Skip to main content

Marine-Derived Fungi: Prospective Candidates for Bioremediation

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

With increased industrialization and urbanization, there has been an increased level of pollutants in the environment. It is imperative to reduce concentration of toxic compounds in the effluent to meet ever-increasing legislative standards. While in most of the cases physicochemical treatments of wastes suffer from one or the other limitation, bioremediation is a promising alternative. Fungi, with their unique traits like their greater growth capacity, reach by virtue of mycelial branching, ability to produce a number of enzymes and metal accumulation potential, etc., are very well suited for bioremediation processes. Marine-derived fungi, being able to grow under extreme conditions (like high salinity and pH), are even better candidates for such purposes as their traits may especially be useful in the treatment of industrial effluent. The role of marine-derived fungi in general, and those screened along Gujarat coast, India, in particular, for removal of some pollutants, is discussed. Based on the findings, marine-derived fungi are envisioned as prospective bioremediation candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Anonymous (2012) Paint Coat Ind 28:8

    Google Scholar 

  • Arun A, Raja PP, Arthi R, Ananthi M, Kumar KS, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:132–142

    Article  CAS  PubMed  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Bioremediation of arsenic-contaminated water: recent advances and future prospects. Water Air Soil Pollut 224:1722

    Article  CAS  Google Scholar 

  • Bankar AV, Kumar AR, Zinjade SS (2009) Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater 170(1):487–494

    Article  CAS  PubMed  Google Scholar 

  • Baughman GL, Weber EJ (1994) Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environ Sci Technol 28:267–276

    Article  CAS  PubMed  Google Scholar 

  • BeÅ‚dowski J, Szubska M, Emelyanov E (2013) Spatial variability of arsenic concentrations in Baltic sea surface sediments in relation to sea dumped chemical munitions. E3S Web of Conferences 1, 16002 doi: https://doi.org/10.1051/ e3sConf/ 201301160 02

  • Belsky MM, Goldstein S, Menna M (1970) Factors affecting phosphate uptake in the marine fungus Dermocystidium sp. J Gen Microbiol 62:399–402

    Article  CAS  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LD (2012) The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water Air Soil Pollut 223:2333–2345

    Article  CAS  Google Scholar 

  • Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MRZ, Vieira GAL, Lopes VCP, Mainardi PH, dos Santos JA, de Azevedo Duarte L, Otero IVR, da Silva Yoshida AM, Feitosa VA, Pessoa A Jr, Sette LD (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269. https://doi.org/10.3389/fmicb.2015.00269

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonugli-Santos RC, Vieira GAL, Collins C, Fernandes TCC, Marin-Morales MA, Murray P, Sette LD (2016) Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environ Sci Pollut Res 23:8659–8668

    Article  CAS  Google Scholar 

  • Button DK, Dunker SS, Morse ML (1973) Continuous culture of Rhodotorula rubra: Kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited Growth. J Bacteriol 113(2):599–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chander K, Dyckmans J, Höper H, Raubuch M (2001a) Long term effects on soil microbial properties of heavy metals from industrial exhaust deposition. J Plant Nutr Soil Sci 164(6):657–663

    Article  CAS  Google Scholar 

  • Chander K, Dyckmans J, Joergensen R, Meyer B, Raubuch M (2001b) Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soils 34(4):241–247

    Article  CAS  Google Scholar 

  • Chaukura N, Gwenzi W, Tavengwa N, Manyuchi MM (2016) Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. Environ Dev 19:84–89

    Article  Google Scholar 

  • Ciullini I, Tilli S, Scozzafava A, Briganti F (2008) Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes. Bioresour Technol 99:7003–7010

    Article  CAS  PubMed  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharmacol 188:1–5

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Shah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Article  CAS  Google Scholar 

  • D’Souza-Ticlo D, Garg D, Raghukumar C (2009a) Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology. Mar Drugs 7:672–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar C (2009b) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11:725–737

    Article  PubMed  CAS  Google Scholar 

  • Dekov VM, Bindi L, Burgaud G, Petersen S, Asael D, Rédou V et al (2013) Inorganic and biogenic As-sulfide precipitation at seafloor hydrothermal fields. Mar Geol 342:28–38

    Article  CAS  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey U, Chatterjee SN, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • Diwaniyan S, Kharb D, Raghukumar C, Kuhad RC (2010) Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water Air Soil Pollut 210:409–419

    Article  CAS  Google Scholar 

  • El Aty AAA, Mostafa FA (2013) Effect of various media and supplements on laccase activity and its application in dyes decolorization. Malaysian J Microbiol 9(2):166–175

    Google Scholar 

  • El Aty AAA, Hamed ER, El-Beih AA, El-Diwany AI (2016) Induction and enhancement of the novel marine-derived Alternaria tenuissima KM651985 laccase enzyme using response surface methodology: Application to Azo and Triphenylmethane dyes decolorization. J Appl Pharm Sci 6(4):6–14

    Article  Google Scholar 

  • El Aty AAA, Mostafa FA, Hassan ME, Hamed ER, Esawy MA (2017) Covalent immobilization of Alternaria tenuissima KM651985 laccase and some applied aspects. Biocatal Agricult Biotechnol 9:74–81

    Google Scholar 

  • El-Kassas HY, El-Taher EM (2009) Optimization of batch process parameters by response surface methodology for mycoremediation of chrome-VI by a chromium resistant strain of marine Trichoderma viride. Am-Eurasian J Agric Environ Sci 5(5):676–681

    CAS  Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents-A review of the recent literature. Bioresour Technol 101:5043–5053

    Article  CAS  PubMed  Google Scholar 

  • Field JA, de Jong ED, Costa GF, de Bond JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    Article  CAS  PubMed  Google Scholar 

  • Gomathi V, Saravanakumar K, Kathiresan K (2012) Biosorption of chromium by mangrove-derived Aplanochytrium sp. Afr J Biotechnol 11(95):16177–16186

    Article  CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Res 35:4079–4085

    Article  CAS  PubMed  Google Scholar 

  • Handley KM, Héry M, Lloyd JR (2009) Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Environ Microbiol 11(6):1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S, Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric Biol Chem 51:2417–2420

    CAS  Google Scholar 

  • Huiying C, Mingxia W, Yubin S, Shan-jing Y (2014) Optimization of two-species whole-cell immobilization system constructed with marine-derived fungi and its biological degradation Ability. Chin J Chem Eng 22(2):187–192

    Article  CAS  Google Scholar 

  • Hyde KD, Gareth Jones EB, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • IARC (2004) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Drinking-Water Disinfectants and Contaminants, including Arsenic, vol 84. IARC Press, Lyon. 192 IARC Monographs, vol. 86

    Google Scholar 

  • Imandi SB, Chinthala R, Saka S, Vechalapu RR, Nalla KK (2014) Optimization of chromium biosorption in aqueous solution by marine yeast biomass of Yarrowia lipolytica using Doehlert experimental design. Afr J Biotechnol 13(12):1413–1422

    Google Scholar 

  • Irvine J, Jones EBG (1975) The effect of a Copper-Chrome-Arsenate preservatives and its constituents on the growth of aquatic microorganisms. J Inst Wood Sci 7:1–5

    Google Scholar 

  • Joshi HV, Vala AK, Bhatt PN, Anand N (2012) Treatment of CETP effluent by a seaweed associated Aspergillus niger isolate. In: Sahoo D, Kaushik BD (eds) Algal Biotechnology and Environment. I.K. International Publishing House, New Delhi, pp 193–197

    Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  CAS  PubMed  Google Scholar 

  • Kaufman BD (1970) Acute potassium dichromate poisoning in man. Am J Dis Child 119:374–379

    Article  CAS  PubMed  Google Scholar 

  • Keren R, Lavy A, Mayzel B, Ilan M (2015) Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations. Front Microbiol 6:154. https://doi.org/10.3389/fmicb.2015.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009a) Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World J Microbiol Biotechnol 25:1413–1421

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009b) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145:489–495

    Article  CAS  Google Scholar 

  • Khambholja DB, Kalia K (2016) Seasonal variation in arsenic concentration and its bioremediation potential of marine bacteria isolated from Alang-Sosiya ship-scrapping yard, Gujarat, India. Defence Life Sci J 1(1):78–84

    Article  Google Scholar 

  • Khan M, Scullion J (2000) Effect of soil on microbial responses to metal contamination. Environ Pollut 110:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Maher W, Chariton A, Krikowa F (2002) Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Appl Organometal Chem 16:192–201

    Article  CAS  Google Scholar 

  • Kocberber N, Donmez G (2007) Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters. Bioresour Technol 98:2178–2183

    Article  CAS  PubMed  Google Scholar 

  • Komori K, Wang P, Toda K, Ohtake H (1989) Factors affecting chromate reduction in Enterobacter cloacae strain H01. Appl Microbiol Biotechnol 31:567–570

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Zhang Q, Yao S (2016) Efficient decolorization of dye-containing wastewater using mycelial pellets formed of marine-derived Aspergillus niger. Chin J Chem Eng 25:330–337. https://doi.org/10.1016/j.cjche.2016.08.010

    Article  CAS  Google Scholar 

  • Lui T, Li H, Li Z, Xiao X, Chen L et al (2007) Removal of hexavalent chromium by fungal biomass of Mucor racemosus: influencing factors and removal mechanism. World J Microbiol Biotechnol 23:1685–1693

    Article  CAS  Google Scholar 

  • Maher W, Butler E (1988) Arsenic in the marine environment. Appl Organomet Chem 2:191–214

    Article  CAS  Google Scholar 

  • Merrin JS, Sheela R, Saswathi N, Prakasham RS, Ramakrishna SV (1998) Biosorption of chromium VI using Rhizopus arrhizus. Ind J Exp Biol 36:1052–1055

    CAS  Google Scholar 

  • Millward RN, Carman KR, Fleeger JW, Gambrell RP, Powell RT, Rouse MA (2001) Linking ecological impact to metal concentrations and speciation: a microcosm experiment using a salt marsh meiofaunal community. Environ Toxicol Chem 20:2029–2037

    Article  CAS  PubMed  Google Scholar 

  • Mtui G, Nakamura Y (2008) Lignocellulosic enzymes from Flavodon flavus, a fungus isolated from Western Indian ocean off the coast of Dar es Salaam, Tanzania. Afr J Biotechnol 7(17):3066–3072

    CAS  Google Scholar 

  • Newell SY, Barlocher F (1993) Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. J Exp Mar Biol Ecol 171:39–49

    Article  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 299:939–944

    Article  CAS  Google Scholar 

  • Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP (2016) Fungal and prokaryotic activities in the marine subsurface biosphere at Peru margin and Canterbury basin inferred from RNA-Based analyses and microscopy. Front Microbiol 7:846. https://doi.org/10.3389/fmicb.2016.00846

    Article  PubMed  PubMed Central  Google Scholar 

  • Park D, Yun YS, Park JM (2005) Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonia sp. Chemosphere 60:1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel D, Viraraghavan T (2006) Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40:549–552

    Article  CAS  PubMed  Google Scholar 

  • Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34:2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C (2000) Fungi from marine habitats: an application in bioremediation. Mycol Res 104(10):1222–1226

    Article  CAS  Google Scholar 

  • Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus flavodon flavus isolated from a marine habitat. Enzym Microb Technol 35:197–202

    Article  CAS  Google Scholar 

  • Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: Surface characterization and mechanism of biosorption. Chem EngJ 171:1060–1068

    Article  CAS  Google Scholar 

  • Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Conta Hydrol 146:63–73

    Article  CAS  Google Scholar 

  • Ravikumar S, Williams GP, Shanthy S, Gracelin NA, Babu S, Parimala PS (2007) Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. J Environ Biol 28:109–114

    CAS  PubMed  Google Scholar 

  • Regine HSF, Volesky VB (2000) Biosorption: a solution to pollution. Int Microbiol 3:17–24

    Google Scholar 

  • Rodriguez JPG, Williams DE, Sabater ID, Bonugli-Santos RC, Sette LD, Andersen RJ, Berlinck RGS (2015) The marine-derived fungus Tinctoporellus sp. CBMAI 1061 degrades the dye Remazol Brilliant Blue R producing anthraquinones and unique tremulane sesquiterpenes. RSC Adv 5(81):66360–66366

    Article  CAS  Google Scholar 

  • Samuel M, Abigail EA, Chidambaram R (2015) Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr(VI) using fungal biomass. PLoS One 10(3):e0116884. https://doi.org/10.1371/journal.pone.0116884

    Article  CAS  Google Scholar 

  • Sarvanakumar K, Kathiresan K (2014) Bioremoval of the synthetic dye malachite green by marine Trichoderma sp. Springer Plus 3:631

    Article  CAS  Google Scholar 

  • Shrestha RA, Lama B, Joshi J, Sillanpää M (2008) Effects of Mn(II) and Fe(II) on microbial removal of arsenic(III). Environ Sci Pollut Res 15:303–307

    Article  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88(6):983–991

    Article  CAS  PubMed  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48(4):427–435

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah MV, Kalyani MVS, Reddy GS, Boddu VM, Krishnaiah A (2008) Biosorption of Cr(VI) from aqueous solutions using Trametes versicolor polyporus fungi. J Chem 5(3):499–510

    CAS  Google Scholar 

  • Taboski MAS, Rand TG, Piorko A (2005) Lead and Cadmium uptake in the marine fungi Corollospora lacera and Monodyctis pelagia. FEMS Microbiol Ecol 53:445–453

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    Article  CAS  PubMed  Google Scholar 

  • Thom C, Raper KB (1932) The arsenic fungi of GOSIO. Science 76:548

    Article  CAS  PubMed  Google Scholar 

  • Torres JMO, Cardenas CV, Moron LS, Guzman APA, dela Cruz TEE (2011) Dye decolorization activities of marine-derived fungi isolated from Manila Bay and Calatagan Bay. Philippine J Sci 140(2):133–143

    Google Scholar 

  • Tucker MD, Barton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilised in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19

    Article  CAS  PubMed  Google Scholar 

  • US Environmental Protection Agency (1988) Toxicological review of hexavalent chromium, National Center for Environmental Assessment. Office of Research and Development, Washington, DC

    Google Scholar 

  • US EPA (US Environmental Protection Agency) (1997) IRIS (Integrated Risk Information System) On-line Database Maintained in Toxicology Data Network (TOXNET) by the National Library of Medicine. Bethesda, Maryland.

    Google Scholar 

  • Vala AK (2009) Aspergillus niger and heavy metal removal: a perception. Res J Biotechnol 4(1):75–79

    CAS  Google Scholar 

  • Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresour Technol 101:2565–2567

    Article  CAS  PubMed  Google Scholar 

  • Vala AK (2017) On the extreme tolerance and removal of arsenic by a facultative marine fungus Aspergillus sydowii in: Gautam A, Pathak C (ed) Metallic contamination and its toxicity (Accepted)

    Google Scholar 

  • Vala AK, dave BP (2015) Explorations on marine-derived fungi for L-Asparaginase- enzyme with anticancer potentials. Curr Chem Biol 9(1):66–69

    Article  CAS  Google Scholar 

  • Vala AK, Patel RJ (2011) Biosorption of trivalent arsenic by facultative marine Aspergillus niger. In: Mason A (ed) Bioremediation: biotechnology, engineering and environmental management. Nova Science Publishers, New York, pp 459–464

    Google Scholar 

  • Vala AK, Sutariya V (2012) Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur J Microbiol 5:542–545

    Article  Google Scholar 

  • Vala AK, Upadhyay RV (2008) On the tolerance and accumulation of arsenic by facultative marine Aspergillus sp. Res J Biotechnol 366–368 (special issue Proceedings of ISBT – 2008)

    Google Scholar 

  • Vala AK, Vaidya SY, Dube HC (2000) Siderophore production by facultative marine fungi. Indian. J Mar Sci 29:339–340

    Google Scholar 

  • Vala AK, Anand N, Bhatt PN, Joshi HV (2004) Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli. Mar Poll Bull 48(9&10):983–985

    Article  CAS  Google Scholar 

  • Vala AK, Davariya V, Upadhyay R (2010) An investigation on tolerance and accumulation of a facultative marine fungus Aspergillus flavus to pentavalent arsenic. J Ocean Univ China 9:65–67

    Article  CAS  Google Scholar 

  • Vala AK, Sutariya V, Upadhyay RV (2011) Investigations on trivalent arsenic tolerance and removal potential of a facultative marine Aspergillus niger. Environ Progr Sustain Energy 30(4):586–588

    Article  CAS  Google Scholar 

  • Vala AK, Chudasama B, Patel RJ (2012) Green synthesis of silver nanoparticles using marine-derived fungus Aspergillus niger. Micro Nano Lett 7:859–862

    Article  CAS  Google Scholar 

  • Vala AK, Dudhagara D, Dave BP (2016a) Enhanced L-asparaginase production by a marine-derived euryhaline Aspergillus niger strain AKV MKBU – a statistical model. Indian J Marine Sci (Accepted for publication)

    Google Scholar 

  • Vala AK, Trivedi HB, Dave BP (2016b) Marine-derived fungi: potential candidates for fungal nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 47–69

    Chapter  Google Scholar 

  • Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegrdation 21(2):217–233

    Article  CAS  Google Scholar 

  • Verma AK, Raghukumar C, Parvatkar RR, Naik CG (2012) A rapid two-Step bioremediation of the Anthraquinone Dye, Reactive Blue 4 by a marine-derived fungus. Water Air Soil Pollut 223:3499–3509

    Article  CAS  Google Scholar 

  • Vidal FV, Vidal MV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60(1):1–7

    Article  CAS  Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Ind Microbiol 14:159–163

    Article  CAS  PubMed  Google Scholar 

  • Wang MX, Zhang QL, Yao SJ (2015) A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem Eng J 259:837–844

    Article  CAS  Google Scholar 

  • Yanto DHY, Tachibana S, Itoh K (2014) Biodecolorization and biodegradation of textile dyes by the newly isolated saline-pH tolerant fungus Pestalotiopsis sp. J Environ Sci Technol 7(1):44–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Department of Science and Technology, Government of India, New Delhi, for financial support under Women Scientists’ Scheme [SR/WOS-A/LS-307/2013(G)] to AKV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana K. Vala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vala, A.K., Dave, B.P. (2017). Marine-Derived Fungi: Prospective Candidates for Bioremediation. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68957-9_2

Download citation

Publish with us

Policies and ethics