Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 445 Accesses

Abstract

This section explains the theory behind quasi-elastic scattering of neutrinos on nuclei, with a discussion of the nuclear effects that can influence the scattering cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Abe et al., Measurement of the ν μ charged-current quasielastic cross section on carbon with the ND280 detector at T2K. Phys. Rev. D 92, 112003 (2015)

    Google Scholar 

  2. P. Adamson et al., The NuMI neutrino beam. Nucl. Instrum. Methods Phys. Res. Sect. A 806, 279–306 (2016)

    Google Scholar 

  3. A.A. Aguilar-Arevalo et al., First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010)

    Google Scholar 

  4. A.A. Aguilar-Arevalo et al., First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D 88, 032001 (2013)

    Google Scholar 

  5. L.A. Ahrens et al., A study of the axial-vector form factor and second-class currents in antineutrino quasielastic scattering. Phys. Lett. B 202(2), 284–288 (1988)

    Google Scholar 

  6. J.E. Amaro, C. Maieron, J. Nieves, M. Valverde, Equivalence between local fermi gas and shell models in inclusive muon capture from nuclei. Eur. Phys. J. A 24(3), 343–353 (2005)

    Google Scholar 

  7. J.E. Amaro et al., Meson-exchange currents and quasielastic neutrino cross sections in the SuperScaling Approximation model. Phys. Lett. B 696, 151–155 (2014)

    Google Scholar 

  8. C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Methods Phys. Res. Sect. A 614(1), 87–104 (2010)

    Google Scholar 

  9. J. Arrington, D.W. Higinbotham, G. Rosner, M. Sargsian, Hard probes of short-range nucleon-nucleon correlations. Prog. Part. Nucl. Phys. 67, 898–938 (2012)

    Google Scholar 

  10. D.S. Ayres et al., The NOvA Technical Design Report. Technical report, Fermi National Accelerator Laboratory (2007)

    Google Scholar 

  11. S.J. Barish et al., Study of neutrino interactions in hydrogen and deuterium: description of the experiment and study of the reaction ν + d → μ − + p + p s . Phys. Rev. D 16, 3103–3121 (1977)

    Google Scholar 

  12. P. Barreau et al., Coulomb sum rule on 12C. Il Nuovo Cimento A 76, 361–368 (1983)

    Google Scholar 

  13. O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Spectral function of finite nuclei and scattering of GeV electrons. Nucl. Phys. A 579, 493–517 (1994)

    Google Scholar 

  14. A. Bodek, J.L. Ritchie, Fermi-motion effects in deep-inelastic lepton scattering from nuclear targets. Phys. Rev. D 23, 1070–1091 (1981)

    Google Scholar 

  15. A. Bodek, S. Avvakumov, R. Bradford, H. Budd, Extraction of the axial nucleon form factor from neutrino experiments on deuterium. J. Phys. Conf. Ser. 110(8), 082004 (2008)

    Google Scholar 

  16. A. Bodek, S. Avvakumov, R. Bradford, H. Budd, Vector and axial nucleon form factors: a duality constrained parameterization. Eur. Phys. J. C 53(3), 349–354 (2008)

    Google Scholar 

  17. A. Bodek, H.S. Budd, M.E. Christy, Neutrino quasielastic scattering on nuclear targets. Eur. Phys. J. C 71(9), 1726 (2011)

    Google Scholar 

  18. R. Bradford, A. Bodek, H. Budd, J. Arrington, A new parameterization of the nucleon elastic form factors. Nucl. Phys. B Proc. Suppl. 159, 127–132 (2006)

    Google Scholar 

  19. H. Budd, A. Bodek, J. Arrington, Modeling quasi-elastic form factors for electron and neutrino scattering (2003), p. 13. arxiv:hep-ex/0308005

    Google Scholar 

  20. J. Carlson, J. Jourdan, R. Schiavilla, I. Sick, Longitudinal and transverse quasielastic response functions of light nuclei. Phys. Rev. C 65, 024002 (2002)

    Google Scholar 

  21. D. Casper, The NUANCE neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl. 112(1–3), 161–170 (2002)

    Google Scholar 

  22. R. Cenni, T.W. Donnelly, A. Molinari, Relativistic electromagnetic charge response: finite versus infinite systems, exclusive versus inclusive processes. Phys. Rev. C 56, 276–291 (1997)

    Google Scholar 

  23. S. Choi et al., Axial and pseudoscalar nucleon form factors from low energy pion electroproduction. Phys. Rev. Lett. 71, 3927–3930 (1993)

    Google Scholar 

  24. C. Ciofi degli Atti, S. Simula, Realistic model of the nucleon spectral function in few- and many-nucleon systems. Phys. Rev. C 53, 1689–1710 (1996)

    Google Scholar 

  25. E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  26. D.B. Day, J.S. McCarthy, T.W. Donnelly, I. Sick, Scaling in inclusive electron-nucleus scattering. Annu. Rev. Nucl. Part. Sci. 40(1), 357–410 (1990)

    Google Scholar 

  27. H. De Vries, C.W. De Jager, C. De Vries, Nuclear charge and magnetization density distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 36, 495–536 (1987)

    Google Scholar 

  28. M. Dorman, MINOS Collaboration, Preliminary results for CCQE scattering with the MINOS near detector. AIP Conf. Proc. 1189(1), 133–138 (2009)

    Google Scholar 

  29. K.S. Egiyan et al., Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006)

    Google Scholar 

  30. F.J. Ernst, R.G. Sachs, K.C. Wali, Electromagnetic form factors of the nucleon. Phys. Rev. 119, 1105–1114 (1960)

    Google Scholar 

  31. X. Espinal, F. Sanchez, Measurement of the axial vector mass in neutrino-carbon interactions at K2K. AIP Conf. Proc. 967, 117–122 (2007)

    Google Scholar 

  32. R.P. Feynman, M. Gell-Mann, Theory of the fermi interaction. Phys. Rev. 109, 193–198 (1958)

    Google Scholar 

  33. L. Fields et al., Measurement of muon antineutrino quasielastic scattering on a hydrocarbon target at E ν  ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022501 (2013)

    Google Scholar 

  34. J.M. Finn, R.W. Lourie, B.H. Cottman, Scaling violation in the separated response functions of 12C. Phys. Rev. C 29, 2230–2238 (1984)

    Google Scholar 

  35. G.A. Fiorentini et al., Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at E ν  ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022502 (2013)

    Google Scholar 

  36. N. Fomin et al., New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett. 108, 092502 (2012)

    Google Scholar 

  37. J.A. Formaggio, G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307–1341 (2012)

    Google Scholar 

  38. H. Gallagher, G. Garvey, G.P. Zeller, Neutrino-nucleus interactions. Annu. Rev. Nucl. Part. Sci. 61, 355–378 (2011)

    Google Scholar 

  39. S. Galster, H. Klein, J. Moritz, K.H. Schmidt, D. Wegener, J. Bleckwenn, Elastic electron-deuteron scattering and the electric neutron form factor at four-momentum transfers 5 fm2 < q 2 < 14 fm2. Nucl. Phys. B 32(1), 221–237 (1971)

    Google Scholar 

  40. S.S. Gershtein, Y.B. Zeldovich, Meson corrections in the theory of beta decay. Sov. Phys. JETP 2, 576 (1956)

    Google Scholar 

  41. T. Golan, Modeling nuclear effects in NuWro Monte Carlo neutrino event generator. PhD thesis, University of Wroclaw, 2014

    Google Scholar 

  42. M.L. Goldberger, S.B. Treiman, Decay of the Pi Meson. Phys. Rev. 5, 1178–1184 (1958)

    Google Scholar 

  43. K. Gottfried, The determination of the nuclear pair correlation function and momentum distribution. Ann. Phys. 21(1), 29–46 (1963)

    Google Scholar 

  44. R. Gran et al., Measurement of the quasielastic axial vector mass in neutrino interactions on oxygen. Phys. Rev. D 74, 052002 (2006)

    Google Scholar 

  45. J. Grange, First Measurement of the Muon Anti-neutrino Charged Current Quasielastic Double-Differential Cross-Section (Springer International Publishing, Cham, 2016)

    Google Scholar 

  46. D. Griffiths, Introduction to Elementary Particles (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  47. C. Juszczak, J.T. Sobczyk, J. Żmuda, Extraction of the axial mass parameter from miniboone neutrino quasielastic double differential cross-section data. Phys. Rev. C 82, 045502 (2010)

    Google Scholar 

  48. J.J. Kelly, Simple parametrization of nucleon form factors. Phys. Rev. C 70(6), 068202 (2004)

    Google Scholar 

  49. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering. Eur. Phys. J. C 54, 517–538 (2008)

    Google Scholar 

  50. T. Leitner, O. Buss, L. Alvarez-Ruso, U. Mosel, Electron- and neutrino-nucleus scattering from the quasielastic to the resonance region. Phys. Rev. C 79, 034601 (2009)

    Google Scholar 

  51. L.C. Liu, Pauli blocking and final-state interaction in electron-nucleus quasielastic scattering. Phys. Rev. C 79, 014605 (2009)

    Google Scholar 

  52. C.H. Llewellyn Smith, Neutrino reactions at accelerator energies. Phys. Rep. 3(5), 261–379 (1972)

    Google Scholar 

  53. V. Lyubushkin et al., A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment. Eur. Phys. J. C 63, 355–381 (2009)

    Google Scholar 

  54. C. Mahaux, R. Sartor, Theoretical approaches to the momentum distribution of a normal fermi liquid. Phys. Rep. 211(2), 53–111 (1992)

    Google Scholar 

  55. V. Mamyan, Measurements of F 2 and R = σ L /σ T on nuclear targets in the nucleon resonance region. PhD thesis, University of Virginia, 2010

    Google Scholar 

  56. B. Märkisch, Experimental status of V ud from neutron decay (Jul 2011). arXiv:1107.3422 [nucl-ex]

    Google Scholar 

  57. M. Martini, M. Ericson, G. Chanfray, J. Marteau, Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei. Phys. Rev. C 80, 065501 (2009)

    Google Scholar 

  58. M. Martini, M. Ericson, G. Chanfray, Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis. Phys. Rev. D 87(1), 013009 (2013)

    Google Scholar 

  59. J.A. Maruhn, P.-G. Reinhard, E. Suraud, Simple Models of Many-Fermion Systems (Springer, Berlin/Heidelberg, 2009)

    Google Scholar 

  60. D.G. Michael et al., The magnetized steel and scintillator calorimeters of the MINOS experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 596(2), 190–228 (2008)

    Google Scholar 

  61. MiniBooNE Collaboration, The MiniBooNE detector. Nucl. Instrum. Methods A 599, 28–46 (2009)

    Google Scholar 

  62. J. Morfín, J. Nieves, J. Sobczyk, Recent developments in neutrino/antineutrino-nucleus interactions. Adv. High Energy Phys. 2012, 934597 (2012)

    Article  MATH  Google Scholar 

  63. N.F. Mott, H. Massey, The Theory of Atomic Collisions, 2nd edn. (Clarendon Press, Oxford, 1933)

    MATH  Google Scholar 

  64. J.W. Negele, Structure of finite nuclei in the local-density approximation. Phys. Rev. C 1, 1260–1321 (1970)

    Article  ADS  Google Scholar 

  65. J. Nieves, J.E. Amaro, M. Valverde, Inclusive quasielastic charged-current neutrino-nucleus reactions. Phys. Rev. C 70, 055503 (2004)

    Article  ADS  Google Scholar 

  66. J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, Inclusive charged-current neutrino-nucleus reactions. Phys. Rev. C 83, 045501 (2011)

    Article  ADS  Google Scholar 

  67. K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  68. R.G. Sachs, High-energy behavior of nucleon electromagnetic form factors. Phys. Rev. 126, 2256–2260 (1962)

    Article  ADS  MATH  Google Scholar 

  69. R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Tensor forces and the ground-state structure of nuclei. Phys. Rev. Lett. 98, 132501 (2007)

    Article  ADS  Google Scholar 

  70. R. Shneor et al., Investigation of proton-proton short-range correlations via the 12C(e, e ′ pp) reaction. Phys. Rev. Lett. 99, 072501 (2007)

    Article  ADS  Google Scholar 

  71. R.A. Smith, E.J. Moniz, Neutrino reactions on nuclear targets. Nucl. Phys. B 43, 605–622 (1972)

    Article  ADS  Google Scholar 

  72. R. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008)

    Article  ADS  Google Scholar 

  73. T. Sumikama et al., Test of the conserved vector current hypothesis by a β-ray angular distribution measurement in the mass-8 system. Phys. Rev. C 83, 065501 (2011)

    Article  ADS  Google Scholar 

  74. T2K Collaboration, The T2K neutrino flux prediction. Phys. Rev. D 87, 28–46 (2013)

    Google Scholar 

  75. J.W. Van Orden, T.W. Donnelly, Mesonic processes in deep-inelastic electron scattering from nuclei. Ann. Phys. 131(2), 451–493 (1981)

    Article  ADS  Google Scholar 

  76. T. Walton, M. Betancourt et al., Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at \(\left <\mathrm {E}_\nu \right > =4.2\mathrm {GeV}\). Phys. Rev. D 91, 071301 (2015)

    Google Scholar 

  77. R.R. Whitney, I. Sick, J.R. Ficenec, R.D. Kephart, W.P. Trower, Quasielastic electron scattering. Phys. Rev. C 9, 2230–2235 (1974)

    Article  ADS  Google Scholar 

  78. D.H. Wilkinson, Analysis of neutron beta decay. Nucl. Phys. A 377, 474–504 (1982)

    Article  ADS  Google Scholar 

  79. D.H. Wilkinson, Limits to second-class nucleonic currents. Nucl. Instrum. Methods 455, 656–659 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patrick, C.E. (2018). Theory of Quasi-Elastic Neutrino Scattering on Nuclei. In: Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69087-2_2

Download citation

Publish with us

Policies and ethics