K.-I., Mori, M., Komiyama, M.: J. Electrochem. Soc. 144, L173 (1997)

    Article  Google Scholar 

  1460. Dao, L.H., Nguyen, M.T., Paynter, R.: Synth. Met. 41–43, 649 (1998)

    Google Scholar 

  1461. Wang, X., Yang, Q., Luo, X.: Shandong Jiancai Xueyuan Xuebao. 10, 19 (1996)

    Google Scholar 

  1462. Pham, M.-C., Oulahyane, M., Mostefai, M., Chehimi, M.M.: Synth. Met. 93, 89 (1998)

    Article  Google Scholar 

  1463. Mostefai, M., Pham, M.-C., Marsault, J.-P., Aubard, J., Lacaze, P.-C.: J. Electrochem. Soc. 143, 2116 (1996)

    Article  Google Scholar 

  1464. Yamamoto, T., Sanechika, K., Yamamoto, A.: J. Polm. Sci. Polym. Lett.Ed. 18, 9 (1980)

    Google Scholar 

  1465. Gorman, C.B., Grubbs, R.H.: Conjugated polymers: the interplay between synthesis, structure, and properties. In: Brédas, J.L., Silbey, R. (eds.) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials, vol. 1. Kluwer Academic Publishers, Norwell (1991)

    Google Scholar 

  1466. Sugimoto, R., Takeda, S., Gu, H.B., Yoshino, K.: Chem. Express. 1, 635 (1986)

    Google Scholar 

  1467. Yamamoto, T., Morita, A., Maruyama, T., Zhou, Z., Kanbara, T., Sanechika, K.: Polym. J. 22, 187 (1990)

    Article  Google Scholar 

  1468. Amer, A., Zimmer, H., Mulligan, K.J, Mark, H.B., Pons, S., McAleer, J.F.: J. Polym. Sci. Polym. Lett. Ed. 22, 77(1984)

    Google Scholar 

  1469. Zhang, Q.T., Tour, J.M.: J. Am. Chem. Soc. 119, 5065 (1997)

    Article  Google Scholar 

  1470. (a) Hotta, S., Hosaka, T., Shimotsuma, W.: Synth. Met. 6, 317 (1983); (b) Druy, M.S., Seymour, R.J.: J. Phys. Paris Colloq. C3 44, 595 (1983)

    Google Scholar 

  1471. Yamamoto, T., Sanachika, K., Yamamoto, A.: Bull. Chem. Soc. Jpn. 56, 1497 (1983)

    Google Scholar 

  1472. Tourillon, G., Garnier, F.: J. Phys. Chem. 87, 2289 (1983)

    Article  Google Scholar 

  1473. Waltman, R.J., Bargon, J., Diaz, A.F.: J. Phys. Chem. 87, 2289 (1983)

    Article  Google Scholar 

  1474. Torsi, L., Giglio, E.D., Sabbatini, L., Zambonin, P.G.: J. Electrochem. Soc. 141, 2608 (1994)

    Article  Google Scholar 

  1475. Welzel, H.-P., Kossmehl, G., Boettcher, H., Engelmann, G., Hunnius, W.-D.: Macromolecules. 30, 7419 (1997)

    Article  Google Scholar 

  1476. Zhang, X., Shen, X., Yang, S., Lu, W., Zhang, J.: Chin. J. Polym. Sci. 14, 330 (1996)

    Google Scholar 

  1477. Satoh, M., Imanishi, K., Yasuda, Y., Tsushima, R., Yamasaki, H., Aoki, S., Yoshino, K.: Synth. Met. 30, 33 (1989)

    Article  Google Scholar 

  1478. Ng, S.C., Fu, P., Yu, W.-L., Chan, H.S.O., Tan, K.L.: Synth. Met. 87, 119 (1997)

    Article  Google Scholar 

  1479. Guillerez, S., Bidan, G.: Synth. Met. 93, 123 (1998)

    Article  Google Scholar 

  1480. Dogbéavou, R., El-Mehdi, N., Naudin, E., Breau, L., Bélanger, D.: Synth. Met. 84, 207 (1997)

    Article  Google Scholar 

  1481. Hide, F., Greenwald, Y., Wudl, F., Heeger, A.J.: Synth. Met. 85, 1255 (1997)

    Article  Google Scholar 

  1482. Poverenov, E., Li, M., Bitler, A., Bendikov, M.: Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem. Mater. 22, 4019–4025 (2010)

    Article  Google Scholar 

  1483. Luo, S., Ali, E., Tansil, N., Yu, H., Gao, S., Kantchev, E., Ying, J.: Poly(3,4-ethylenedioxythiophene) (PEDOT) nonbiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatability. Langmuir. 24, 8071–8077 (2008)

    Article  Google Scholar 

  1484. Xiao, Y., Lin, J., Tai, S., Chou, S., Yue, G., Wu, J.: Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012)

    Article  Google Scholar 

  1485. McFarlane, S., Deore, B., Svenda, N., Freund, M.: A one-step, organic-solvent processable synthesis of PEDOT thin films via in situ metastable chemical polymerization. Macromolecules. 43, 10241–10245 (2010)

    Article  Google Scholar 

  1486. Cho, W., Im, S., Kim, S., Kim, S., Kim, J.: Synthesis and characterization of PEDOT: P(SS-co-VTMS) with hydrophobic properties and excellent thermal stability. Polymers. 8, 189–199 (2016)

    Article  Google Scholar 

  1487. Zhang, X., Lee, J., Lee, G., Cha, D., Kim, M., Yang, D., Manohar, S.: Chemical synthesis of PEDOT nanotubes. Macromolecules. 39, 470–472 (2006)

    Article  Google Scholar 

  1488. Zhang, X.: Chemical synthesis of PEDOT nanofibers. Chem. Comm. 42, 5328–5330 (2005)

    Article  Google Scholar 

  1489. Winther-Jensen: High rates of oxygen reduction over a vapor phase-polymerized PEDOT. Electrode. Science. 321 (2008)

    Google Scholar 

  1490. Paradee, N., Sirivat, A.: Synthesis of poly(3,4-ethylenedioxythiophene) nanoparticles by chemical oxidation polymerization. Polym. Int. 63, 106–113 (2013)

    Article  Google Scholar 

  1491. Krishnamoorthy, K., Ambade, A.V., Kanungo, M., Contractor, A.Q., Kumar, A.J.: Mat. Chem. 11, 2909–2911 (2001)

    Google Scholar 

  1492. Chandrasekhar, P., Zay, B.J., Cai, C., Chai, Y., Lawrence, D.: Matched-dual-polymer electrochromic lenses, using new cathodically-coloring conducting polymers, with exceptional performance and incorporated into automated sunglasses, Ashwin-Ushas Corporation, 1–47

    Google Scholar 

  1493. Kobayashi, M., Colaneri, N., Boysel, M., Wudl, F., Heeger, A.J.: J. Chem. Phys. 82, 5717 (1985)

    Article  Google Scholar 

  1494. Yashima, H., Kobayashi, M., Lee, K.-B., Chung, D., Heeger, A.J., Wudl, F.: J. Electrochem. Soc. 134, 46 (1987)

    Article  Google Scholar 

  1495. (a) Cava, M.P., Deana, A.A.: J. Am. Chem. Soc. 81, 4266 (1959); (b) Cava, M.P., Pollack, N.M.: J. Am. Chem. Soc. 88, 4112 (1966); (c) Cava, M.P., Pollack, N.M., Mamer, O.A., Mitchell, M.J.: J. Org. Chem. 36, 3932 (1971)

    Google Scholar 

  1496. (a) Okiver, J.A., Ongley, P.A.: Chem. Ind. 12, 1024 (1965); (b) Iddon, B. Adv. Heterocycl. Chem. 14, 331 (1972)

    Google Scholar 

  1497. Jen, K.Y., Elsenbaumer, R.: Synth. Met. 16, 379 (1986)

    Article  Google Scholar 

  1498. (a) Wudl, F., Kobayashi, M., Heeger, A.J.: J. Org. Chem. 49, 3382 (1984); (b) Chen, S.-A., Lee, C.-C., Method for preparing processable polyisothianaphthene. US 5510457 A, 23 Apr 1996, and references therein

    Google Scholar 

  1499. Schlick, U., Teichert, F., Hanack, M.: Synth. Met. 92, 75 (1998)

    Article  Google Scholar 

  1500. Kossmehl, G.: Ber. Bunsenges. Phys. Chem. 83, 417 (1979)

    Article  Google Scholar 

  1501. Jen, K.-Y., Maxfield, M., Shacklette, L.W., Elsenbaumer, R.L.: J. Chem. Soc., Chem. Commun. 309 (1987)

    Google Scholar 

  1502. Catellani, M., Porzio, W., Musco, A., Pontellini, R.: Synthesis and characterization of solluble alkyl substituted poly(2,5-Thienylene Vinylenes). In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 681. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1503. Chandrasekhar, P.:Nonlinear optical properties of conducting polymer/semiconductor interfaces. In: Proc. 38th Sagamore Army Mat. Res. Conf.; Plymouth, MA, USA, 19991

    Google Scholar 

  1504. Thompsn, K.G., Bryan, C.J., Benicewicz, B.C., Wrobleski, D.A.: Corrosion-protective coatings from electrically conducting polymers, Los Alamos National Laboratory, Internal Report #LA-UR-92-360, 338–347 (1992)

    Google Scholar 

  1505. Wrobleski et al.: Corrosion resistant coating. US5658649 A1, 19 Aug 1997, and references therein

    Google Scholar 

  1506. Wolf, J. F. et al.: Adjustable tint window with electro chromic conductive polymer. US 5042923 A, 27 Aug 1991, and references therein

    Google Scholar 

  1507. Ng, S.C., Chan, H.S.O., Miao, P., Tan, K.L.: Synth. Met. 90, 25 (1997)

    Article  Google Scholar 

  1508. Inaoka, S., Collard, D.M.: Synth. Met. 84, 193 (1997)

    Article  Google Scholar 

  1509. Pomerantz, M., Gu, X.: Synth. Met. 84, 243 (1997)

    Article  Google Scholar 

  1510. Lambert, T.L., Ferraris, J.P.: J. Chem. Soc. Chem. Commun. 752 (1991)

    Google Scholar 

  1511. Ferraris, J.P., Lambert, T.L.: J. Chem. Soc. Chem. Commun. 1268 (1991)

    Google Scholar 

  1512. Gunatunga, S.R., Jones, G.W., Kalaji, M., Murphy, P.J., Taylor, D.M., Williams, G.O.: Synth. Met. 84, 973 (1997)

    Article  Google Scholar 

  1513. Beyer, R., Kalaji, M., Kingscote-Burton, G., Murphy, P.J., Pereira, V.M.S.C., Taylor, D.M., Williams, G.O.: Synth. Met. 92, 25 (1998)

    Article  Google Scholar 

  1514. Lima, A., Schottland, P., Sadki, S., Chevrot, C.: Synth. Met. 93, 33 (1998)

    Article  Google Scholar 

  1515. Akoudad, S., Roncali, J.: Synth. Met. 93, 111 (1998)

    Article  Google Scholar 

  1516. Ng, S.C., Xu, J.M., Chan, H.S.O.: Synth. Met. 92, 33 (1998)

    Article  Google Scholar 

  1517. Emge, A., Bäuerle, P.: Synth. Met. 84, 213 (1997)

    Article  Google Scholar 

  1518. Kovacic, P., Kyriakis, A.: J.A.C.S. 85, 454 (1963)

    Google Scholar 

  1519. Fauvarque, J.F., Petit, M.A., Pfluger, F., Jutand, A., Chevrot, C., Troupel, M.: Macromol. Chem. Rapid. Comm. 4, 455 (1983)

    Article  Google Scholar 

  1520. Ballard, D.G.H., Courtis, A., Shirley, I.M., Taylor, S.C.: Macromolecules. 21, 294 (1988)

    Article  Google Scholar 

  1521. McKean, D.R., Stille, J.K.: Macromolecules. 20, 1787 (1987)

    Article  Google Scholar 

  1522. Chem. Abstr. 63: Fobe (1965); Netherlands Patent Appl. 6,402,650 (1964)

    Google Scholar 

  1523. Aeiyach, S., Soubiran, P., Lacaze, P.C., Froyer, G., Pelous, Y.: Synth. Met. 32, 103 (1989)

    Article  Google Scholar 

  1524. Goldenberg, L.M., Pelekh, A.E., Krinichnyi, V.L., Roshchupkina, O.S., Zueva, A.F., Lyubovskaya, R.N., Efimov, O.N.: Synth. Met. 36, 217 (1990)

    Article  Google Scholar 

  1525. Tsuchida, E., Yamamoto, K., Asada, T., Nishide, Y.: Chem. Lett. 1541 (1987)

    Google Scholar 

  1526. Brilmyer, G., Jasinski, R.: J. Electrochem. Soc. 129, 1950 (1982)

    Article  Google Scholar 

  1527. Rubinstein, I.: J. Electrochem. Soc. 130, 1506 (1983)

    Article  Google Scholar 

  1528. Li, C., Shi, G., Liang, Y., Ye, W., Sha, Z.: Polymer. 38, 5023 (1997)

    Article  Google Scholar 

  1529. Santos, D.A.D., Galvao, D.S., Laks, B., Dezotti, M.W.C., DePaoli, M.A.: Chem. Phys. 144, 103 (1990), and references therein

    Google Scholar 

  1530. Maafi, M., Lion, C., Aaron, J.J.: Synth. Met. 83, 167 (1996)

    Article  Google Scholar 

  1531. Martínez, Y., Hernández, R., Kalaji, M., Márquez, J., Márquez, O.P.: Synth. Met. 93, 9 (1998)

    Article  Google Scholar 

  1532. Larmat, F., Soloducho, J., Katritzky, A.R., Reynolds, J.R.: J. Electrochem. Soc. 143, L161 (1996)

    Article  Google Scholar 

  1533. Wessling, R.A.: J. Polym. Sci. Polym. Symp. 72, 55 (1985)

    Article  Google Scholar 

  1534. Bradley, D.D.C., Evans, G.P., Friend, R.H.: Synth. Met. 17, 651 (1987)

    Article  Google Scholar 

  1535. Wudl, F.: Proc. of the Int. Conf. on Synth. Met., Santa Fe 1988

    Google Scholar 

  1536. Shi, S., Wudl, F.: Conjugated polymeric materials: opportunities in electronics, optoelectronics and molecular electronics. In: Brédas, J.L., Chance, R.R. (eds.) NATO ASI Series, Series E: applied sciences, vol. 82, p. 83. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  1537. Hilberer, A., Brouwer, H.-J., van der Scheer, B.-J., Wildeman, J., Hadziioannou, G. Macromolecules 18 (23) (1995)

    Google Scholar 

  1538. Heck, R.F.: Org. Reac. 27, 345 (1982)

    Google Scholar 

  1539. Remmers, M., Schulze, M., Wegner, G.: Macromolecular Rapid Commun. 17, 239 (1996)

    Article  Google Scholar 

  1540. Stephens, J.A., Friend, R.H., Remmers, M., Neher, D.: Synth. Met. 84, 645 (1997)

    Article  Google Scholar 

  1541. Ueda, M., Hayakawa, T., Haba, O., Kawaguchi, H., Inoue, J.: Macromolecules. 30, 7069 (1997)

    Article  Google Scholar 

  1542. Barashkov, N.N., Novikova, T.S., Ferraris, J.P.: Synth. Met. 83, 39 (1996)

    Article  Google Scholar 

  1543. Concentrates. Chem. Eng. News 76(11), 14–15 (1998)

    Google Scholar 

  1544. Shacklette, L.W., Elsenbaumer, R.L., Chance, R.R., Eckhardt, H., Frommer, J.E., Baughman, R.H.: J. Chem. Phys. 75, 1919 (1980)

    Article  Google Scholar 

  1545. Elsenbaumer, R.L., Shacklette, L.W., Sowa, J.M., Baughman, R.H.: Mol. Cryst. Liq. Cryst. 83, 229 (1982)

    Article  Google Scholar 

  1546. Lenz, R.W., Handlovits, C.E., Smith, H.A.: J. Polym. Sci. 58, 351 (1962)

    Article  Google Scholar 

  1547. Schoch, K.F.: Polym. Prepr. 25, 278 (1984), and references therein

    Google Scholar 

  1548. Edmonds, J. T., Jr., Hill, H.W.: JR. Selective cleavage of monoami-dotriphosphates to produce orthophosphoramidates. US 3345129 A, 3 Oct 1967

    Google Scholar 

  1549. (a) Aldissi, M., Liepins, R.: J. Chem. Soc. Chem. Commun. 255 (1984); (b) Hopf, K.: Agitator for a drill and related methods. US 8025111 B2, 27 Sept 2011

    Google Scholar 

  1550. Ding, Y., Hay, A.S.: Macromolecules. 30, 1849 (1997)

    Article  Google Scholar 

  1551. Hanack, M., Datz, A., Fay, R., Fischer, K., Keppeler, U., Koch, J., Metz, J., Mezger, M., Schneider, O., Schulze, H.-J.: Synthesis and properties of conducting bridged acrocyclic metal complexes. In: Kotheim, T.A. (ed.) Handbook of conducting polymers, vol. 1, p. 133. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  1552. Acampora, L.A., Dugger, D.L., Emma, T., Mohammed, J., Rubner, M., Samuelson, L., Sandman, D.J., Tripathy, S.: Symp. Ser. 242, 461 (1984)

    Google Scholar 

  1553. Peulon, V., Barbey, G., Malandain, J.-J.: Synth. Met. 82, 111 (1996)

    Article  Google Scholar 

  1554. Shim, Y.-B. Park, S.-M. J. electrochem. Soc. 144, 3027 (1997)

    Google Scholar 

  1555. (a) Van Deusen, R.L.: J. Polym. Sci. B 14, 211 (1966); (b) Arnold, F.E., Van Deusen, R.L.: Macromol. 2, 497 (1969)

    Google Scholar 

  1556. Agrawal, A. K. Wang, C., Song, H. H: High temperature electrical conductivity of solution-cast bbl films. In Electrical, optical, and magnetic properties of organic solid state materials; Garito, A. F.; Jen, A. K.-Y.; Lee, C.Y.-C.; Dalton, L. R. Eds.; Materials Research Society, Pittsburgh, 1994; Vol. 328, p. 279.

    Google Scholar 

  1557. Kim, O.-K.: Mol. Cryst. Liq. Cryst. 105, 161 (1984)

    Article  Google Scholar 

  1558. Wilbourn, K., Murray, R.W.: Macromol. 21, 89 (1988)

    Article  Google Scholar 

  1559. Kim, O.K.: J. Polym. Sci. Polym. Lett. Ed. 20, 663 (1982)

    Article  Google Scholar 

  1560. Debad, J.D., Bard, A.J.: J. Am. Chem. Soc. 120, 2476 (1998)

    Article  Google Scholar 

  1561. Mittler-Neher, S., Otomo, A., Stegeman, I., Lee, C.Y.-C., Mehta, R., Agrawal, A.K., Jenekhe, S.A.: Appl. Phys. Lett. 62, 115 (1993)

    Article  Google Scholar 

  1562. Stille, J.K.: Macromol. 14, 870 (1981)

    Article  Google Scholar 

  1563. Papir, Y.S., Kurkov, V.P., Current, S.P.: Extended Abstracts, 83-1, Abs. 544, Electrochemical Society Meeting, San Francisco (1983)

    Google Scholar 

  1564. Schroeder, A.H., Papir, Y.S., Kurkov, V.P.: Extended Abstracts, 83-1, Abs. 544, Electrochemical Society Meeting, San Francisco (1983)

    Google Scholar 

  1565. Agrawal, A.K., Jenekhe, S.A., Vanherzeele, H., Meth, J.S.: Chem. Mater. 3, 765 (1991)

    Article  Google Scholar 

  1566. El-Shekeil, A.G., Al-Saady, H.A., Al-Yusufy, F.A.: Polym. Int. 44, 78 (1997)

    Google Scholar 

  1567. González-Tejera, M.J., Carrillo, I., Hernández-Fuentes, I.: Synth. Met. 92, 187 (1998)

    Article  Google Scholar 

  1568. Belloncle, C., Fabre, B, Cauliez, P., Simonet, J.: Synth. Met. 93, 115(1998)

    Google Scholar 

  1569. Pandey, P.C., Prakash, R.: J. Electrochem. Soc. 145, 999 (1998)

    Article  Google Scholar 

  1570. Talbi, H., Billaud, D.: Synth. Met. 93, 105 (1998)

    Article  Google Scholar 

  1571. Fennell, J.F., Liu, S.F., Azzarelli, J.M., Weis, J.G., Rochat, S., Mirica, K.A., Ravnsbæk, J.B., Swager, T.M.: Nanowire chemical/biologiccal sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55, 1266–1281 (2016.) (b) 908 Devices: Safety & Security. http://908devices.com/markets/safety-security/.Accessed Sept 2016

    Article  Google Scholar 

  1572. Guimard, N.K., Gomez, N., Schmidt, C.E.: Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–882 (2007)

    Article  Google Scholar 

  1573. Forzani, E.S., Zhang, H., Nagahara, L.A., Amlani, I., Tsui, R., Tao, N.: A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4(9), 1785–1788 (2004)

    Article  Google Scholar 

  1574. Ogura, K., Shiigi, H., Nakayama, M.: J. Electrochem. Soc. 143, 2925 (1996)

    Article  Google Scholar 

  1575. Ram, M.K., Yavuz, Ö., Lahsangah, V., Aldissi, M.: CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuators B. 106, 750–757 (2005)

    Article  Google Scholar 

  1576. (a)Baughman, R.H., Shacklette, L.W.: Application of dopant-induced structure-property changes of conducting polymers. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 47. Adam Hilger, New York (1991) (b) Shimidzu, T.: React. Polym. 6, 221 (1987); (c)Iwakura, C., Kajiya, Y., Yoneyama, H.: J. Chem. Soc. Chem. Chem. Commun. 1019 (1988); (d) Thackeray, J.W., White, H.S., Wrighton, M.S.: J. Chem. 89, 5133 (1985); (e) Jones, E.T.T., Chyan, O.M., Wrighton, M.S.: J. Am. Chem. Soc. 109, 55526 (1987)

    Google Scholar 

  1577. Ogura, K., Shiigi, H., Nakayama, M.: J. Electrochem. Soc. 143, 2925 (1996)

    Article  Google Scholar 

  1578. Boyle, A., Geniés, E.M., Lapkowski, M.: Synth. Met. 28, C769 (1989)

    Article  Google Scholar 

  1579. Collins, G.E., Buckley, L.J.: Synth. Met. 78, 93 (1996)

    Article  Google Scholar 

  1580. Kincal, D., Kumar, A., Chid, A.D., Reynolds, J.R.: Synth. Met. 92, 43 (1998)

    Article  Google Scholar 

  1581. Ellis, D.L. Zakin, M.R., Bernstein, L.S., Rubner, M.F.: Anal. Chem. 68, 817 (1996)

    Google Scholar 

  1582. Selampinar, F., Toppare, L., Akbulut, U., Yalçin, T., Süzer, S.: Synth. Met. 68, 109 (1995)

    Article  Google Scholar 

  1583. De Rossi, D. Gestri, G. Stella, R. Stussi, E. Proc. Ital. Conf. 1st, Sens. Microsyst. 64 (1996)

    Google Scholar 

  1584. Ramanthank, K., Bangar, A.M., Yun, M., Chen, W., Myung, N.V., Mulchandani, A.: Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J.A.C.S. 127, 496–497 (2005)

    Article  Google Scholar 

  1585. (a) Ramanathan, K., Bangar, M., Yun, M., Chen, W., Mulchandani, A.; (b) Myung, N.V.: Nano Lett. 4, 1237–1239 (2004); (c) Yun, M., Myung, N.V., Vasquez, R.P.: Lee, C., Menke, E., Penner, R.M.: Nano Lett. 4, 419–422 (2004)

    Google Scholar 

  1586. Kwon, O.S., Park, S.J., Lee, J.S., Park, E., Kim, T., Park, H.-W., You, S.A., Yoon, H., Jang, J.: Multidimensional conducting polymer nanotubes for ultrasensitive cheical nerve agent sensing. Nano Lett. 12, 2797–2802 (2012)

    Article  Google Scholar 

  1587. Yoon, H., Jang, J.: Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 19, 1567–1576 (2009)

    Article  Google Scholar 

  1588. Yoon, H., Chang, M., Jang, J.: J. Phys. Chem. B. 110, 14074 (2006)

    Article  Google Scholar 

  1589. Oh, W.-K., Kwon, O.S., Jang, J.: Conducting polymer nanomaterials for biomedical applications: cellular interfacing and biosensing. Polym. Rev. 53, 407–442 (2013)

    Article  Google Scholar 

  1590. Willner, I., Zayats, M.: Electronic aptamer-based sensors. Angew. Chem. Int. Ed. 46, 6408–6418 (2007)

    Article  Google Scholar 

  1591. Rahman, M.A., Son, J.I., Won, M.S., Shim, Y.B.: Gold nanoparticles doped conducting polymer nanorod electrodes: ferrocene catalyzed aptamer-based thrombin immunosensor. Anal. Chem. 81, 6604–6611 (2009)

    Article  Google Scholar 

  1592. Olowu, R.A., Arotiba, O., Mailu, S.N., Waryo, T.T., Baker, P., Iwuoha, E.: Electrochemical aptasensor for endocrine disrupting 17β-estradiol based on a poly (3, 4-ethylenedioxylthiopene)- gold nanocomposite platform. Sensors. 10, 9872–9890 (2010)

    Article  Google Scholar 

  1593. Dupony-Filliard, A., Billon, M., Livache, T., Guillerez, S.: Biotin/avidin system for generation of fully renewable DNA sensor based on biotinylated polypyrrole film. Anal. Chim. Acta. 414, 271–277 (2004)

    Article  Google Scholar 

  1594. Gerard, M., Chaubey, A., Malhotra, B.D.: Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–349 (2002)

    Article  Google Scholar 

  1595. Oyama, N., Hirokawa, T.: Anal. Chem. 59, 258 (1987)

    Article  Google Scholar 

  1596. Josowicz, M., Janata, J.: Electroactive polymers in chemical sensors. In: Scrosati, B. (ed.) Applications of electroactive Polymers, p. 310. Chapman & Hall, New York (1993)

    Chapter  Google Scholar 

  1597. Brown, C.W., Chen, C.-S., Li, Y.: Near- and mid-infrared chemical and biological sensors. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 243. SPIE-The International Society for Optical Engineering, Bellingham (1995)

    Chapter  Google Scholar 

  1598. Gambhir, A., Gerard, M., Mulchandani, A., Malhotra, B.D.: Co-immobilization of urease and glutamate dehydrogenase in electrochemically prepared polypyrrole-polyvinyl sulphonate films. Appl. Biochem. Biotechnol. (2001), in press

    Google Scholar 

  1599. Chaubey, A., Gerard, M., Singhal, R., Singh, V.S., Malhora, B.D.: Immobilization of lactate dehydrogenase on electrochemically prepared polypyrrole-polyvinyl sulphonate composite films for application to lactate biosensors. Electrochim. Acta. 46, 732–729 (2000)

    Google Scholar 

  1600. Vidal, J.C., Garcia-Ruiz, E., Espuelas, J., Aramendia, T., Castillo, J.R.: Comparison of biosensors based in entrapment of cholesterol oxidase and cholesterol esterase in electro-polymerized films of polypyrrole and diaminonaphtalene derivative for amperometric determination of cholesterol. Anal. Bioanal. Chem. 377, 273–280 (2003)

    Article  Google Scholar 

  1601. Kumar, A., Rajesh, C., Chaubey, A., Grover, S.K., Malhotra, B.D.: Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzen sulfonate ion doped poly=pyrrole film. J. Appl. Polym. Sci. 82, 3486–3491 (2001)

    Article  Google Scholar 

  1602. Singh, S., Solanki, P.R., Pandey, M.K., Malhotra, B.D.: Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sens. Actuators B. B115, 534–541 (2006)

    Article  Google Scholar 

  1603. Ramanthan, K., Pandey, S.S., Kumar, R., Guati, A., Murthy, A.S.N., Malhotra, B.D.: Covalent immobilization of glucose oxidase to poly(o-amino benzoic acid) for application to glucose biosensor. J. Appl. Polym. Sci. 78, 662–667 (2000)

    Article  Google Scholar 

  1604. Kankare, J., Vinokurov, I.A.: Anal. Chem. 69, 2337 (1997)

    Article  Google Scholar 

  1605. Mazeikiene, R., Malinauskas, A.: Synth. Met. 89, 77 (1997)

    Article  Google Scholar 

  1606. Osaka, T., Komaba, S., Amano, A.: J. Electrochem. Soc. 145, 406 (1998)

    Article  Google Scholar 

  1607. Degani, Y., Heller, A.: Anal. Chem. 91, 1285 (1987)

    Google Scholar 

  1608. Umana, M., Waller, J.: Anal. Chem. 58, 2979 (1986)

    Article  Google Scholar 

  1609. Bartlett, P.N., Witaker, R.G.: J. Electroanal. Chem. 224, 37 (1987)

    Article  Google Scholar 

  1610. Belanger, D., Nadreau, J., Fortier, G.: J. Electroanal. Chem. 274, 143 (1989)

    Article  Google Scholar 

  1611. Folds, N. C., Lowe, C. R. Anal. Chem. 60, 2473 (1988)

    Google Scholar 

  1612. Khan, G.F., Wernet, W.: J. Electrochem. Soc. 143, 3336 (1996)

    Google Scholar 

  1613. Malitesta, C., Palmisano, F., Torsi, L., Zambonin, P. G.: Anal. Chem., 62, 2735 (1990)

    Google Scholar 

  1614. Genies, E.M., Marchesiello, M.: Synth. Met. 44–47, 3677 (1993)

    Article  Google Scholar 

  1615. Koopal, C.G.J., Eijsma, B., Nolte, R.J.M.: Synth. Met. 55–57, 3689 (1993)

    Article  Google Scholar 

  1616. Gao, M., Dai, L.\.M., Wallace, G.G.: Electroanalysis. 15, 1089–1094 (2003)

    Article  Google Scholar 

  1617. Arrigan, D.W.M., Bartlett, P.N.: Biosens. Bioelectron. 13, 293 (1998)

    Article  Google Scholar 

  1618. Ju, H.X., Zhou, D.M., Xiao, Y., Chen, H.Y.: Electroanalysis 10, 541 (1998)

    Google Scholar 

  1619. Miao, Y.Q., Qi, M., Zhan, S. Z., He, N.Y., Wang, J., Yuan, C.W.: Anal. Lett. 32, 1287 (1999)

    Google Scholar 

  1620. Ram, M.K., Adami, M., Paddeu, S., Nicolini, C.: Nanotechnol. 11, 112 (2000)

    Article  Google Scholar 

  1621. Kros, A., Nolte, R.J.M., Sommerdijk, N.A.: J. M. Adv. Mater. 14, 1779 (2002)

    Google Scholar 

  1622. Gao, M., Dai, L., Wallace, G.G.: Synth. Met. 137, 1393 (2003)

    Article  Google Scholar 

  1623. Tian, S.J., Liu, J.Y., Zhu, T., Knoll, W.: Chem. Commun. 2738 (2003)

    Google Scholar 

  1624. Zhang, X.J., Ogorevc, B., Wang, J.: Anal. Chim. Acta. 452, 1 (2002)

    Article  Google Scholar 

  1625. Yabuki, S., Shinohara, H., Ikariyama, Y., Aziawa, M.: J. Electroanal. Chem. 277, 179 (1990)

    Article  Google Scholar 

  1626. Yang, Y. Mu, S. Chen, H.: Synth. Met. 92, 173 (1998)

    Google Scholar 

  1627. Jinqing, K. Huaiguo, X., Shaolin, M., Hong, C.: Synth. Met. 87, 2051997)

    Google Scholar 

  1628. Akhtar, P., Too, C.O., Wallace, G.G.: Anal. Chim. Acta. 339, 211 (1997)

    Article  Google Scholar 

  1629. Akhtar, P., Too, C.O., Wallace, G.G.: Anal. Chim. Acta. 339, 201 (1997)

    Article  Google Scholar 

  1630. Mammone, R.J., MacDiarmid, A.G.: J. Chem. Soc. Faraday Trans. I. 81, 105 (1985)

    Article  Google Scholar 

  1631. Tada, K., Yoshino, K.: Jpn. J. Appl. Phys. 36, L1351 (1997)

    Article  Google Scholar 

  1632. Liu, H.Q., Kameoka, J., Czaplewski, D.A., Craighead, H.G.: Polymeric nanowire chemical sensor. Nano Lett. 4, 671–675 (2004)

    Article  Google Scholar 

  1633. Lu, H.h., Lin, C.Y., Hisao, T.C., Fang, Y.Y., Ho, K.C., Yang, D.F., Lee, C.K., Hsu, S.M., Lin, C.W.: Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas. Anal. Chim. Acta. 640, 68–74 (2009)

    Article  Google Scholar 

  1634. Gao, M., Dai, L., Wallace, G.G.: Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis. 15, 1089–1094 (2003)

    Article  Google Scholar 

  1635. Wightman, R.M.: Science. 240, 415 (1988)

    Article  Google Scholar 

  1636. Chidsey, E.D., Murray, R.W.: Science. 231, 25 (1986)

    Article  Google Scholar 

  1637. Sadik, O.A., Wallace, G.G.: Elecroanalysis. 6, 860 (1994)

    Article  Google Scholar 

  1638. Shinohara, H., Chiba, T., Aziawa, M.: Sens. Actuators. 13, 79 (1988)

    Article  Google Scholar 

  1639. Nishizawa, M., Matsue, T., Uchida, I.: Anal. Chem. 64, 2642 (1992)

    Article  Google Scholar 

  1640. Gardner, J.W., Bartlett, P.N.: Sens. Actuator B. 18–19, 211 (1994)

    Google Scholar 

  1641. Stuart, N.: Chem. Ind. 1, 587 (1994)

    Google Scholar 

  1642. Parker, P.S., Chen, J.R., Agber N.E., Monkman, A.P., Mars, P., Petty, M.C: Sens. Actuators B 17, 143 (1994)

    Google Scholar 

  1643. Imisides, M., John, R., Wallace, G.G.: Chemtech. May, 19 (1996)

    Google Scholar 

  1644. Moreau, W.M. (ed.): Semiconductor lithography: principle, practices and materials. Plenum, New York (1988)

    Google Scholar 

  1645. Pinto, N.J., Johnson Jr., A.T., Muelller, C.H., Theofylaktos, N., Robinson, D.C., Miranda, F.A.: Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys Lett. 83, 4244–4246 (2003)

    Article  Google Scholar 

  1646. Liu, H.Q., Reccius, C.H., Craighead, H.G.: Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 87, 253106/1–253106/3 (2005)

    Google Scholar 

  1647. Qi, P.F., Javey, A., Rolandi, M., Wang, Q., Yenilmez, E., Dai, H.J.: Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes. J. Am. Chem. Soc. 126, 11774–11775 (2005)

    Article  Google Scholar 

  1648. Alam, M.M., Wang, J., Guo, Y.Y., Lee, S.P., Tseng, H.R.: Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B. 109, 12777–12784 (2005)

    Article  Google Scholar 

  1649. Lee, S.Y., Choi, G.R., Lim, H., Lee, K.M., Lee, S.K.: Electronic transport characteristics of electrolyte-gated conducting polyaniline nanowire field-effect transistors. Appl. Phys. Lett. 95, 013113/1-3 (2009)

    Google Scholar 

  1650. Gao, Y., Yip, H.-L., Chen, K.-S., O’Malley, K.M., Acton, O., Sun, Y., Ting, G., Chen, H., Jen, A.K.-Y.: Surface doping of conjugated polymers by graphene oxide and its application for organix electronic devices. Adv. Mat. XX, 1–6 (2011)

    Google Scholar 

  1651. Lakshmi, D., Bossi, A., Whitcombe, M.J., Chianella, I., Fowler, S.A., Subrahmanyam, S., Piletska, E.V., Piletsky, S.A.: Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition Element. Anal. Chem. 81, 3576–3584 (2009)

    Article  Google Scholar 

  1652. Cha, J., Han, J.I., Choi, Y., Yoon, D.S., Oh, K.W., Lim, G.: DNA hybridization electrochemical sensor using conducting polymer. Biosensors and Bioelectronics. 18, 1241–1247 (2003)

    Article  Google Scholar 

  1653. Pardieu, E., Cheap, H., Vedrine, C., Lazerges, M., Lattach, Y., Garnier, F., Remita, S., Pernelle, C.: Molecularly imprinted conducting polymer based celectrochemical sensor for detection of atrazine. Anal. Chim. Acta. 649, 236–245 (2009)

    Article  Google Scholar 

  1654. Yoon, H.: Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials. 3, 524–549 (2013)

    Article  Google Scholar 

  1655. Aguilar, A.D., Forzani, E.S., Leright, M., Tsow, F., Cagan, A., Iglesias, R.A., Nagahara, L.A., Amlani, I., Tsui, R., Tao, N.J.: A hybrid nanosensor for TNT vapor detection. Nano Lett. 10, 380–384 (2010)

    Article  Google Scholar 

  1656. Ates, M.: A review study of (bio)sensor systems based on conducting polymers. Materials Science and Engineering C. 33, 1853–1859 (2013)

    Article  Google Scholar 

  1657. Vasantha, V.S., Chen, S.M.: J. Elecroanal. Chem. 592, 77–87 (2006)

    Article  Google Scholar 

  1658. Mansiankar, P., Viswanatha, S., Pusphalatha, A.M., Rani, C.: Anal. Chim. Acta. 528, 157–163 (2005)

    Article  Google Scholar 

  1659. Pernites, R., Ponnapati, R., Felipe, M.J., Advincula, R.: Biosens. Bioelectron. 26, 2766–2771 (2011)

    Article  Google Scholar 

  1660. Shiu, K.-K., Chan, O.-Y.: J. Electroanal. Chem. 388, 45 (1995), and references therein.

    Google Scholar 

  1661. Yano, J., Shimoyama, A., Ogura, K.: J. Electrochem. Soc. 139, L52 (1992)

    Article  Google Scholar 

  1662. Dagani, R.: Chemosensor shows enhanced sensitivity. Chem. Eng. News. 73(29), 63–64 (1995.) and references therein

    Article  Google Scholar 

  1663. Emge, A., Bäuerle, P.: Synth. Met. 84, 213 (1997)

    Article  Google Scholar 

  1664. Buttry, D.A.: In: Bard, J. (ed.) Electroanalytical chemistry, vol. 17, pp. 1–136. Marcel Dekker, New York (1991)

    Google Scholar 

  1665. Frye, G.C., Martin, S.J., Ricco, A.J., Brinker, C.J.: In: Murray, R.W., Dessy, R.E., Heineman, W.R., et al. (eds.) Chemical sensors and microinstrumentation. ACS Symposium Series 403, Washington, DC (1989)

    Google Scholar 

  1666. Grate, J.W., Snow, A., Ballantiene, D.S., et al.: Anal. Chem. 60, 869 (1986)

    Article  Google Scholar 

  1667. Concentrates. Chem. Eng. News 76 (21), 42 (1998)

    Google Scholar 

  1668. Thomas III, S.W., Amara, J.P., Bjork, R.E., Swager, T.M.: Amplifying fluorescent polymer sensor for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chem. Commun. 4572–4574 (2005)

    Google Scholar 

  1669. Blackwood, D., Josowicz, M.: J. Phys. Chem. 95, 493 (1991)

    Article  Google Scholar 

  1670. Gustafsson, G., Lundström, I., Liedberg, B., et al.: Synth. Met. 31, 163 (1989)

    Article  Google Scholar 

  1671. Ge, Z., Brown, C.W., Yang, S.C., Sun, L.: Anal. Chem. 65, 2335 (1993), and references therein

    Google Scholar 

  1672. Nambiar, S., Yeow, J.T.W.: Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26, 1825–1832 (2011)

    Article  Google Scholar 

  1673. Wolfbeis, O.: Fiber optic chemical sensors and biosensors, vol. I and II. CRC Pres, Inc., London (1992)

    Google Scholar 

  1674. Epstein, A.J., MacDiarmid, A.G.: In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applicatios of conducting polymers, p. 141. Adam Hiler, Bristol (1991)

    Google Scholar 

  1675. Pan, L., Chrotos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dausardt, R., Bao, Z.: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Comm. 5(3002), 1–8 (2014)

    Google Scholar 

  1676. MacDiarmid, A.G.: Proceedings of the DARPA active polymers workshop, p. D3. Institute of Defense Analyses, Baltimore (1996)

    Google Scholar 

  1677. Nigrey, P.J., MacDiarmid, A.G., Heeger, A.J.: J. Chem. Soc., Chem. Commun. 594 (1979)

    Google Scholar 

  1678. Pruss, A., Beck, F.: J. Electroanal. Chem. 172, 281 (1984)

    Article  Google Scholar 

  1679. MacDiarmid, A.J. Mu, S.-L., Somasiri, N.L.D., Wu, W.: Mol. Cryst. Liq. Cryst. 121, 187 (1985)

    Google Scholar 

  1680. Croce, F., Passerini, S., Scrosati, B.: J. Electrochem. Soc. 141, 1405 (1994)

    Article  Google Scholar 

  1681. Venkatasetty, H.V: Lithium batteries. Electrochem. Soc. Monogr. (1984), and references therein

    Google Scholar 

  1682. Megahed, S., Scrosati, B.: J. Electrochem. Soc. Interface Winter, 34(1995)

    Google Scholar 

  1683. Nigrey, P.J., MacInnes Jr., D., Nairns, D.P., MacDiarmid, A.J.: J. Electrochem. Soc. 128, 1651 (1981)

    Article  Google Scholar 

  1684. Jiang, Z., Alamgir, M., Abraham, K.M.: J. Electrochem. Soc. 142, 333 (1995)

    Article  Google Scholar 

  1685. Kakuda, S., Momma, T., Osaka, T., Appetecchi, G.B., Scrosati, B.: J. Electrochem. Soc. 142, L1 (1995), and references therein

    Google Scholar 

  1686. Broich, B., Hocker, J.: Bunsenges. Phys. Chem. 88, 497 (1984)

    Article  Google Scholar 

  1687. Nagatomo, T., Honma, T., Yamamoto, C., Negishi, K., Omoto, O.: Jpn. J. Appl. Phys. 22, L255 (1983)

    Article  Google Scholar 

  1688. Aldissi, M.: Future technologica applications. In: Inherently conducting polymers: processing, fabrication, applications, limitations, p. 66. Noyes Data Corporation, New Jersey (1989)

    Google Scholar 

  1689. Maxfield, M., Mu, S.L., MacDiarmid, A.G.: J. Electrochem. Soc. 132, 838 (1985)

    Article  Google Scholar 

  1690. Shinozaki, K., Timizuka, Y., Nojiri, A.: Jpn. J. Appl. Phys. 23, L892 (1984)

    Article  Google Scholar 

  1691. Gurunathan, K., Amalnerkar, D.P., Trivedi, D.C.: Synthesis and characterization of conducting polymer composite (Pan/TiO2) for cathode material in rechargeable battery. Mater. Lett. 57, 1642–1648 (2003)

    Article  Google Scholar 

  1692. Cheng, F.Y., Tang, W., Li, C.S., Chen, J., Liu, H.K., Shen, P.W., Dou, S.X.: Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries. Chem. -Eur. J. 12, 3082–3088 (2006)

    Article  Google Scholar 

  1693. Pan, L., Qiu, H., Dou, C., Li, Y., Pu, L., Xu, J., Shi, Y.: Conducting polymer nanostructures: template synthesis and applications in energy storage. Int. J. Mol. Sci. 11, 2636–2657 (2010)

    Article  Google Scholar 

  1694. Liu, G., Xun, S., Vukmirovic, N., Song, X., Olalde-Velasco, P., Zheng, H., Battaglia, V.S., Wang, L., Yang, W.: Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679–4683 (2011)

    Article  Google Scholar 

  1695. Park, K.S., Schousgaard, S.B., Goodenough, J.B.: Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv. Mater. 19, 848–851 (2007)

    Article  Google Scholar 

  1696. An, H., et al.: Flexible lithium-ion battery electrodes. Chem. Eng, News. 93(39), 26 (2015)

    Article  Google Scholar 

  1697. Jacoby, M.: Two-for-one deal in solar cells. Chem. Eng. News. 93(9), 30 (2015)

    Article  Google Scholar 

  1698. Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C.R., Yoneyama, H.: J. Electrochem. Soc. 144, 1923 (1997)

    Article  Google Scholar 

  1699. Malta, M., Louarn, G., Errien, N., Torresi, R.M.: Electrochem. Commun. 5, 1011 (2003)

    Article  Google Scholar 

  1700. Sun, M., Zhang, S., Jiang, T., Zhang, L., Yu, J.: Electrochem. Commun. 10, 1819 (2008)

    Article  Google Scholar 

  1701. Qiu, L., Zhang, S., Zhang, L., Sun, M., Wang, W.: Electrochim. Acta. 55, 4632 (2010)

    Article  Google Scholar 

  1702. Yang, Y., Yu, G., Cha, J.J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z., Cui, Y.: Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano. 5(11), 9187–9193 (2011)

    Article  Google Scholar 

  1703. Chao, D., Xia, X., Liu, J., Fan, Z., Ng, C.F., Lin, J., Zhang, H., Shen, Z.X., Fan, H.J.: A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestandig cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014)

    Article  Google Scholar 

  1704. Osaka, T., Momma, T., Nishimura, K., Kakuda, S., Ishii, T.: J. Electrochem. Soc. 141, 1994 (1994)

    Article  Google Scholar 

  1705. Momma, T., Kakuda, S., Yarimizu, H., Osaka, T.: J. Electrochem. Soc. 142, 1766 (1995)

    Article  Google Scholar 

  1706. Shimidzu, T., Ohtani, A., Iyoda, T., Honda, K.: J. Chem. Soc., Chem. Commun. 327 (1987)

    Google Scholar 

  1707. Gemeay, A.H., Nishiyama, H., Kuwabata, S., Yoneyama, H.: J. Electrochem. Soc. 142, 4190 (1995)

    Article  Google Scholar 

  1708. Kuwabata, S., Kishimoto, A., Tanaka, T., Yoneyama, H.: J. Electrochem. Soc. 141, 10 (1994)

    Article  Google Scholar 

  1709. Coffey, B., Madsen, P.V., Peohler, T.O., Searson, P.C.: J. Electrochem. Soc. 142, 321 (1995)

    Article  Google Scholar 

  1710. Panero, S., Spila, E., Scrosati, B.: J. Electrochem. Soc. 143, L29 (1996)

    Article  Google Scholar 

  1711. Abraham, K.M., Pasquariello, D.M., Willstaedt, E.B.: J. Electrochem. Soc. 137, 1956 (1990)

    Google Scholar 

  1712. Nishio, K., Fujimoto, M., Yoshinaba, N., et al.: J. Power Sources. 34, 153 (1991)

    Article  Google Scholar 

  1713. Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C.R., Yoneyama, H.: J. Electrochem. Soc. 144, 1923 (1997)

    Article  Google Scholar 

  1714. Taguchi, S., Tanaka, T.: J. Power Sources. 20, 249 (1987)

    Article  Google Scholar 

  1715. Goto, F., Abe, K., Oabayashi, K., et al.: J. Power Sources 20, 243(1987)

    Google Scholar 

  1716. Osaka, T., Nakajima, T., Naoi, K., Owens, B.B.: J. Electrochem. Soc. 137, 2139 (1990)

    Article  Google Scholar 

  1717. Genies, E.M., Hany, P., Santier Ch.: Synth, Met. 18, 751 (1988)

    Google Scholar 

  1718. Mizumoto, M., Namba, M., Nishimura, S., et al.: Synth. Met. 18, C639(1989)

    Google Scholar 

  1719. Nishio, K., Fujimoto, M., Yoshinaga, N., et al. 40th ISE Meeting; Extended Abstracts, p. 553 (1989)

    Google Scholar 

  1720. Nishio, K., Fujimoto, M., Yoshinaga, N., et al.: 29th Battery Symposium in Japan; Abstracts, p. 227 (1988)

    Google Scholar 

  1721. Nishio, K., Fujimoto, M., Yoshinaga, N., Furukawa, N.: 30th Battery Symposium in Japan; Abstracts, p. 127 (1989)

    Google Scholar 

  1722. Tsutsumi, H., Fukuawa, S., Ishikawa, M., Morita, M., Matsuda, Y.: J. Electrochem. Soc. 142, L168 (1995)

    Article  Google Scholar 

  1723. Morita, M., Miyazaki, S., Ishikawa, M., Matsuda, Y., Tajima, H., Adachi, K., Anan, F.: J. Electrochem. Soc. 142, L3 (1995)

    Article  Google Scholar 

  1724. Freemantle, M.: Organic cathode spurs battery energy storage. Chem. Eng. News. 73(8), 5 (1995)

    Article  Google Scholar 

  1725. Oyama, N, Pope, J.M., Sotomura, T.: J. Electrochem. Soc. 144, L47 (1997), and references therein

    Google Scholar 

  1726. Sotomura, T., Tatsuma, T., Oyama, N.: J. Electrochem. Soc. 143, 315 (1996)

    Article  Google Scholar 

  1727. Leroux, F., Koene, B.E., Nazar, L.F.: J. Electrochem. Soc. 143, L181 (1996)

    Article  Google Scholar 

  1728. Nagamoto, T., Omoto, O.: J. Electroche. Soc. 135, 21214 (1988)

    Google Scholar 

  1729. Shacklette, L.W., Elsenbaumer, R.L., Chance, R.R. Sowa, J.M. Ivory, D.M. Miller, G.G. Baughman, R.H. J. chem. Soc. Chem. Commun. 1982 361 (1982)

    Google Scholar 

  1730. Kitamura, T., Hasumi, K. In: Electrochemical society in Japan, Spring Meeting Abstracts, p. 76 (1985)

    Google Scholar 

  1731. Shacklette, L.W., Maxfield, M., Gould, S., Wolf, J.F., Jow, T.R., Baughman, R. H.: Synth. Met. 18, 611 (1987)

    Google Scholar 

  1732. Shacklette, L.W., Jow, T.R., Maxfield, M., Hatami, R.: Synth. Met. 28, C655 (1989)

    Google Scholar 

  1733. Ivory, D.M., Miller, G.G., Sowa, J.M., et al.: J. Chem. Phys. 71, 1506 (1979)

    Article  Google Scholar 

  1734. Shacklette, L.W., Maxfield, M., Gould, S., Wolf, J.F., Jow, T.R., Baughman, R.H.: Synth. Met. 18, 611 (1987)

    Article  Google Scholar 

  1735. Pandey, P.C., Prakash, R.: J. Electrochem. Soc. 145, 999 (1998)

    Article  Google Scholar 

  1736. Nagatomo, T., Kakehata, H., Ichikawa, C., Omoto, O.: J. Electrochem. Soc. 132, 1380 (1985)

    Article  Google Scholar 

  1737. Nagatomo, T., Ichikawa, C., Omoto, O.: Synth. Met. 18, 649 (1987)

    Article  Google Scholar 

  1738. Koura, N., Ejiri, H., Takeishi, K.: J. Electrochem. Soc. 140, 602 (1993)

    Article  Google Scholar 

  1739. Kaneto, K., Yoshino, K., Inuishi, Y.: Jpn. J. Appl. Phys. 22, L567 (1983)

    Article  Google Scholar 

  1740. (a) Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. B 22, 2209 (1980); (b) Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. B 28, 1138€ (1982)

    Google Scholar 

  1741. Yamamoto, T. In: Spring electrochemical society meeting extended abstracts; Electrochemical Society, Vol. 82-1, p. 987 (1982)

    Google Scholar 

  1742. Killian, J.G., Coffey, B.M., Gao, F., Poehler, T.O., Searson, P.C.: J. Electrochem. Soc. 143, 936 (1996)

    Article  Google Scholar 

  1743. Kumar, G., Sivashanmugam, A., Muniyandi, N., Dhawan, S.K., Trivedi, D.C.: Synth. Met. 80, 279 (1996)

    Article  Google Scholar 

  1744. Gofer, Y., Sarker, H., Killian, J.G., Poehler, T.O., Searson, P.C.: Appl. Phys. Lett. 71, 1582 (1997)

    Article  Google Scholar 

  1745. Higgins, T.M., Park, S.-H., King, P.J., Zhang, C., McEvoy, N., Berner, N.C., Daly, D., Shmeliov, A., Khan, U., Duesberg, G., Nicolosi, V., Coleman, J.N.: A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative Electrodes. ACS Nano. 10(3), 3702–3713 (2016)

    Article  Google Scholar 

  1746. Ma, Q., Zhang, H., Zhou, C., Zheng, L., Cheng, P., Nie, J., Feng, W., Hu, Y.-S., Li, H., Huang, X., Chen, L., Armand, M., Zhou, Z.: Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Ange. Chem. 55(7), 2521–2525 (2016)

    Article  Google Scholar 

  1747. Münstedt, H., Köhler, G., Möhwald, H., Naegele, D., Bitthin, R., Ely, G., Meissner, E.: Synth. Met. 18, 259 (1987)

    Article  Google Scholar 

  1748. Alvi, F., Ram, M.K., Basnayaka, P.A., Stefanakos, E., Goswami, Y., Kumar, A.: Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochimica Acta. 56, 9406–9412 (2011)

    Article  Google Scholar 

  1749. Peng, C., Zhang, S., Jewell, D., Chen, G.Z.: Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 18, 777–778 (2008)

    Article  Google Scholar 

  1750. Zhang, L.L., Zhao, S., Tian, X.N., Zhao, X.S.: Langmuir. 26, 17624 (2010)

    Article  Google Scholar 

  1751. Liu, R., Lee, S.B.: MnO2/Poly(3,40-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electro chemical energy storage. J. Am. Chem. Soc. 130, 2942–2943 (2008)

    Article  Google Scholar 

  1752. Wang, Y.G., Li, H.Q., Xia, Y.Y.: Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619–2623 (2006)

    Article  Google Scholar 

  1753. Zhang, Z., Zhao, X.S.: Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C. 116, 5420–5426 (2012)

    Article  Google Scholar 

  1754. Xia, X., Chao, D., Fan, Z., Guan, C., Cao, X., Zhang, H., Fan, H.J.: A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor Demonstrations. Nano Lett. 14(3), 1651–1658 (2014)

    Article  Google Scholar 

  1755. Kuila, B.K., Nandan, B., Böhme, M., Janke, A., Stamm, M.: Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chem. Commun. 5749–5751 (2009)

    Google Scholar 

  1756. Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics. 6, 153–161 (2012)

    Article  Google Scholar 

  1757. Zhao, L., Li, Y., Liu, Z., Shimizu, H.: Chem. Mater. 22, 5949 (2010)

    Article  Google Scholar 

  1758. Wudl, F., Srdanov, G.: Conducting polymer formed of poly(2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene). US5189136, 1993

    Google Scholar 

  1759. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 270, 1789–1791 (1995)

    Article  Google Scholar 

  1760. Muhlbacher, D., et al.: High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006)

    Article  Google Scholar 

  1761. Peet, J., et al.: Efficiencey enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007)

    Article  Google Scholar 

  1762. Blouin, N., Michaud, A., Leclerc, M.: A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295–2700 (2007)

    Article  Google Scholar 

  1763. Park, S.H., et al.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009)

    Article  Google Scholar 

  1764. Liang, Y.Y., et al.: Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009)

    Article  Google Scholar 

  1765. Liang, Y.Y., et al.: Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009)

    Article  Google Scholar 

  1766. Chen, H.Y., et al.: Polymer solar cells with enhanced open-ciruit voltage and efficiency. Nature Photon. 3, 649–653 (2009)

    Article  Google Scholar 

  1767. Price, S.C., Stuart, A.C., Yang, L.Q., Zhou, H.X., You, W.: Fluorine substituted conjugated polymer of medium band gap yileds 7% efficiency in polymer-fulleren solar cells. J. Am. Chem. Soc. 133, 4625–4631 (2011)

    Article  Google Scholar 

  1768. Zhou, H.X., et al.: Development of fluorinated benzothiadiazole as a structural unit for polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995–2998 (2011)

    Article  Google Scholar 

  1769. Su, M.S., et al.: Improving device efficiency of polymer/fullerene bulk hetero junction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additivies. Adv. Mater. 23, 3315–3319 (2011)

    Article  Google Scholar 

  1770. Yang, J., et al.: A robust inter-connecting layer for achieving high performance tandem polymer solar cells. Adv. Mater. 23, 3465–3470 (2011)

    Article  Google Scholar 

  1771. Sun, Y.M., et al.: Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv. Mater. 23, 2226–2230 (2011)

    Article  Google Scholar 

  1772. Chu, T.Y., et al.: Bulk heterjunction solar cells using thieno[3,4-c] pyrrole-4,6-dione and dithieno[3,2-b:2’,3’-d] silole copymer with a power conversion efficiency of 7.3%. J. Am. Chem. Soc. 133, 4250–4253 (2011)

    Article  Google Scholar 

  1773. Amb, C.M., et al.: Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Che. Soc. 133, 10062–10065 (2011)

    Article  Google Scholar 

  1774. Yin, Z., Zheng, Q.: Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv. Energy Mater. 2, 179–218 (2012)

    Article  Google Scholar 

  1775. Irwin, M.D., Buchholz, B., Hains, A.W., Chang, R.P.H., Marks, T.J.: Proc. Natl. Acad. Sci. U. S. A. 105, 2783 (2008)

    Article  Google Scholar 

  1776. Zhao, G., He, Y., Li, Y.: Adv. Mater. 22, 4355 (2010)

    Article  Google Scholar 

  1777. Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S.;, Williams, S. P.: Adv. Mater. 22, 3839 (2010)

    Google Scholar 

  1778. Chen, L.-M., Hong, Z., Li, G., Yang, Y.: Adv. Mater. 21, 1434 (2009)

    Article  Google Scholar 

  1779. Huang, J., Yin, Z., Zheg, Q.: Energy Environ. Sci. 4, 3861 (2011)

    Article  Google Scholar 

  1780. Hoppe, H., Sariciftci, N.S.: J. Mater. Chem. 16, 45 (2006)

    Article  Google Scholar 

  1781. Dennler, G., Scharber, M.C., Brabec, C.J.: Adv. Mater. 21, 1323 (2009)

    Article  Google Scholar 

  1782. Kim, J.-H., Park, J.H., Lee, J.H., Kim, J.S., Sim, M., Shim, C., Cho, K.: J. Mater. Chem. 20, 7398 (2010)

    Google Scholar 

  1783. Kim, J.S., Lee, J.H., Park, J.H., Shim, C., Sim, M., Cho, K.: Adv. Funct. Mater. 21, 480 (2011)

    Article  Google Scholar 

  1784. Kim, J.-H. Park, J.H. Lee, J.H. Kim, J.S. Sim, M., Shim, C., Cho, K.: J. Mater. Chem. 20, 7398 (2010)

    Google Scholar 

  1785. Bavel, S.S.V., Soutry, E., With, G.D., Loos, J.: Nano Lett. 9, 507 (2009)

    Google Scholar 

  1786. Jo, J., Kim, S.-S., Na, S.-I., Yu, B.-K., Kim, D.-Y.: Adv. Funct. Mater. 19, 866 (2009)

    Article  Google Scholar 

  1787. Jo, J., Na, S.-I., Kim, S.-S., Lee, T.-W., Chung, Y., Kang, S.-J., Vak, D., Kim, D.-Y.: Adv. Funct. Mater. 19, 2398 (2009)

    Google Scholar 

  1788. Berson, S., De Bettignies, R., Bailly, S., Guillerez, S.: Adv. Funct. Mater. 17, 1377 (2007)

    Article  Google Scholar 

  1789. Sun, S., Salim, T., Wong, L.H., Foo, Y.L., Boey, F., Lam, Y.M.: J. Mater. Chem. 21, 377 (2011)

    Article  Google Scholar 

  1790. Zhao, Y., Shao, S., Xie, Z., Geng, Y., Wang, L.: J. Phys. Chem. C. 113, 17235 (2009)

    Article  Google Scholar 

  1791. Park, J.H., Kim, J.S., Lee, J.H., Lee, W.H., Cho, K.: J. Phys. Chem. C. 113, 17579 (2009)

    Article  Google Scholar 

  1792. Salim, T., Sun, S., Wong, L.H., Xi, L., Foo, Y.L., Lam, Y.M.: J. Phys. Chem. C. 114, 9459 (2010)

    Article  Google Scholar 

  1793. Lee, J.H., Kim, D.W., Jang, H., Choi, J.K., Geng, J., Jung, J.W., Yoon, S.C., Jung, H.-T.: Small. 5, 2139 (2009)

    Article  Google Scholar 

  1794. Kim, J.S., Park, Y., Lee, D.Y., Lee, J.H., Park, J.H., Kim, J.K., Cho, K.: Adv. Funct. Mater. 20, 540 (2010)

    Google Scholar 

  1795. (a) Wang, H.-S., Lin, L.-H., Chen, S.-Y., Wang, Y.-L.; Wei, K.-H.: Nanotechnol. 20, 075201 (2009); (b) Wang, H.-S., Chen, S.-Y., Su, M.-H., Wangand, Y.-L., Wei, K.-H.: Nanotechnol. 21, 145203 (2010)

    Google Scholar 

  1796. He, X., Gao, F., Tu, G., Hasko, D., Hüttner, S., Steiner, U., Greenham, N.C., Friend, R.H., Huck, W.T.S.: Nano Lett. 10, 1302 (2010)

    Google Scholar 

  1797. Xin, H., Ren, G., Kim, F.S., Jenekhe, S.A.: Chem. Mater. 20, 6199 (2008)

    Article  Google Scholar 

  1798. Xin, H., Kim, F.S., Jenekhe, S.A.: J. Am. Chem. Soc. 130, 5424 (2008)

    Article  Google Scholar 

  1799. Xin, H., Reid, O.G., Ren, G., Kim, F.S., Ginger, D.S., Jenekhe, S.A.: ACS Nano. 4, 1861 (2010)

    Article  Google Scholar 

  1800. Wu, P.-T., Xin, H., Kim, F.S., Ren, G., Jenekhe, S.A.: Macromolecules. 42, 8817 (2009)

    Article  Google Scholar 

  1801. Chen, H.-C., Wu, I.C., Hung, J.-H., Chen, F.-J., Chen, I.W.P., Peng, Y.-K., Lin, C.-S., Chen, C.-H., Sheng, Y.-J., Tsao, H.-K., Chou, P.-T.: Small 7, 1098 (2011)

    Google Scholar 

  1802. Ren, G., Wu, P.-T., Jenekhe, S.A.: ACS Nano. 5, 376 (2011)

    Article  Google Scholar 

  1803. Briseno, A.L., Holcombe, T.W., Boukai, A.I., Garnett, E.C., Shelton, S.W., Fréchet, J.J.M., Yang, P.: Nano Lett. 10, 334 (2010)

    Google Scholar 

  1804. Wang, H.-S., Chen, S.-Y., Wang, Y.-L., Wei, K.-H.: J. Nanosci. Nanotechnol. 11, 3229 (2011)

    Google Scholar 

  1805. Ravirajan, P., Haqu, S.A., Durrant, J.R., Poplavskyy, D., Bradley, D.D.C., Nelson, J.: J. Appl. Phys. 95, 1473 (2004)

    Article  Google Scholar 

  1806. Tepavcevic, S., Darling, S.B., Dimitrijevic, N.M., Rajh, T., Sibner, S.J.: Small 5, 1776 (2009)

    Google Scholar 

  1807. Mor, G.K., Kim, S., Paulose, M., Varghese, O.K., Shankar, K., Basham, J., Grimes, C.A.: Nano Lett. 9, 4250 (2009)

    Article  Google Scholar 

  1808. Guo, Y., Zhang, Y., Liu, H., Lai, S.-W., Li, Y., Li, Y., Hu, W., Wang, S., Che, C.-M., Zhu, D.: J. Phys. Chem. Lett. 1, 327 (2010)

    Article  Google Scholar 

  1809. Sun, B., Greenham, N.C.: Phys. Chem. Chem. Phys. 3, 3631 (2006)

    Google Scholar 

  1810. Shiu, S.-C., Chao, J.-J., Hung, S.-C., Yeh, C.-L., Lin, C.-F.: Chem. Mater. 22, 3108 (2010)

    Article  Google Scholar 

  1811. Lu, W. Wang, C., Yue, W., Chen, L.: Nanoscale 3, 3631 (2011)

    Google Scholar 

  1812. Tezuka, N., Umeyama, T., Matano, Y., Shishido, T., Yoshida, K., Ogawa, T., Isoda, S., Stranius, K., Chukharev, V., Tkachenko, N.V., Lemmetyinen, H., Imahori, H.: Energy Environ. Sci. 4, 741(2011)

    Google Scholar 

  1813. Xia, Y., Ouyang, J.: PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with coslovents and their application in polymer photovoltaic cells. J. Mater. Chem. 21, 4927 (2011)

    Article  Google Scholar 

  1814. Ritter, S.K.: Decked-out thiophene adds versatility to semiconducting polymers. Chem. Eng. News. 94(23), 10 (2016)

    Google Scholar 

  1815. Yoo, D., Kim, J., Kim, J.H.: Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)(PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7(5), 717–730 (2014)

    Article  Google Scholar 

  1816. Zhou, M., Chi, M., Luo, J., He, H., Jin, T.: J. Power Sources. 196, 4427 (2011)

    Article  Google Scholar 

  1817. Qiao, Y., Li, C.M., Boa, S.-J., Boa, Q.-L.: J. Power Sources. 170, 79 (2007)

    Article  Google Scholar 

  1818. Zou, Y., Xiang, C., Yang, L., Sun, L.-X., Xu, F., Cao, Z.: Int. J. Hydrogen Energy 33, 4856(2008)

    Google Scholar 

  1819. Ito, T., Mori, T., Kato, M., Uemura, T. Electrochromic device with a reference electrochromic element. US 5073011A, 17 Dec 1991

    Google Scholar 

  1820. Bennett, R.N., Kokonaski, W.K., Hannan, M.J., Boxall, L.G. Electrode for display devices, US 5446577 A, 29 Aug 1995

    Google Scholar 

  1821. Baranowski, H.-P., Knoblauch, W.: Steam sterilizing apparatus, US 3884636 A, 20 May 1975

    Google Scholar 

  1822. Castellion, G. Electrochromic (ec) mirror which rapidly changes reflectivity, US 380732 A, 30 Apr 1974

    Google Scholar 

  1823. Baucke, F.G.K., Drause, D., Metz, B., Paquet, V., Zauner, J. Electrochromic mirrors, US 4465339 A, 14 Aug 1984

    Google Scholar 

  1824. Beall, G.H., Fehlner, F.P. Electrochromic devices including a mica layer electrolyte, US 4416517 A, 22 Nov 1983

    Google Scholar 

  1825. Yang, S.C., Hwang, J.-H. Solid electrolytes for conducting polymer-based color switchable windows for electronic display services. USA 5253100 A, 12 Oct 1993

    Google Scholar 

  1826. Yang, S.C., Durand R.R., Jr. Electronic display element. US 4586792 A, 6 May 1986

    Google Scholar 

  1827. Yang, S.C., Durand, R.R.Jr.: Variable color transparent panels. US 4749260 A, 6 June 1988

    Google Scholar 

  1828. Kobayashi, T.; Yonegama, H., Tamura, H.: J. Electroanal. Chem. 161, 419 (1984)

    Google Scholar 

  1829. Foot, P.J.S., Simon, R.: J. Phys. D. Appl. Phys. 22, 1598 (1989)

    Article  Google Scholar 

  1830. (a) Akhtar, M., Weakliem, H.A., Paiste, R.M., Gaughan, K.: Synth. Met. 26, 203 (1988); (b) Ram, M.K., Maccioni, E., Nicolini, C.: Thin Solid Films 303, 27 (1997)

    Google Scholar 

  1831. Yoshida, T., Okabayaski, K., Asaoka, T., Katsushi, A.: Electrochem. Soc. Extended Abstracts. 86, 552 (1988)

    Google Scholar 

  1832. Asaoka, T., Okabayashi, K., Abe, T., Yoshida, T.: 40th ISE Meeting (Kyoto), Extended Abstracts, I, 245–246 (1989)

    Google Scholar 

  1833. Kim, E., Lee, K., Rhee, S.B.: J. Elecrochem. Soc. 144, 227 (1997)

    Article  Google Scholar 

  1834. Leventis, N., Chung, Y.C. Complementary surface confined polymer electrochromic materials, systems, and methods of fawbrication therefor. US 5457564 A, 10 Oct 1995

    Google Scholar 

  1835. Ho, K.-C. Solid-state electrochromic device with proton-conducting polymer electrolyte and Prussian blue counterelectrode. US 5215821 A, 1 June 1993

    Google Scholar 

  1836. Coleman, J.P. Electrochromic materials and displays. US 5413739 A, 9 May 1995

    Google Scholar 

  1837. Uemachi, H., Sotomura, T., Takeyama, K., Koshida, N. Reversible electrochemical electrode. US 5413883 A, 9 May 1995

    Google Scholar 

  1838. Jin, S.-J. Kang, S.-W. Soluble conductive polymer manufacturing method thereof and display device employing the same. US 5616669 A, 1Apr 1997

    Google Scholar 

  1839. Wudl, F., Heeger, A., Kobayashi, M. Polymer having isothianaphthene structure and electrochromic display. US 4772940 A, 20 Sept 1988

    Google Scholar 

  1840. Ishikawa, M. et al. Electrochromic display device capable of display in plural colors. US 4983957 A, 8 Jan 1991

    Google Scholar 

  1841. Corradini, A., Marinangeli, A.M., Mastragostino, M.: Electrochimica Acta. 35, 1757 (1990)

    Article  Google Scholar 

  1842. Arbizzani, C., Mastragostino, M., Passerini, S., et al.: Electrochimica Acta 36, 837 (1991)

    Google Scholar 

  1843. Wolf, J. F. Meller: G. G., Shacklet, L., Elsenbaumer, R.L., Baughman, R.H.: Adjustable tint window with electrochromic conductivev polymer. US 5042923 A, 27 Aug 1991

    Google Scholar 

  1844. Chandrasekhar, P.: Flexible electrochromic window materials based on poly(Diphenyl Amine) and related conducting polymers, Final Technical Report, Gront No. DE-FG05-93ER81631 for the U.S. Department of Energy, Oak Ridge/Washington, DC (1998)

    Google Scholar 

  1845. (a) Chandrasekhar, P.: Complimentary polymer electrochromic device. US 20130120821 A1. 16 May 2013; (b) Chandrasekhar, P.: Method and apparatus for control of electrhromic devices. US 8902486 B1. 2 Dec 2014; (c) Chandreskhar, P.: Elecrochromic display device. US 5995273 A. 30 Nov 1999; (d) Chandrasekhar, P. Electrolytes. US 6033592 A. 7 Mar 2000; (e) Chandrasekhar, P.: Elechrochromic display device. CA 2321894 A1. 2 Sept 1999

    Google Scholar 

  1846. (a) MA, C., Taya, M., Xu, C.: Electrochimica Acta 54, 598–605 (2008); (b) Ma, C., Taya, M., Xu, C.: Plym. Eng. Sci. 48, 2224–2228 (2008)

    Google Scholar 

  1847. (a) Welsh, D.M., Kumar, A., Meijer, E.W., Reynolds, J.R.: Adv. Mater. 11, 1379–1382 (1999); (b) Amb, C.M., Kerszulis, J.A., Thompson, E.J., Dyer, A.L., Reynolds, J.R.: Polymer Chem. 2(4), 812–814 (2011); (c) Shen, D.E., Abboud, K.A., Reynolds, J.R.: J. Macromolec. Sci. Part A Pure Appl. Chem. 47(1), 6–11. (2010)

    Google Scholar 

  1848. Daehler, M. Infrared display device. US 4724356 A, 9 Feb 1988

    Google Scholar 

  1849. Chandrasekhar, P., Dooley: FAR-IR transparency and dynamic infrared signature control with novel conducting polymer systems. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 169. SPIE-The International Society for Optical Engineering, Bellingham (1995.) and references therein

    Chapter  Google Scholar 

  1850. Chandrasekhar, P. Conducting polymer based actively IR modulating electrochromics, Monthly Report Numbers 1-7 towards Contract No. F29601-98-C-0142 for Kirtland Airforce Base, New Mexico, 1998

    Google Scholar 

  1851. Chandrasekhar, P.: Proceedings of the DARPA active Polymers Workshop hosted by the Institute for Defense Analyses, Baltimore, p. C6–C1 1996

    Google Scholar 

  1852. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Friend, R.H., Burn, P.L., Holmes, A.B.: Nature. 347, 539 (1990)

    Article  Google Scholar 

  1853. Nanotechnology lessons from a defect-tolerant computer. Chem. Eng. News 76(24), 24 (1998)

    Google Scholar 

  1854. Pope, M., Kallmann, H., Magnante, P.: J. Chem. Phys. 38, 2042 (1963)

    Article  Google Scholar 

  1855. Helfrich, W., Schneider, W.G.: Phys. Rev. Lett. 14, 229 (1965)

    Article  Google Scholar 

  1856. Helfrich, W., Schneider, W.G.: J. Chem. Phys. 44, 2902 (1966)

    Article  Google Scholar 

  1857. Lohmann, F., Mehl, W.: J. Chem. Phys. 50, 500 (1969)

    Article  Google Scholar 

  1858. Gonzalez Basurto, J., Burshtein, Z.: Mol. Cryst. Liq Cryst. 31, 211 (1975)

    Article  Google Scholar 

  1859. Kojima, H., Ozawa, A., Takashi, T., Nagaoka, M., Homma, T., Nagatomo, T., Omoto, O.: J. Electrochem. Soc. 144, 3628 (1997)

    Article  Google Scholar 

  1860. Dagani, R.: Simpler method for organic pixel patterning. Chem. Eng. News. 75(18), 56–57 (1997)

    Article  Google Scholar 

  1861. Tremblay, J.-F.: The rise of OLED displays. Chem. Eng. News. 94(28), 30–34 (2016)

    Google Scholar 

  1862. Granström, M., Berggren, M., Inganäs, O.: Micrometer-and nanometer-sized polymeric light-emitting diodes. Science. 267, 1479–1481 (1995)

    Article  Google Scholar 

  1863. Granström, M., Berggren, M., Inganäs, O.: Polymeric light-emitting diodes of submicron size – Structures and developments. Synth. Met. 76, 141–143 (1996)

    Article  Google Scholar 

  1864. Boroumand, F.A., Fry, P.W., Lidzey, D.G.: Nanoscale conjugated-polymer light-emitting diodes. Nano Lett. 5, 67–71 (2005)

    Article  Google Scholar 

  1865. Grimsdale, A.C., Chan, K.L., Martin, R.E., Jokisz, P.G., Holmes, A.B.: Synthesis of light- emitting conjugated polymers for applications in electro-luminescent devices. Chem. Rev. 109, 897–1091 (2009)

    Article  Google Scholar 

  1866. Kim, B.H., Park, D.H., Joo, J., Yu, S.G., Lee, S.H.: Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylenedioxy-thiophene) nanotubes and nanowires. Synth. Met. 150, 279–284 (2005)

    Article  Google Scholar 

  1867. Wang, C.W., Wang, Z., Li, M.K., Li, H.L.: Well-aligned polyaniline nano-fibril array membrane and its field emission property. Chem. Phys. Lett. 341, 431–434 (2001)

    Article  Google Scholar 

  1868. Kim, B.H., Kim, M.S., Park, K.T., Lee, J.K., Park, D.H., Joo, J., Yu, S.G., Lee, S.H.: Characteristics and field emission of conducting poly(3,4-ethylenedioxythiophene) nanowires. Appl. Phys. Lett. 83, 539–541 (2003)

    Article  Google Scholar 

  1869. Yan, H.L., Zhang, L., Shen, J.Y., Chen, Z.J., Shi, G.Q., Zhang, B.L.: Synthesis, property and field-emission behavior of amorphous polypyrrole nanowires. Nanotechnol. 17, 3446–3450 (2006)

    Article  Google Scholar 

  1870. Burn, P.L., Holmes, A.B., Kraft, A., Brown, A.R., Bradley, D.D.C., Friend, R.H.: Light-emitting diodes based on conjugated polymers: control of colour and efficiency. In: Chiang, L.Y., Garito, A.F., Sandman, D.J. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 247, p. 647. Materials Research Society, Pittsburgh (1992)

    Google Scholar 

  1871. (a) Braun, D., Heeger, A.J.: Appl Phys. Lett. 58, 1982 (1991); (b) Braun, D., Heeger, A.J.: Appl. Phys. Lett. 59, 878 (1991)

    Google Scholar 

  1872. Garten, F., Vrijmoeth, J., Schlatmann, A.R., Gill, R.E., Klapwijk, T.M., Hadziioannou, G. Synth. Met. 76, 85 (1996), and references therein

    Google Scholar 

  1873. AlSalhi, M.S., Alam, J., Dass, L.A., Raja, M.: Recent advances in conjugated polymers for light emitting devices. Int. J. Mol. Sci. 12, 2036–2054 (2011)

    Article  Google Scholar 

  1874. Burn, P.L., Bradley, D.D.C., Friend, R.H., Halliday, D.A., Holmes, A.B., Jackson, R.W., Kraft, A.M.: J. Chem. Soc. Perkin Trans. 1, 3225 (1992)

    Article  Google Scholar 

  1875. Brown, A.R., Burroughes, J.H., Greenham, N., Friend, R.H., Bradley, D.D.C., Burn, P.L., Kraft, A., Holmes, A.B.: Appl. Phys. Lett. 61, 2793 (1992)

    Article  Google Scholar 

  1876. Burn, P., Holmes, A.B., Kraft, A., Brown, A.R., Bradley, D.D.C., Friend, R.H.: Mat. Res. Soc. Proc. 247, 647 (1992)

    Google Scholar 

  1877. Moratti, S.C., Bradley, D.C., Friend, R.H., Greenhan, N.C., Holmes, A.B.: Molecularly engineered polymer LEDs. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 371. Materials Research Society, Pittsubrgh (1994)

    Google Scholar 

  1878. Antoniadis, H., Abkowitz, M., Hsieh, B.R., Jenehe, S.A., Stolka, M.: Space-charge-limited charge injextion from ito/ppv into a trap-free molecularly doped polymer. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrial, optical, and magnetic properties of organic solid state materials, vol. 328, p. 377. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1879. Brown, A.R., Burroughes, J.H., Greenham, N., Friend, R.H., Bradley, D.D.C., Burn, P.L., Kraft, A., Holmes, A.B.: Appl. Phys. Lett. 61, 2793 (1992)

    Article  Google Scholar 

  1880. Uchiyama, K., Akimichi, H., Hotta, S., Noge, H., Sakaki, H.: Light-emitting diodes using semiconducting oligothiophenes. In: Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R. (eds.) Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 389. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1881. Zyung, T., Kang, I.-N., Hwang, D.-H., Shim, H.-K.: Obersvation of new wavelength electroluminescence from multilayer structure device using poly(P-Phenylenevinylene) derivative. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 89. The International Society for Optical Engineering, Bellingham (1995)

    Chapter  Google Scholar 

  1882. Baigent, D.R., May, P.G., Friend, R.H.: Synth. Met. 76, 149 (1996)

    Article  Google Scholar 

  1883. Östergård, T., Paloheimo, J., Pal, A.J., Stubb, H.: Synth. Met. 88, 171 (1997)

    Article  Google Scholar 

  1884. Burn, P.L., Holmes, A.B., Kraft, A., Bradley, D.D.C., Brown, A.R., Friend, R.H., Gymer, R.W.: Nature 356, 47 (1992)

    Google Scholar 

  1885. Berggren, M., Inganäs, O., Gustafsson, G., Andersson, M.R., Hjertberg, T., Wennerström, O.: Synth. Met. 71, 2185 (1995)

    Article  Google Scholar 

  1886. Inganäs, O., Berggren, M., Andersson, M.R., Gustafsson, G., Hjertberg, T., Wennerström, O., Dyreklev, P., Granström, M.: Synth. Met. 71, 2121 (1995)

    Article  Google Scholar 

  1887. Baigent, D.R., Hamer, P.J., Friend, R.H., Moratti, S.C., Holmes, A.B.: Synth. Met. 71, 2175 (1995)

    Article  Google Scholar 

  1888. Yin, S. Peng, J. Li, C. Huang, W. Liu, X., Li, W., He, B.: Synth. Met. 93, 193 (1998)

    Google Scholar 

  1889. Chem. Eng. News 73(17), 35 (1995)

    Google Scholar 

  1890. MacDiarmid, A.G., Wang, H.-L., Park, J.-W., Fu, D.-K., Marsella, M.J., Swager, T.M., Wang, Y., Gebler, D.D., Epstein, A.J.: Novel light emitting diodes involving heterocyclic aromatic conjugated polyersm. In: Yang, S.C., Chandrasekhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 2. SPIE-The International Society for Optical Engineering, Bellingham (1995.) and references therein

    Chapter  Google Scholar 

  1891. Onoda, M., MacDiarmid, AG.: Synth. Met. 91, 307 (1997)

    Google Scholar 

  1892. Wang, Y.Z., Gebler, D.D., Lin, L.B., Blatchford, J.W., Jessen, S.W., Wang, H.L., Epstein, A.J.: Appl. Phys. Lett. 68, 894 (1996)

    Article  Google Scholar 

  1893. Wang, Y.Z., Gebler, D.D., Fu, D.K., Swager, T.M., MacDiarmid, A.G., Epstein, A.J.: Synth. Met. 85, 1179 (1997)

    Article  Google Scholar 

  1894. (a) Ohmori, Y., Uchida, M., Muro, K., Yoshino, K.: Solid State Commun. 80, 605 (1991), (b) Braun, D., Gustaffson, G., McBranch, D., Heeger, A.J.: J. Apply. Phys. 72, 564 (1992)

    Google Scholar 

  1895. Greenham, N.C., Brown, A.R., Bradley, D.D.C., Friend, R.H.: Synth. Met. 55–57, 4134 (1993)

    Article  Google Scholar 

  1896. Grem, G., Leditzky, G., Ulrich, B., Leising, G.: Adv. Mater. 4, 36 (1992)

    Article  Google Scholar 

  1897. Leising, G., Tasch, S., Brandstätter, C., Graupner, W., Hampel, S., List, E.J.W., Meghdadi, F., Zenz, C., Schlichting, P., Rohr, U., Geerts, Y., Scherf, U., Müllen, K.: Synth. Met. 91, 41 (1997)

    Article  Google Scholar 

  1898. Jiang, X.Z., Liu, Y.Q., Song, X.Q., Zhu, D.B.: Synth. Met. 91, 311 (1997)

    Article  Google Scholar 

  1899. Sun, R., Masuda, T., Kobayashi, T.: Synth. Met. 91, 301 (1997)

    Article  Google Scholar 

  1900. Chen, S.-A., Chuang, K.-R., Chao, C.-I., Lee, S.-T.: Synth. Met. 82, 207 (1996)

    Article  Google Scholar 

  1901. Epstein, A.J., Wang, Y.Z., Jessen, S.W., Blatchford, J.W., Gebler, D.D., Lin, L.B., Gustafson, T.L., Swager, T.M., MacDiarmid, A.G.: Poltm. Prepr. 37, 133 (1996)

    Google Scholar 

  1902. Dagani, R.: Polarized light-emitting diode based on polymer. Chem. Eng. News. 73(4), 28–29 (1995)

    Article  Google Scholar 

  1903. Granström, M., Berggren, M., Inganäs, O.: Synth. Met. 76, 141 (1996)

    Article  Google Scholar 

  1904. Faraggi, E.Z., Davidov, D., Cohen, G., Noach, S., Golosovsky, M., Avny, Y., Neumann, R., Lewis, A.: Synth. Met. 85, 1187 (1997)

    Article  Google Scholar 

  1905. McGehee, M.D., Vacar, D., Lemmer, U., Moses, D., Heeger, A.J.: Synth. Met. 85, 1233 (1997)

    Article  Google Scholar 

  1906. DuPont: Dupont displays opens OLED materials scale-up facility for next generation TVs. http://www.dupont.com/products-and-services/display-lighting-materials/oled-organic-light-emitting-diodes/press-releases/20150929-dupont-opens-oled-scale-up-facility.html. Accessed Sept 2016

  1907. DuPont: OLED materials and solution process technology for advanced displays and lighting. http://www.dupont.com/products-and-services/display-lighting-materials/oled-organic-light-emitting-diodes.html. Accessed Sept 2016

  1908. DuPont: DuPont displays and Kateeva collaborate to optimize inkjet printing for mass production of OLED TVs. http://www.dupont.com/products-and-services/display-lighting-materials/oled-organic-light-emitting-diodes/press-releases/20150601-dupont-displays-kateeva-collaborate.html. Accessed Sept 2016

  1909. Liedenbaum, C., Croonen, Y., van de Weijer, P., Vleggaar, J., Schoo, H.: Synth. Met. 91, 109 (1997)

    Article  Google Scholar 

  1910. Fukuda, T., Kanbara, T., Yamamoto, T., Ishikawa, K., Takezoe, H., Fukuda, A.: Synth. Met. 85, 1195 (1997)

    Article  Google Scholar 

  1911. Osaka, T., Komaba, S., Fujihana, K., Okamoto, N., Momma, T., Kaneko, N.: J. Electrochem. Soc. 144, 742 (1997)

    Article  Google Scholar 

  1912. Lidzey, D.G., Pate, M.A., Weaver, M.S., Fisher, T.A., Bradley, D.D.C.: Synth. Met. 82, 141 (1996)

    Article  Google Scholar 

  1913. Dagani, R.: Light-emitting polymer synthesis: versatile new route makes potentially important materials available for R&D. Chem. Eng. News. 76(3), 9–10 (1998)

    Article  Google Scholar 

  1914. Brütting, W., Meier, M., Herold, M., Karg, S., Schwoerer, M.: Synth. Met. 91, 163 (1997)

    Article  Google Scholar 

  1915. Greenwald, Y., Hide, F., Heeger, A.J.: J. Electrochem. Soc. 144, L241 (1997)

    Article  Google Scholar 

  1916. Weder, C., Sarwa, C., Montali, A., Bastiaansen, C., Smith, P.: Science. 279, 835 (1998)

    Article  Google Scholar 

  1917. Montali, A., Bastiaansen, C., Smith, P., Weder, C.: Nature. 392, 261 (1998)

    Article  Google Scholar 

  1918. Xia, Y., Sun, K., Ouyang, J.: Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 24, 2436–2440 (2012)

    Article  Google Scholar 

  1919. Vosgueritchian, M., Lipomi, D.J., Bao, Z.: Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012)

    Article  Google Scholar 

  1920. Wang, Y., Jing, X.: Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 16, 344–351 (2005)

    Article  Google Scholar 

  1921. Colaneri, N.F., Schlette, L.W.: EMI shielding measurements of conductive polymer blends. IEEE Trans. Instrum. Meas. 41, 291 (1992)

    Article  Google Scholar 

  1922. Shacklette, L.W., Colaneri, N.F., Kulkarni, V.G., Wessling, B.: EMI shielding of intrinsically conductive polymers. J. Vinyl Technol. 14, 118 (1992)

    Article  Google Scholar 

  1923. Chandrasekhar, P., Naishadham, K.: Broadband microwave absorption and shielding properties of a poly(aniline). Synth. Met. 105, 115 (1999)

    Article  Google Scholar 

  1924. Trivedi, D.C., Dhawan, S.K.: Shielding of electromagnetic interference using polyaniline. Synth. Met. 59, 267 (1993)

    Article  Google Scholar 

  1925. Mäkelä, T., Pienimaa, S., Taka, T., Jussila, S., Isotalo, H.: Thin polyaniline films in EMI shielding. Synth. Met. 85, 1335 (1997)

    Article  Google Scholar 

  1926. Wojkiewicz, J.L., Fauveaux, S., Miane, J.L.: Electromagnetic shielding properties of polyaniline composites. Synth. Met. 135–136, 127 (2003)

    Article  Google Scholar 

  1927. Kim, S. H.; Jang, S. H.; Byun, S. W.; Lee, J. Y.; Joo, J. S.; Jeong, S.H.;Park, M. J., Electrical properties and EMI shielding characteristics of polypyrrole-nylon 6 composite fabrics, J. Appl. Polym. Sci., 2003, 87,1969.

    Google Scholar 

  1928. Chandrasekhar, P. (Ashwin-Ushas Corp. Inc.), Final Reports towards U.S. Contract Nos.: N00024-91-C-4045 (Naval Sea Systems Divn.), DAAH01-92-C-R120, DAAH-01-91-C-R151, DAAH01-90-C-0556 (DARPA), NAS3-25889 (NASA), MML-TSC-93-05 (Lockheed Martin), N00014-95-C-0069, N00014-96-C-0229 (Office of Naval Research), DEFG05-93ER81631 (Dept. of Energy)

    Google Scholar 

  1929. Mäkelä, T., Pienimaa, S., Taka, T., Jussila, S., Isotalo, H.: Synth. Met. 85, 1335 (1997)

    Article  Google Scholar 

  1930. Naarman, H.: Correlations between active agents and electrically conducting polymers. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) science and applications of conducting polymers, p. 81. Adam Hilger, New York (1991)

    Google Scholar 

  1931. Kurachi, I.; Ezure, H. JP 09111128. 28 Apr 1997

    Google Scholar 

  1932. Amada, H., Ishikawa, T., Misuishi, M., Inoe, T., Suezaki, M. JP 08288190. 1 Nov 1996

    Google Scholar 

  1933. De Winter, W., Agfa, N.V.: Aqueous application technology of conductive layers for photographic materials. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 179. Adam Hilger, New York (1991)

    Google Scholar 

  1934. Wang, Z.H., Javadi, H.H.S., Ray, A., MacDiarmid, A.G., Epstein, A.J.: Phys. Rev. B. 42, 5411 (1990)

    Article  Google Scholar 

  1935. Epstein, A.J., Joo, J., Wu, C.-Y., Benatar, A., Faisst Jr., C.F., Zegarski, J., MacDiarmid, A.G.: Polyanilines: recent advances in processing and applications to welding of plastics. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 165. Kluwer Academic Publishers, Boston (1993.) and references therein

    Chapter  Google Scholar 

  1936. Brupbacher, J.: Lockheed Martin Corp., Private Commun. 1987

    Google Scholar 

  1937. Rose, T.L., D’Antonio, S., Jillson, M.H., Kron, A.B., Suresh, R., Wang, F.: Synth. Met. 85, 1439 (1997)

    Article  Google Scholar 

  1938. Reisch, M.S.: Fitness clothing gets smart: Textile technology combines with flexiblmagasee electronic sensors at IDTechEx Conference. Chem. Eng. News. 93(48), 28–29 (2015)

    Article  Google Scholar 

  1939. Kuhn, H.H.: Characterization and application of polypyrrole-coated textiles. In: Aldissi, M. (ed.) Intrinsically conducting polymers: an emerging technology, p. 25. Kluwer Academic Publishers, Boston (1993)

    Chapter  Google Scholar 

  1940. Kuhn, H.H., Child, A.D., Kimbrell, W.C.: Synth. Met. 71, 2139 (1995), and references therein

    Google Scholar 

  1941. Segawa, H., Kunimoto, K., Nakamoto, A. Shimidzu, T.: J. Chem. Soc. Perkin Trans. 1, 939 (1992)

    Google Scholar 

  1942. Jousse, F. Microwave properties of conductive honeycombs. In: Evolving technologies for the competitive edge; Int. SAMPE Symp. Exhib. Book2, p. 1552–1558 (1997)

    Google Scholar 

  1943. Stenger-Smith, J D., Zarras, P., Miles, M.H., Hollins, R.A., Chafin, A.P., Lindsay, G.A.: Optical and electronic materials for naval aviation. In: evolving technologies for the competitive edge; Int. SAMPE Sym. Exhib. Book 1, Issue 42, p. 652–66 (1997)

    Google Scholar 

  1944. Gerard, S., Klimek, W.: Proceedings of the smoke/obscurants symposium XV, vol. I. Chemical Research, Development & Engineering Center, Aberdeen (1991)

    Google Scholar 

  1945. Jenkins, L., Mattson, G., Clausen, C.A., Morgan, P.W.: The Evaluation of conductive polymer filaments for use as an obscurant. In: Proceedings of the smoke/obscurants symposium XV, vol. 1, p. 109. Chemical Research Development & Engineering Center, Aberdeen (1991)

    Google Scholar 

  1946. Staicovici, S., Wu, C.-Y., Benatar, A.: Proc. 55 th Annu. Tech. Conf.-Soc. Plast. Eng. 1, 1140 (1997)

    Google Scholar 

  1947. Yamamoto, K., Murashima, M.: JP 09241588. 16 Sept 1997

    Google Scholar 

  1948. Stegeman, G.I., Zanoni, R., Seaton, C.T.: Nonlinear organic materials in integrated opticcs structures. In: Heeger, A.J., Orenstein, J., Ulrich, D.R. (eds.) Materials research society symposium proceedings, vol. 109, p. 53. Nonlinear Optical Properties of Polymers, Materials Research Society, Pittsburgh (1988)

    Google Scholar 

  1949. DeMartino, R., Haas, D., Khanarian, G., Leslie, T., Man, H.T., Riggs, J., Sansone, M., Stamatoff, J., Teng, C., Yoon, H.: Nonlinear optical polymers for electrooptical devices. In: Heeger, A.J., Orenstein, J., Ulrich, D.R. (eds.) Materials research society symposium proceedings, vol. 109, p. 65. Nonlinear Optical Properties of Polymers, Materials Research Society, Pittsburgh (1988)

    Google Scholar 

  1950. (a) Thakur, M., Krol, D.M.: Appl. Phys. Lett. 56, 1406 (1990); (b) Rochford, K.B., Zanoni, R., Gong, Q., Stegeman, G.I.: Appl. Phys. Lett. 55, 1161 (1989); (c) Patel, J.S., Lee, S.-D., Baker, G.L., Shelburne, J.A. III, Appl. Phys. Lett. 56, 131 (1990); (d) Mann, S., Oldroyd, A.R., Bloor, D., Ando, D.J., Wells, P.J.: Proc. SPIE 971, 245 (1988); (e) Drake, A.F., Udvarhelyi, P., Ando, D.J., Bloor, D., Obhi, J.S., Mann, S.: Polym. 30, 1063 (1989); (f) Oldroyd, A.R., Mann, S., McCallion, K.J.: Electr. Lett. 25, 1476 (1989); (g) Driemeier, W., Brockmeyer, A.: Appl. Opt. 25, 2960 (1986)

    Google Scholar 

  1951. Svatinova, I., Tonchev, S., Todorov, R., Venkova, E., Liarokapis, E., Anastassakis, E.: J. Appl. Phys. 67, 2051 (1990)

    Article  Google Scholar 

  1952. Bloor, D.: Conjugated and non-conjugated polymers in integrated optics. In: Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (eds.) Science and applications of conducting polymers, p. 23. Adam Hilger, New York (1991)

    Google Scholar 

  1953. Kushner, B.G., Neff, J.A.: Nonlinear optical materials & DoD device requirements. In: Heeger, A.J., Orenstein, J., Ulrich, D.R. (eds.) Nonlinear optical properties of polymers, vol. 109, p. 3. Materials Research Society, Pittsburgh (1988)

    Google Scholar 

  1954. Sasaki, K., Fuii, K., Tomioka, T., Kinoshika, T.: J. Opt. Soc. Am. B5, 457 (1988)

    Article  Google Scholar 

  1955. Thankur, M., Verbeek, B., Chi, G.C., O’Brien, K.J.: Some fundamental aspects of the thin film organization and device-structure fabrication of polydiacetylines. In: Heeger, A.J., Orenstein, J., Ulrich, D.R. (eds.) Nonlinear optical properties of polymers, vol. 109, p. 41. Materials Research Society, Pittsburgh (1998)

    Google Scholar 

  1956. Etemad, S., Fann, W.-F., Townsend, P.D., Baker, G.L., Jackel, J.: In: Bredas, J.L., Chance, R.R. (eds.) Conjugated polymeric materials, p. 341. Kluwer Academic Publ., Dordrecht (1990)

    Google Scholar 

  1957. Baker, G.L., Klausner, C.F., Shelburne III, J.A., Schlotter, N.E., Jackel, J.L., Townsend, P.D., Etemad, S.: Synth. Met. 28, D639 (1989)

    Article  Google Scholar 

  1958. Townsend, P.D., Baker, G.L., Schlotter, N.E., Etemad, S.: Synth. Met. 28, D633 (1989)

    Article  Google Scholar 

  1959. Halvorson, C., Heeger, A.J.: Synth. Met. 71, 1649 (1995)

    Article  Google Scholar 

  1960. Inganas, O., Lundstrom, I.: J. Electrochem. Soc. 131, 1129 (1984)

    Article  Google Scholar 

  1961. Chandrasekhar, P.: Polymers for activated laser switching. In: Arshady, R. (ed.) Desk reference of functional polymers: syntheses and applications, p. 529, American Chemical Society, Washington, DC (1997)

    Google Scholar 

  1962. Tessler, N., Denton, G.J., Friend, R.H.: Nature. 382, 695 (1996)

    Article  Google Scholar 

  1963. Tessler, N., Denton, G.J., Friend, R.H.: Synth. Met. 84, 475 (1997)

    Article  Google Scholar 

  1964. Dagani, R.: Semiconducting polymers: thin films show laser potential. Chem. Eng. News. 74(36), 4 (1996)

    Article  Google Scholar 

  1965. Díaz-García, M.A., Hide, F., Schwartz, B.J., Anderson, M.R., Pei, Q., Heeger, A.J.: Synth. Met. 84, 455 (1997)

    Article  Google Scholar 

  1966. Messier, J. (ed.) In: NATO ASI Series, vol. 162 (1989)

    Google Scholar 

  1967. Forrest, S.R., Burrows, P.E., Haskal, E.I., Zhang, Y.: Optoelectronic and strutural properties of vacuum-deposited crystalline organic thin films. In: Electrical, optical, and magnetic properties of organic solid state materials, vol. 328, p. 37. Materials Research Society, Pittsburgh (1994)

    Google Scholar 

  1968. Thakur, M., Verbeek, B., Chi, G.C., O’Brien, K.J.: In: Heeger, A.J., Orenstein, J., Ulrich, D.R. (eds.) Nonlinear Optical Properties of Polymers, vol. 109, p. 48. Materials Research Society, Pittsburgh, Pennsylvania, USA (1998)

    Google Scholar 

  1969. Otero, T.F., de Larreta-Azelain, E., Tejada, R.: Makromol. Chem. Makromol. Symp. 20(21), 615 (1988)

    Google Scholar 

  1970. Otero, T.F., de Larreta-Azelain, E.: Synth. Met. 26, 79 (1988)

    Google Scholar 

  1971. Otero, T.F., Angulo, E., Rodríguez, J., Santamaría, C.: J. Electroanal. Chem. 341, 369 (1992)

    Article  Google Scholar 

  1972. Otero, T.F., Rodríguez, J., Angulo, E., Santamaría, C.: Synth. Met. 55–57, 3713 (1993)

    Article  Google Scholar 

  1973. Product Literature for “Versicon”. Allied-signal Inc., Morristown

    Google Scholar 

  1974. Barbero, C., Kötz, R.: J. Electrochem. Soc. 141, 859 (1994)

    Article  Google Scholar 

  1975. Otero, T.F., Sansinena, J.M.: Bioelectroche. Bioenerg. 42, 117 (1997), and references therein

    Google Scholar 

  1976. Baughman, R.H. In: Proceedings of the DARPA active polymers workshop hosted by the Institute for Defense Analyses, Baltimore, Maryland, USA, p. D2 (1996)

    Google Scholar 

  1977. Smela, Inganas, Lundstrom: Science (1995)

    Google Scholar 

  1978. Shahinpoor, M. In: Proceedings of the DARPA active polymers workshop hosted by the Institute for Defense Analyses, Baltimore, Maryland, USA, p. D7 (1996

    Google Scholar 

  1979. Electroactive Polymers and Devices, DARPA (USA) Broad Agency Announcement No. 98-06 (April 15, 1998)

    Google Scholar 

  1980. Okuzaki, H., Kuwaraba, T., Kunugi, T.: Polym. 38, 5491 (1997)

    Article  Google Scholar 

  1981. Pei, Q., Inganäs, O.: Synth. Met. 55–57, 330 (1993)

    Google Scholar 

  1982. Okamoto, T., Kato, Y., Tada, K., Onoda, M.: Actuator based on doping/undoping-induced volume change in anisotropic polypyrrole film. Thin Solid Films. 393, 383–387 (2001)

    Article  Google Scholar 

  1983. Otero, T.F., Cortes, M.T.: Artificial muscle: movement and position control. Chem. Commun. 284–285 (2004)

    Google Scholar 

  1984. Chandrasekhar, P. Corrosion prevention coatings based on soluble conducting polymers, Final Report, Contract No. F34601-95-C-0542 for Tinker Air Force Base, Oklahoma

    Google Scholar 

  1985. Ahmad, J., MacDiarmid, A.G.: Synth. Met. 78, 103 (1996)

    Article  Google Scholar 

  1986. (a) MacDiarmid, A.G., Ahmad, N.: Prevention of corrosion with polyaniline. US 5645890 A. 8 July 1997; (b) Menholi, et al.: J. Appl. Poly. Sci. 28, 1125 (1983)

    Google Scholar 

  1987. (a) McAndrew, T.P., Gilicinski, A.G., Robeson, L.M.: Protecting carbon steel form corrosion with nonconducting poly(aniline). US 5441772 A, 15 Aug 1995, and references therein; (b) Huang, F.C., et al.: Polym. Mater. Sci. Eng. 61, 895 (1989)

    Google Scholar 

  1988. Jain, F.C., Rosato, J.J., Kalonia, K.S., Agarwala, V.S.: Corrosion. 42, 700 (1986)

    Article  Google Scholar 

  1989. Jain et al.: Mat. Res. Soc. Symp. Proc. 125, 329 (1988)

    Google Scholar 

  1990. Jain, et al.: Corrosion prevention in metals using layered semi-conductor/insulator structures forming an interfacial electronic barrier. In: Lee, L.H. (ed.) Adhesive, sealants, and coatings for space and harsh environments, pp. 381–405. Plenum Publishing corp., New York (1988)

    Chapter  Google Scholar 

  1991. Wrobleski, D.A. Benicewicz, B.C., Thompson, K.G. Bryan, C.J. Corrosion resistant coating. US 5658649 A, 19 Aug 1997, and references therein

    Google Scholar 

  1992. DeBerry, D.W.: J. Elecrochem. Soc. 1022 (1985)

    Google Scholar 

  1993. Basics of Corrosion Measurements: Application Note Corri, EG&G Princeton Applied Research Corp. (1997)

    Google Scholar 

  1994. Kinlen, P.J., Silverman, D.C., Tokas, E.F., Hardiman, C.J.: Corrosion inhibiting compositions. US 5532025 A, 2 July 1996

    Google Scholar 

  1995. Lu, W.-K., Elsenbaumer, R.L., Wessling, B.: Synth. Met. 71, 2163 (1995)

    Article  Google Scholar 

  1996. Li, P., Tan, T.C., Lee, J.Y.: Synth. Met. 88, 237(1997)

    Google Scholar 

  1997. Fahlman, M., Jasty, S., Epstein, A.J.: Synth. Met. 85, 1323 (1997)

    Article  Google Scholar 

  1998. Racicot, R., Clark, R.L., Liu, H.-B., Yang, S.C., Alias, M.N., Brown, R.: Thin film conductive polymers on aluminum surfaces: interfacial charge-transfer and anti-corrosion aspects. In: Yang, S.C., Chandreskhar, P. (eds.) Optical and photonic applications of electroactive and conducting polymers, vol. 2528, p. 251. SPIE-The International Society for Optical Engineering, Bellingham (1995., and references therein)

    Chapter  Google Scholar 

  1999. Busic, V., Angelopoulos, M., Graham, T.: J. Electrochem. Soc. 144, 436 (1997)

    Article  Google Scholar 

  2000. Zrras, P., Stenger-Smith, J.D., Miles, M.H.: Polym. Mater. Sci. Eng. 76, 589 (1997)

    Google Scholar 

  2001. Guo, B., Glavas, L., Albertsson, A.-C.: Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science. 38, 1263–1286 (2013)

    Article  Google Scholar 

  2002. Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.H., Baharvand, H., Kiani, S., Al-Deyab, S., Ramakrishna, S.: Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J. Tissue Eng. Regen. Med. 5, e17–e35 (2011)

    Article  Google Scholar 

  2003. Bendrea, A.-D., Cianga, L., Cianga, I.: Progress in the filed of conducting Polymers for tissure engineering applications. J. Biomater. Appl. 26, 3 (2011)

    Article  Google Scholar 

  2004. Mawad, D., Stewart, E., Officer, D.L., Romeo, T., Wagner, P., Wagner, K., Wallace, G.G.: A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv. Funct. Mater. 1–8 (2012)

    Google Scholar 

  2005. Hardy, J.G., Lee, J.Y., Schmidt, C.E.: Biomimetic conducting polymer-based tissue scaffolds. Current opinion in biotechnology. 24(5), 847–854 (2013)

    Article  Google Scholar 

  2006. Chen, M.-C., Sun, Y.-C., Chen, Y.-H.: Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Miomaterialia. 9, 5562–5572 (2013)

    Article  Google Scholar 

  2007. Guimard, N.K., Gomez, N., Schmidt, C.E.: Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007)

    Article  Google Scholar 

  2008. Green, R. A.; Lovell, N. H.; Wallace, G. G.; Poole-Warren, L.A., Conducting polymers for neural interfaces: challenges in developing an effective long-term implant, Biomater., 2008, 29, 3393-3399.

    Google Scholar 

  2009. Kang, G., Borgens, R.B., Cho, y.: Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuiri. 27, 6179–6184 (2011)

    Article  Google Scholar 

  2010. Huang, J., Kaner, R.B.: Flash welding of conducting polymer nanofibers. Nat. Mater. 3, 783–786 (2004)

    Article  Google Scholar 

  2011. Abidian, M.R., Kim, D.H., Martin, D.C.: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18, 405–409 (2006)

    Article  Google Scholar 

  2012. Shi, G., Rouabhia, M., Wang, Z., et al.: A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomater. 25, 2477–2488 (2004)

    Article  Google Scholar 

  2013. Huang, L., Hu, J., Lang, L., et al.: Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials. 28, 1741–1751 (2007)

    Article  Google Scholar 

  2014. Ding, C., Wang, Y., Zhang, S.: Synthesis and characterization of degradable electrically conducting copolymer of aniline pentamer and polygycolide. Eur. Polym. J. 43, 4244–4252 (2007)

    Article  Google Scholar 

  2015. Zhang, Q., Yan, Y., Li, S., et al.: The Synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration. Mater. Sci. Eng. C. 30, 160–166 (2010)

    Article  Google Scholar 

  2016. Huang, L., Zhuang, X., Hu, J., et al.: Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules. 9, 850–858 (2008)

    Article  Google Scholar 

  2017. Jiang, X., Marois, Y., Traore, A., et al.: Tissue reaction to polypyrrole-coated polyester fabrics: an in vivio study in rats. Tissue Eng. 8, 634–647 (2002)

    Article  Google Scholar 

  2018. Olayo, R., Rios, C., Salgado-Ceballos, H., et al.: Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma. J. Mater. Sci Mater. Med. 19, 817–826 (2008)

    Article  Google Scholar 

  2019. Zelikin, A.N., Lyn, D.M., Farhadi, J., Martin, I., Shastri, V., Langer, R.: Erodible conducting polymers for potential biomedical applications. Ange. Chem. Int. Ed. 41, 141–144 (2002)

    Article  Google Scholar 

  2020. Liu, Y.D., Hu, J., Zhuang, X.L., Zhang, P.B.A., Wei, Y., Wang, x.H., Chen, X.S.: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol. Biosci. 12, 241–250 (2012)

    Article  Google Scholar 

  2021. Valle, L.J., Aradilla, D., Olver, R., et al.: Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): benefits in the electroactivity of the conducting polymer. Eur. Polym. J. 43, 2342–2349 (2007)

    Article  Google Scholar 

  2022. Luo, S., Ali, E.M., Tansil, N.C., et al.: Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT Films with in vitro, and in vivo biocompatibility. Langmuir. 24, 8071–8077 (2008)

    Article  Google Scholar 

  2023. Richardson-Burns, S.M., Hendricks, J.L., Foster, B.: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiphene) (PEDOT) around living neural cells. Biomater. 28, 1539–1552 (2007)

    Article  Google Scholar 

  2024. Ramanaviciene, A., Kausaite, A., Tautkus, S., Ramanavicius, A.: Biocompatibility of polypyrrole particles: An in vivo study in mice. J. Pharm. Pharmacol. 59, 311–315 (2007)

    Article  Google Scholar 

  2025. Oh, W.-K., Kim, S., yoon, H., Jang, J.: Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials. Small. 6, 8720879 (2010)

    Google Scholar 

  2026. Sanchvi, A.B., Miller, K.P.H., Belcher, A.M., et al.: Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat. Mater. 4, 496–502 (2005.) Oh, W.K., Yoon, H., Jang, J.: Size control of magnetic carbon nanoparticles for drug delivery. Biomater. 31, 1342–1348 (2010)

    Article  Google Scholar 

  2027. Lee, J.W., Serna, F., Schmidt, C.E.: Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes. Langmuir. 22, 9816–9819 (2006)

    Article  Google Scholar 

  2028. Cullen, D.K., Patel, A.R., Doorish, J.F., et al.: Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers. J. Neural. Eng. 5, 374–384 (2008)

    Article  Google Scholar 

  2029. Xie, J., MacEwan, M.R., Willerth, S.M., et al.: Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv. Funct. Mater. 19, 2312–2318 (2009)

    Article  Google Scholar 

  2030. Thompson, B.C., Richardson, R.T., Moulton, S.E., et al.: Conducting polymers, Dual neurotrophins and pulsed electrical stimulation – dramatic effects on neurite outgrowth. J. Control Release. 141, 161–167 (2010)

    Article  Google Scholar 

  2031. Li, X., Wan, M., Li, X., Zhao, G.: The role of DNA in Pani-DNA Hybrid Template and Dopant. Polymer. 50, 4529–4534 (2009)

    Article  Google Scholar 

  2032. Cheng, D., Xia, H., Chan, H.S.: Synthesis and characterization of surface-functionalized conducting polyaniline-chitosan nanocomposites. J. Nanosci. Nanotechnol. 5, 466–473 (2005)

    Article  Google Scholar 

  2033. Liu, S., Wang, J., Zhang, D., Zhang, P., Ou, J., Liu, B., et al.: Investigation of cell biocompatible behaviors of polyaniline film fabricated via electroless surface polymerization. Appl. Surf. Sci. 256, 3427–3431 (2010)

    Article  Google Scholar 

  2034. Wong, J.Y., Langer, R., Ingber, D.E.: Electrically conducting polymers can non-invasivley control the shape and growth of mammalian cells. Proc. Natl. Acad. Sci. USA. 91, 3201–3204 (1994)

    Article  Google Scholar 

  2035. Garner, B., Georgevich, A., Hodgson, A.J., Liu, L., Wallce, G.G.: Polypyrrole heparin composites as stimulus-responsive substrates for endothelial cell growth. J. Biomed. Mater. Res. 44, 121–129 (1999)

    Article  Google Scholar 

  2036. De Giglio, E., Sabbatini, L., Colucci, S., Zambonin, G.: Synthesis, analyitcal characterization and osteoblasts adhesion properties on RGD-grafter polypyrrole coatings on titanium substrates. J. Biomater. Sci. Polym. Ed. 11, 1073–1083 (2001)

    Article  Google Scholar 

  2037. Schmidt, C.E., Shastri, V.R., Vacanti, J.P., Langer, R.: Stimulation of neurite outhrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA. 94, 8949–8953 (1997)

    Google Scholar 

  2038. Wulliams, R.L., Doherty, P.J.: A preliminary assessment of poly(Pyrrole) in nerve guide studies. J. Mater. Sci. Mater. Med. 5, 429–433 (1994)

    Article  Google Scholar 

  2039. Cui, X., Wiler, J., Dzaman, J., Altschuler, M.R.A., Martin, D.C.: Vivo studies of polypyrrole/peptide coated neural probe. Biomaterials. 24, 777–787 (2003)

    Article  Google Scholar 

  2040. Jiang, X., Marois, Y., Traore, A., Tessier, D., Dao, L.H., Guidoin, R., et al.: Tissue reaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. Tissue. Eng. 8, 635–647 (2002)

    Article  Google Scholar 

  2041. Wang, X., Gu, X., Yuan, C., Chen, S., Zhang, P., Zhang, T., et al.: Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. A. 68, 411–422 (2004)

    Article  Google Scholar 

  2042. Ramanviciene, A., Kausaite, A., Tautkus, S., Ramanivcius, A.: Biocompatibility of polypyrrole particles: an in vivo study in mice. J. Pharm. Pharmacol. 59, 311–315 (2007)

    Article  Google Scholar 

  2043. Xiao, Y., Li, C.M., Wang, S., Shi, J., Ooi, C.P.: Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a biofunctional film with high bio- and electrochemical activity. J. Biomed. Mater. Res. A. 92A, 766–772 (2010)

    Article  Google Scholar 

  2044. Green, R.A., Lovell, N.H., Poole-Warren, L.A.: Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomater. 30, 3637–3644 (2009)

    Article  Google Scholar 

  2045. Mawad, D., Gilmore, K., Molino, P., Wagner, K., Wagner, P., Officer, D.L., Wallace, G.G.: An erodible polythiophene-based composite for biomedical applications. J. Mater. Chem. 21, 5555–5560 (2011)

    Article  Google Scholar 

  2046. delValle, L.J., Aradilla, D., Olver, R., Sepulcre, F., Gamez, A., Armmelin, E., et al.: Cellular adhesion and proliferation on poly(3,4-Ethylenedioxythiphene): Benefits in the Electroactivity of Conducting Polymer. Eur. Polym. J. 43, 2342–2349 (2007)

    Article  Google Scholar 

  2047. Che, J., Xiao, Y., Zhu, X., Sun, X.: Electro-Synthesized PEDOT/Glutamate Chemically Modified Elecrode: A Coombination of Electrical and Biocompatible Features. Polym. Int. 57, 750–755 (2008)

    Article  Google Scholar 

  2048. Bergren, M.: Cyborg rose carries a current. Chem. Eng. News. 93(46), 26 (2015)

    Article  Google Scholar 

  2049. Davenport, M.: Light and organic chemistry could make smarter, flexible devices. Chem. Eng. News. 94(26), 7 (2016)

    Google Scholar 

  2050. Eureka: Innovation across borders. Amroy Oy. http://www.eurekanetwork.org/content/amroy-oy-0. Accessed June 2016

  2051. Frackowiak, E., Lota, G., Cacciaguerra, T., Béguin, F.: Electrochem. Commun. 8, 129 (2006)

    Article  Google Scholar 

  2052. Sun, X., Li, R., Villers, D., Dodelet, J.P., Désilets, S.: Chem. Phys. Lett. 379, 99 (2003)

    Article  Google Scholar 

  2053. Song, Y., Li, X., Mackin, C., Zhang, X., Fang, W., Palacios, T., Zhu, H., Kong, J.: Role of interfacial oxide in high-efficiency graphene-silicon schottky barrier solar cells. Nano. Lett. 15(3), 2104–2110 (2015)

    Article  Google Scholar 

  2054. (a) Hubbard, A.T., Anson, F.C.: Anal. Chem. 58 (1966); (b) Brown, A.P., Anson, F.C.: Anal. Chem 49, 1589 (1977)

    Google Scholar 

  2055. (a) Laviron, E.: Bull. Soc. Chem. Fr. 3717 (1967); (b) Laviron, E.: J. Electroanal. Chem. 39, 1 (1972)

    Google Scholar 

  2056. Oyama, N., Hirokawa, T.: Anal. Chem. 59, 258 (1987)

    Google Scholar 

  2057. Peng, C., Zhang, S., Jewell, D., Chen, G.Z.: Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 18, 777–778 (2008)

    Article  Google Scholar 

  2058. Rajesh, B., Ravindranatha Thampi, K., Bonard, J.-M., Jorg Mathieu, H., Xanthopoulos, N., Viswanahan, B.: Chem. Commun. 2022 (2003)

    Google Scholar 

  2059. Ma, Y., Jiang, S., Jian, G., Tao, H., Yu, L., Wang, X., Wang, X., Zhu, J., Hu, Z., Chen, Y.: Energy Environ. Sci. 2, 224 (2009)

    Article  Google Scholar 

  2060. Mohana Reddy, A.L., Rajalkshmi, N., Ramaprabhu, S.: Carbon. 46, 2 (2008)

    Article  Google Scholar 

  2061. Zhou, Q., Li, C.M. Li, J. Cui, X. Gervasio, D. J. Phys. Chem. C 111, 11216 (2007)

    Google Scholar 

  2062. Will light-emitting polymers outshine LCDs? Chem. Week 42 (1998)

    Google Scholar 

  2063. Active Polymers Workshop osted by the Institute for Defense Analyses. Proceedings of the Defense Advance Research Projects Agency Active (DARPA); Baltimore, p. D4(1996)

    Google Scholar 

  2064. Brodie, B.C.: On the atomic weight of graphite. Phil. Trans. R. Soc. London. 149, 249–259 (1859)

    Article  Google Scholar 

  2065. Lourie, O., Wagner, H.D.: Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 13(9), 2418–2422 (1998)

    Article  Google Scholar 

  2066. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B. 58(20), 14013–14019 (1998)

    Article  Google Scholar 

  2067. Mohanty, N., Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derviatives with nanoscale and microscale biocomponents. Nano. Lett. 8, 4469 (2008)

    Article  Google Scholar 

  2068. Cai, H., Cao, X., Jiang, Y., He, P., Fang, Y.: Anal. Bioanal. Chem. 375, 287 (2003)

    Article  Google Scholar 

  2069. Cai, H., Cao, X.N., Jiang, Y., He, P.G., Fang, Y.Z.: Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375, 287–293 (2003)

    Article  Google Scholar 

  2070. Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J.P., Prato, M., Kostarelos, K., Bianco, A.: Functionalised carbon nanotubes for plasmid DNA gene delivery. Angew Chem. Int. Ed. Engl. 43, 5242–5246 (2004)

    Article  Google Scholar 

  2071. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: towards the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005)

    Article  Google Scholar 

  2072. Liang, Y.T., Vijayan, B.K., Gray, K.A., Hersam, M.C.: Nano Lett. 11, 2865 (2011)

    Article  Google Scholar 

  2073. Ng, Y.J., Iwase, A., Kuda, A., Amal, R.: J. Phys. Chem. Lett. 1, 2607 (2010); Min, S.K., Kim, W.Y., Cho, Y., Kim, K.S.: Nat. Nanotechnol. 6, 162 (2011)

    Google Scholar 

  2074. Baum, R.: Nanotube characterization. Chem. Eng. News. 6, (1998)

    Google Scholar 

  2075. Xu, B., Yin, J., Liu, Z.: Phonon scattering and electron transport in single wall carbon nanotube. In: Sazuki, S. (ed.) Physical and chemical properties of carbon nanotbues. InTech (2013)

    Google Scholar 

  2076. A carbon nanotube page: Carbon nanotube science and technology. http://www.personal.reading.ac.uk/~scsharip/tubes.htm. Accessed June 2016

  2077. Karisruhe Institute of Technology: Graphitic materials. https://www.int.kit.edu/1745.php. Accessed June 2016; Wikipedia: Stone-wales defect. https://en.wikipedia.org/wiki/Stone%E2%80%93Wales_defect. ccessed June 2016

  2078. Ishii, S., Takano, Y.: High-conductivity boron-doped carbon nanotubes, SPIE (2007)

    Google Scholar 

  2079. Cai, L., Wang, C.: Carbon nanotube flexible and stretchable. Nanoscale Res. Lett. 10(320), 1–21 (2015)

    Google Scholar 

  2080. Chen, H., Cao, Y., Zhang, J., Zhou, C.: Large-scale complementary microelectronics using hybrid integration of carbon nanotubes and IGZO thn-film transistors. Nature Comm. 5, 4097 (2014)

    Google Scholar 

  2081. Cao, Q., Kim, H.-S., Pimparkar, N., Kulkarni, J.P., Wang, C., Shim, M., Roy, K., Alam, M.A., Rogers, J.A.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature. 454, 4955–4500 (2008)

    Article  Google Scholar 

  2082. Bookofjoe: World’s smallest radio consists of 1 carbon nanotube – listen to it play ‘Layla’. http://www.bookofjoe.com/2009/02/nanotube-radio.html. Accessed June 2016

  2083. what-when-how: Carbon nanotubes: thermal properties Part 1 (Nanotechnology). http://what-when-how.com/nanoscience-and-nanotechnology/carbon-nanotubes-thermal-properties-part-1-nanotechnology/. Accessed June 2016

  2084. Pykal, M., Jurečka, P., Karlický, F., Otyepka, M.: Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 18, 6351–6372 (2016)

    Article  Google Scholar 

  2085. AzoOptics: Using NTEGRA instruments to conduct comprehensive characterization and analysis of graphene flakes by NT-MDT. http://www.azooptics.com/Article.aspx?ArticleID=223 http://www.ntmdt-si.com/. Accessed June 2016

  2086. Liu, Y., Liu, Z., Lew, W.S., Wang, Q.J.: Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8(1), 335 (2013)

    Article  Google Scholar 

  2087. Wang, J., Rathi, S., Singh, B., Lee, I., Maeng, S., Joh, H.-I., Kim, G.-H.: Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nanohybrid for highly-sensitive multiple gas sensor. Sens. and Act. B: Chem. 220, 755–761 (2015)

    Article  Google Scholar 

  2088. Tung, T.T., Castro, M., Kim, T.Y., Suh, K.S., Feller, J.-F.: Graphene quantum resistive sensing skin for the detection of altercation biomarkers. J. Mater. Chem. 22, 21754–21766 (2012)

    Article  Google Scholar 

  2089. Tomalia, D.A.: In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart Res. 11(6), 1251–1310 (2009)

    Article  Google Scholar 

  2090. Chang-Jian, S.-K., Ho, J.-R. Laser patterning of carbon-nanotubes thin films and their applications. In: Marulanda, J.M. (ed.) Carbon nanotubes applications on electron devices. IntTech, 20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrasekhar, P. (2018). Basic Electrochemistry of CPs. In: Conducting Polymers, Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-69378-1_30

Download citation

Publish with us

Policies and ethics