Skip to main content

Probing with Light—Optical Methods in Studies of Nanocrystalline Semiconductors

  • Chapter
  • First Online:
Solar Light Harvesting with Nanocrystalline Semiconductors

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 99))

  • 1137 Accesses

Abstract

The studies of photochemical and photocatalytic processes involving the semiconductor NPs are performed using a broad range of modern physical and chemical methods applied to determine the NP size and structure, their spectral, photophysical and other properties. The most frequently used are electron spectroscopy in the absorption, transmission and reflection modes, photoluminescence spectroscopy, electron microscopy (in the scanning and transmission modes), X-rays diffraction, etc. Nuances of the photochemical properties of semiconductor NPs can be revealed using the lamp and laser flash photolysis, the electron paramagnetic resonance and the Raman spectroscopy. The voltammetry is often used to determine the potentials of conduction and valence bands of semiconductor NPs, the adsorption/desorption methods—for the determination of the specific surface are and pore size of semiconductor nanophotocatalysts. A detailed description of these methods is far beyond the scope of the present book. This chapter is confined to the methods using light to probe the properties of nanocrystalline semiconductors and thus shedding light on the structure and properties of these fascinating objects as a result of their interaction with the probing irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stroyuk OL, Sobran IV, Korzhak AV et al (2008) Photopolymerization of water-soluble acrylic monomers induced by colloidal CdS and CdxZn1−xS nanoparticles. Colloid Polym Sci 286:489–498. doi:10.1007/s00396-007-1824-4

    Article  Google Scholar 

  2. Raevskaya AE, Stroyuk OL, Kryukov AI et al (2006) Structural and optical characteristics of CdxZn1−xS nanoparticles stabilized in aqueous solutions of polymers. Theor Exp Chem 42:181–185. doi:10.1007/s11237-006-0035-2

    Article  Google Scholar 

  3. Stroyuk OL, Dzhagan VM, Kuchmii SY et al (2007) Nanosecond and microsecond decay of photogenerated charges in CdxZn1−xS nanoparticles. Theor Exp Chem 43:297–305. doi:10.1007/s11237-007-0037-8

    Article  Google Scholar 

  4. Grätzel M (ed) (1983) Energy resources through photochemistry and catalysis. Academic Press, Inc., New York

    Google Scholar 

  5. Korgel BA, Monbouquette HG (2000) Controlled synthesis of mixed core and layered (Zn, Cd)S and (Hg, Cd)S nanocrystals within phosphatidylcholine vesicles. Langmuir 16:3588–3594. doi:10.1021/la990139r

    Article  Google Scholar 

  6. Petrov DV, Santos BS, Pereira GA, de Mello Donegá C (2002) Size and band-gap dependences of the first hyperpolarizability of CdxZn1−xS nanocrystals. J Phys Chem B 106:5325–5334. doi:10.1021/jp010617i

    Article  Google Scholar 

  7. Kasap S, Capper P (eds) (2006) Springer handbook of electronic and photonic materials. Springer Science + Business Media, Inc, Berlin

    Google Scholar 

  8. de Mello Donega C, Koole R (2009) Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J Phys Chem C 113:6511–6520. doi:10.1021/jp811329r

    Google Scholar 

  9. Monticone S, Tufeu R, Kanaev AV (1998) Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B 102:2854–2862. doi:10.1021/jp973425p

    Article  Google Scholar 

  10. Jasieniak J, Smith L, Embden J, Mulvaney P (2009) Re-examination of the size-dependent absorption properties of CdSe quantum dots. J Phys Chem C 113:19468–19474. doi:10.1021/jp906827m

    Article  Google Scholar 

  11. Schoenhalz AL, Arantes JT, Fazzio A, Dalpian GM (2010) Surface and quantum confinement effects in ZnO nanocrystals. J Phys Chem C 114:18293–18297. doi:10.1021/jp103768v

    Article  Google Scholar 

  12. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. University Press, Cambridge

    Book  Google Scholar 

  13. Rogach A (ed) (2008) Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications. Springer, Vienna

    Google Scholar 

  14. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532. doi:10.1021/j100155a009

    Article  Google Scholar 

  15. Ye C, Fang X, Wang M, Zhang L (2006) Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts. J Appl Phys 99:063504. doi:10.1063/1.2181311

    Article  Google Scholar 

  16. Eychmüller A (2000) Structure and photophysics of semiconductor nanocrystals. J Phys Chem B 104:6514–6528. doi:10.1021/jp9943676

    Article  Google Scholar 

  17. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  Google Scholar 

  18. Nanda K, Kruis F, Fissan H (2001) Energy levels in embedded semiconductor nanoparticles and nanowires. Nano Lett 1:605–611. doi:10.1021/nl0100318

    Article  Google Scholar 

  19. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055. doi:10.1021/ja017002j

    Article  Google Scholar 

  20. Chen W, Wang Z, Lin Z, Lin L (1997) Absorption and luminescence of the surface states in ZnS nanoparticles. J Appl Phys 82:3111–3115. doi:10.1063/1.366152

    Article  Google Scholar 

  21. Tang H, Xu G, Weng L et al (2004) Luminescence and photophysical properties of colloidal ZnS nanoparticles. Acta Mater 52:1489–1494. doi:10.1016/j.actamat.2003.11.030

    Article  Google Scholar 

  22. Cizeron J, Pileni MP (1995) Solid Solution of CdyZn1−yS nanosize particles made in reverse micelles. J Phys Chem 99:17410–17416. doi:10.1021/j100048a016

    Article  Google Scholar 

  23. Cizeron J, Pileni MP (1997) Solid solution of CdyZn1−yS nanosized particles: photophysical properties. J Phys Chem B 101:8887–8891. doi:10.1021/jp9713571

    Article  Google Scholar 

  24. Melamed NT (1957) Sulfur vacancy emission in ZnS phosphors. Phys Rev 107:1727–1728. doi:10.1103/PhysRev.107.1727.2

    Article  Google Scholar 

  25. Rayevska AE, Stroyuk OL, Kozytskiy AV, Kuchmiy SY (2010) Electron energy factors in photocatalytic methylviologen reduction in the presence of semiconductor nanocrystals. J Photochem Photobiol A 210:209–214. doi:10.1016/j.jphotochem.2009.11.019

    Article  Google Scholar 

  26. Feilchenfeld H, Chumanov H, Cotton TM (1996) Photoreduction of methylviologen adsorbed on silver. J Phys Chem 100:4937–4943. doi:10.1021/jp952329q

    Article  Google Scholar 

  27. Ferrer B, Llabrés i Xamena FX, García H (2007) Hollow organosilica spheres as hosts: Photoinduced electron transfer between Ru(bpy) 2−3 and methylviologen. Inorg Chim Acta 360:1017–1022. doi:0.1016/j.ica.2006.07.107

    Google Scholar 

  28. Zhong H, Bai Z, Zou B (2012) Tuning the luminescence properties of colloidal I-III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J Phys Chem Lett 3:3167–3175. doi:10.1021/jz301345x

    Article  Google Scholar 

  29. Liu S, Su X (2014) The synthesis and application of I-III–VI type quantum dots. RSC Adv 4:43415–43428. doi:10.1039/C4RA05677A

    Article  Google Scholar 

  30. Leach ADP, Macdonald JE (2016) Optoelectronic properties of CuInS2 nanocrystals and their origin. J Phys Chem Lett 7:572–583. doi:10.1021/acs.jpclett.5b02211

    Article  Google Scholar 

  31. Kolny-Olesyak J, Weller H (2013) Synthesis and application of colloidal CuInS2 semicon–ductor nanocrystals. ACS Appl Mater Interfaces 5:12221–12237. doi:10.1021/am404084d

    Article  Google Scholar 

  32. Tang Y, Wang P, Yun JH et al (2015) Frequency-regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes. J Mater Chem A 3:15876–15881. doi:10.1039/C5TA03255E

    Article  Google Scholar 

  33. Wang S, Yang X, Zhu Y et al (2014) Solar-assisted dual chamber microbial fuel cell with a CuInS2 photocathode. RSC Adv 4:23790–23796. doi:10.1039/C4RA02488E

    Article  Google Scholar 

  34. Pan Z, Mora-Sero I, Shen Q et al (2014) High-efficiency “Green” quantum dot solar cells. J Am Chem Soc 136:9203–9210. doi:10.1021/ja504310w

    Article  Google Scholar 

  35. Raevskaya AE, Rosovik OP, Kozytskiy AV et al (2016) Non-Stoichiometric Cu-In-S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Adv 6:100145–100157. doi:10.1039/C6RA18313A

    Article  Google Scholar 

  36. Zhang B, Wang Y, Yang C et al (2015) The composition effect on the optical properties of aqueous synthesized Cu–In–S and Zn–Cu–In–S quantum dot nanocrystals. Phys Chem Chem Phys 17:25133–25141. doi:10.1039/C5CP03312H

    Article  Google Scholar 

  37. Stroyuk OL, Raevskaya AE, Kuchmii SY (2004) Oxidation of polysulfide ions induced by CdS nanoparticles under pulsed photolysis conditions. Theor Exp Chem 40:130–135. doi:10.1023/B:THEC.0000028910.49933.67

    Article  Google Scholar 

  38. Raevskaya AE, Stroyuk OL, Kuchmiy SY (2004) Photocatalytic oxidation of hydrosulfide-ions by molecular oxygen over cadmium sulfide nanoparticles. J Nanopart Res 6:149–158. doi:10.1023/B:NANO.0000034719.30620.d3

    Article  Google Scholar 

  39. Vorobets VS, Kovach SK, Kolbasov GY (2001) Ionic equilibria in sulfide/polysulfide solutions with an account for the effect of ionic coupling. Ukr Chem J (in Russian) 67:12–16

    Google Scholar 

  40. Giggenbach W (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°. Inorg Chem 11:1201–1207. doi:10.1021/ic50112a009

    Article  Google Scholar 

  41. Licht S, Hodes G, Manassen J (1986) Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photoelectrochemical solar cells. Inorg Chem 25:2486–2489. doi:10.1021/ic00235a003

    Article  Google Scholar 

  42. Meyer B (1976) Elemental sulfur. Chem Rev 76:367–388. doi:10.1021/cr60301a003

    Article  Google Scholar 

  43. Chivers T, Drummond I (1972) Characterization of the trisulfur radical anion S3 in blue solutions of alkali polysulfides in hexamethylphosphoramide. Inorg Chem 11:2525–2527. doi:10.1021/ic50116a047

    Article  Google Scholar 

  44. Gruen DM, McBeth RL, Zielen AJ (1971) Nature of sulfur species in fused salt solutions. J Am Chem Soc 93:6691–6693. doi:10.1021/ja00753a070

    Article  Google Scholar 

  45. Martin RP, Doub WH, Roberts JL, Sawyer DT (1973) Electrochemical reduction of sulfur in aprotic solvents. Inorg Chem 12:1921–1925. doi:10.1021/ic50126a047

    Article  Google Scholar 

  46. Annenkova VS, Antonik LM, Haliullin AK et al (1983) Formation of sodium sulfide anion radicals in dipolar aprotic solvents. J General Chem (in Russian) 53:2409–2410

    Google Scholar 

  47. Mills G, Schmidt KH, Matheson MS, Meisel D (1987) Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion. J Phys Chem 91:1590–1596. doi:10.1021/j100290a060

    Article  Google Scholar 

  48. Melnikov MY (1994) Photochemistry of organic radicals. Moscow University Publishing, Moscow (in Russian)

    Google Scholar 

  49. Vossmeyer T, Katsikas L, Giersig M et al (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673. doi:10.1021/j100082a044

    Article  Google Scholar 

  50. Kovach SK, Vorobets VS, Vasko AT (1992) Potentiometric titration using a sulfide-selective electrode. Ukr Chem J 58:491–494

    Google Scholar 

  51. Dzhagan VM, Stroyuk OL, Rayevska AE et al (2010) Spectroscopic and photochemical study of Ag+-, Cu2+-, Hg2+-, and Bi3+-doped CdxZn1−xS nanoparticles. J Colloid Interface Sci 345:515–523. doi:10.1016/j.jcis.2010.02.001

    Article  Google Scholar 

  52. Stroyuk OL, Raevskaya AE, Korzhak AV et al (2009) Photocatalytic production of hydrogen in systems based on CdxZn1−xS/Ni0 nanostructures. Theor Exp Chem 45:12–22. doi:10.1007/s11237-009-9057-x

    Article  Google Scholar 

  53. Henglein A, Lilie J (1981) Storage of electrons in aqueous solution: the rates of chemical charging and discharging the colloidal silver microelectrode. J Am Chem Soc 103:1059–1066. doi:10.1021/ja00395a011

    Article  Google Scholar 

  54. Savinov EN, Nagornyi VE, Parmon VN (1994) Influence of excessive charge of colloidal cadmium sulfide particles on interfacial electron transfer rate. Chem Phys (in Russian) 13:56–65

    Google Scholar 

  55. Matsumoto H, Uchida H, Matsunaga T et al (1994) Photoinduced reduction of viologens on size-separated CdS nanocrystals. J Phys Chem 98:11549–11556. doi:10.1021/j100095a041

    Article  Google Scholar 

  56. Zhukowskiy MA, Stroyuk OL, Shvalagin VV et al (2009) Photocatalytic growth of CdS, PbS, and CuxS nanoparticles on the nanocrystalline TiO2 films. J Photochem Photobiol, A 203:137–144. doi:10.1016/j.jphotochem.2009.01.007

    Article  Google Scholar 

  57. Stroyuk OL, Kuchmii SY, Zhukovskii MA et al (2009) Effect of the method of production of TiO2/CdS film nanoheterostructures on the effectiveness of photoinduced charge separation. Theor Exp Chem 45:302–307. doi:10.1007/s11237-009-9097-2

    Article  Google Scholar 

  58. Serpone N, Lawless D, Khairutdinov R, Pelizzetti E (1995) Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes R p = 1.0–13.4 nm). Relevance to heterogeneous photocatalysis. J Phys Chem 99:16655–16661. doi:10.1021/j100045a027

    Article  Google Scholar 

  59. Bahnemann D, Henglein A, Lilie J, Spanhel L (1984) Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2. J Phys Chem 88:709–711. doi:10.1021/j150648a018

    Article  Google Scholar 

  60. Teoh WY, Mädler L, Beydoun D et al (2005) Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chem Eng Sci 60:5852–5861. doi:10.1016/j.ces.2005.05.037

    Article  Google Scholar 

  61. Duonghong D, Ramsden J, Grätzel M (1982) Dynamics of interfacial electron transfer processes in colloidal semiconductor systems. J Am Chem Soc 104:2977–2985. doi:10.1021/ja00375a006

    Article  Google Scholar 

  62. Bessekhouad Y, Chaoui N, Trzpit M et al (2006) UV-vis versus visible degradation of Acid Red II in a coupled CdS/TiO2 semiconductors suspension. J Photochem Photobiol A 183:218–224. doi:10.1016/j.jphotochem.2006.03.025

    Article  Google Scholar 

  63. Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Micropor Mesopor Mater 114:431–439. doi:10.1016/j.micromeso.2008.01.032

    Article  Google Scholar 

  64. Rajh T, Micic OI, Lawless D, Serpone N (1992) Semiconductor photophysics. 7. Photoluminescence and picosecond charge carrier dynamics in cadmium sulfide quantum dots confined in a silicate glass. J Phys Chem 96:4633–4641. doi:10.1021/j100190a090

    Article  Google Scholar 

  65. Kamat PV, Dimitrijević NM, Fessenden RW (1987) Photoelectrochemistry in particulate systems. 6. Electron-transfer reactions of small CdS colloids in acetonitrile. J Phys Chem 91:396–401. doi:10.1021/j100286a029

    Article  Google Scholar 

  66. Dzhagan VM, Valakh MY, Raevskaya AE et al (2008) Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology 19:305707

    Article  Google Scholar 

  67. Landolt-Börnstein (1982) Numerical data and functional relationships in science and technology. Group III, Vol. 17b—Semiconductors, Sect. 3.10.1. Springer, Berlin

    Google Scholar 

  68. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi:10.1021/cr0500535

    Article  Google Scholar 

  69. Trallero-Giner C, Debernardi A, Cardona M et al (1997) Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys Rev B 57:4664. doi:10.1103/PhysRevB.57.4664

    Article  Google Scholar 

  70. Zhang JY, Wang XY, Xiao M et al (2002) Lattice contraction in free-standing CdSe nanocrystals. Appl Phys Lett 81:2076–2078. doi:10.1063/1.1507613

    Article  Google Scholar 

  71. Hwang YN, Shin S, Park HL et al (1996) Effect of lattice contraction on the Raman shifts of CdSe quantum dots in glass matrices. Phys Rev B 54:15120. doi:10.1103/PhysRevB.54.15120

    Article  Google Scholar 

  72. Rolo AG, Vasilevskiy MI (2007) Raman spectroscopy of optical phonons confined in semi–conductor quantum dots and nanocrystals. J Raman Spectr 38:618–633. doi:10.1002/jrs.1746

    Article  Google Scholar 

  73. Raevskaya AE, Grodzyuk GY, Korzhak AV et al (2011) Preparation and optical properties of polyethyleneimine-stabilized colloidal CdSe and CdSxSe1−x quantum dots. Theor Exp Chem 46:416–421. doi:10.1007/s11237-011-9173-2

    Article  Google Scholar 

  74. Kozitskiy AV, Stroyuk OL, Kuchmiy SY et al (2013) Morphology, optical, and photoelectro–chemical properties of electrodeposited nanocrystalline ZnO films sensitized with CdxZn1−xS nanoparticles. J Mater Sci 48:7764–7773. doi:10.1007/s10853-013-7598-9

    Article  Google Scholar 

  75. Yükselici H, Persans PD, Hayes TM (1995) Optical studies of the growth of Cd1−xZnxS nanocrystals in borosilicate glass. Phys Rev B 52:11763. doi:10.1103/PhysRevB.52.11763

    Article  Google Scholar 

  76. Azhniuk YM, Gomonnai AV, Lopushansky VV et al (2007) Morphology, optical, and photoelectrochemical properties of electrodeposited nanocrystalline ZnO films sensitized with CdxZn1−xS nanoparticles. J Phys 92:012044. doi:10.1007/s10853-013-7598-9

    Google Scholar 

  77. Arora AK, Rajalakshmi M (2000) Resonance Raman scattering from Cd1−xZnxS nanoparticles dispersed in oxide glass. J Appl Phys 88:5653. doi:10.1063/1.1321025

    Article  Google Scholar 

  78. Sahoo S, Dhara S, Sivasubramanian V, Kalavathi S, Arora AK (2009) Phonon confinement and substitutional disorder in Cd1−xZnxS nanocrystals. J Raman Spectrosc 40:1050. doi:10.1002/jrs.2232

    Article  Google Scholar 

  79. Dzhagan VM, Valakh MY, Raevskaya AE et al (2007) Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS. Nanotechnology 18:285701

    Article  Google Scholar 

  80. Dzhagan VM, Valakh MY, Raevska AE et al (2009) The influence of shell parameters on phonons in core–shell nanoparticles: a resonant Raman study. Nanotechnology 20:365704

    Article  Google Scholar 

  81. Raevskaya AE, Stroyuk OL, Kuchmiy SY et al (2007) Optical study of CdS- and ZnS-passivated CdSe nanocrystals in gelatin films. J Phys: Condens Matter 19:386237

    Google Scholar 

  82. Dzhagan VM, Raevskaya AE, Stroyuk OL et al (2009) Resonant Raman spectroscopy of confined and surface phonons in CdSe-capped CdS nanoparticles. Phys Stat Sol C 6:2043–2046. doi:10.1002/pssc.200881755

    Article  Google Scholar 

  83. Dzhagan VM, Valakh MY, Raevskaya AE et al (2007) Temperature-dependent resonant Raman scattering study of core/shell nanocrystals. J Phys Conf Series 92:012045

    Google Scholar 

  84. Dzhagan VM, Valakh MY, Raevskaya AE et al (2008) Characterization of semiconductor core-shell nanoparticles by resonant Raman scattering and photoluminescence spectroscopy. Appl Surf Sci 255:725–727. doi:10.1016/j.apsusc.2008.07.018

    Article  Google Scholar 

  85. Raevskaya AE, Stroyuk AL, Kuchmiy SY (2006) Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions. J Colloid Interface Sci 302:133–141. doi:10.1016/j.jcis.2006.06.018

    Article  Google Scholar 

  86. Krasil’nik ZK, Lytvyn P, Lobanov DN et al (2002) Microscopic and optical investigation of Ge nanoislands on silicon substrates. Nanotechnology 13:81–85

    Google Scholar 

  87. Raevskaya AE, Stroyuk OL, Kuchmiy SY et al (2006) Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids Surfaces A 290:304–309. doi:10.1016/j.colsurfa.2006.05.038

    Article  Google Scholar 

  88. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  89. www.malvern.com/ZetasizerNanoZS

  90. Stroyuk OL, Dzhagan VM, Shvalagin VV et al (2010) Size-dependent optical properties of colloidal ZnO nanoparticles charged by photoexcitation. J Phys Chem C 114:220–225. doi:10.1021/jp908879h

    Article  Google Scholar 

  91. Raevskaya AE, Stroyuk OL, Panasiuk YV et al (2016) A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano-Objects, Nano-Struct. doi:10.1016/j.nanoso.2015.12.001

    Google Scholar 

  92. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. doi:10.1002/adma.201001068

    Article  Google Scholar 

  93. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/B917103G

    Article  Google Scholar 

  94. Bai S, Shen X (2012) Graphene-inorganic composites. RSC Adv 2:64–98. doi:10.1039/C1RA00260K

    Google Scholar 

  95. An X, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv 1:1426–1434. doi:10.1039/C1RA00382H

    Google Scholar 

  96. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699. doi:10.1039/C2CC00110A

    Article  Google Scholar 

  97. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Progr Mater Sci 56:1178–1271. doi:10.1016/j.pmatsci.2011.03.003

    Article  Google Scholar 

  98. Zhang Y, Tang ZR, Fu X, Xu YJ (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 9:7426–7435. doi:10.1021/nn202519j

    Article  Google Scholar 

  99. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. doi:10.1039/C1CS15172J

    Article  Google Scholar 

  100. Yao J, Sun Y, Yang M, Duan Y (2012) Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem 22:14313–14329. doi:10.1039/C2JM31632C

    Article  Google Scholar 

  101. Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004. doi:10.1002/adma.201201587

    Article  Google Scholar 

  102. Erickson K, Erni R, Lee Z et al (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472. doi:10.1002/adma.201000732

    Article  Google Scholar 

  103. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J Phys Chem Lett 3:867–872. doi:10.1021/jz300236w

    Article  Google Scholar 

  104. Wen X, Garland CW, Hwa T et al (1992) Crumpled and collapsed conformations of graphite oxide membranes. Nature 355:426–428. doi:10.1038/355426a0

    Article  Google Scholar 

  105. Whitby RLD, Gun’ko VM, Korobeynik A et al (2012) Driving forces of conformational changes in single-layer graphene oxide. ACS Nano 6:3967–3973. doi:10.1021/nn3002278

  106. Zangmeister CD, Ma X, Zachariah MR (2012) Restructuring of graphene oxide sheets into monodisperse nanospheres. Chem Mater 24:2554–2557. doi:10.1021/cm301112j

    Article  Google Scholar 

  107. Whitby RLD, Korobeynik A, Gun’ko VM et al (2011) pH-driven physicochemical conformational changes of single-layer graphene oxide. Chem Commun 47:9645–9647. doi:10.1039/C1CC13725E

    Article  Google Scholar 

  108. Kim K, Lee Z, Malone BD et al (2011) Multiply folded graphene. Phys Rev B 83:245433. doi:10.1103/PhysRevB.83.245433

    Article  Google Scholar 

  109. Park S, An J, Piner RD et al (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594. doi:10.1021/cm801932u

    Article  Google Scholar 

  110. Tang L, Wang Y, Liu Y, Li J (2011) DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano 5:3817–3822. doi:10.1021/nn200147n

    Article  Google Scholar 

  111. Stroyuk OL, Andryushina NS, Shcherban ND et al (2012) Photochemical reduction of graphene oxide in colloidal solution. Theoret Exp Chem 48:1–11. doi:10.1007/s11237-012-9235-0

    Article  Google Scholar 

  112. Shulga YM, Martynenko VM, Muradyan VE et al (2010) Gaseous products of thermo- and photo-reduction of graphite oxide. Chem Phys Lett 498:287–291. doi:10.1016/j.cplett.2010.08.056

    Article  Google Scholar 

  113. Matsumoto Y, Koinuma M, Kim SY et al (2010) Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2:3461–3466. doi:10.1021/am100900q

    Article  Google Scholar 

  114. Andryushina NS, Stroyuk OL, Yanchuk IB, Yefanov AV (2014) A dynamic light scattering study of photochemically reduced colloidal graphene oxide. Colloids Polym Sci 292:539–546. doi:10.1007/s00396-013-3134-3

    Article  Google Scholar 

  115. Prezioso S, Perrozzi F, Donarelli M et al (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28:5489–5495. doi:10.1021/la204637a

    Article  Google Scholar 

  116. Stroyuk OL, Andryushina NS, Kuchmy SY et al (2015) Photochemical processes involving graphene oxide. Theor Exp Chem 51:1–29. doi:10.1007/s11237-015-9393-y

    Article  Google Scholar 

  117. Lotya M, Rakovich A, Donegan JF, Coleman JN (2013) Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology 24:265703

    Article  Google Scholar 

  118. Dreyer DR, Park S, Bielawski CW, Ruoff RD (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/B917103G

    Article  Google Scholar 

  119. Shul’ga YM, Vasilets VN, Baskakov SA et al (2012) Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation. High En Chem 46:117–121. doi:10.1134/S0018143912020099

  120. Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186. doi:10.1002/adma.201203229

    Article  Google Scholar 

  121. Zhang B, Li L, Wang Z et al (2012) Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. J Mater Chem 22:7775–7781. doi:10.1039/C2JM16722K

    Article  Google Scholar 

  122. Bittolo BS, Piccinini M, Mariani A et al (2011) Wettability and switching of electrical conductivity in UV irradiated graphene oxide films. Diamond Rel Mater 20:871–874. doi:10.1016/j.diamond.2011.04.013

    Article  Google Scholar 

  123. Zhang HH, Liu Q, Feng K et al (2012) Facile photoreduction of graphene oxide by an NAD(P)H model: Hantzsch 1,4-Dihydropyridine. Langmuir 28:8224–8229. doi:10.1021/la301429g

    Article  Google Scholar 

  124. Rayevska AE, Grodzyuk GY, Dzhagan VM et al (2010) Synthesis and characterization of white-emitting CdS quantum dots stabilized with polyethyleneimine. J Phys Chem C 114:22478–22486. doi:10.1021/jp108561u

    Article  Google Scholar 

  125. Raevskaya AE, Grodzyuk GY, Stroyuk OL et al (2010) Preparation and spectral properties of high-efficiency luminescent polyethyleneimine-stabilized CdS quantum dots. Theor Exp Chem 46:233–238. doi:10.1007/s11237-010-9145-y

    Article  Google Scholar 

  126. Stroyuk OL, Raevskaya AE, Korzhak AV, Kuchmiy SY (2007) Zink sulfide nanoparticles: spectral properties and photocatalytic activity in metals reduction reactions. J Nanopart Res 9:1027–1039. doi:10.1007/s11051-006-9183-5

    Article  Google Scholar 

  127. Matsumoto H, Sakata T, Mori H, Yoneyama H (1996) Preparation of monodisperse CdS nanocrystals by size selective photocorrosion. J Phys Chem 100:13781–13785. doi:10.1021/jp960834x

    Article  Google Scholar 

  128. Li J, Xia JB (2000) Hole levels and exciton states in CdS nanocrystals. Phys Rev B 62:12613–12616. doi:10.1103/PhysRevB.62.12613

    Article  Google Scholar 

  129. Lippens P, Lannoo M (1989) Calculation of the band gap for small CdS and ZnS crystallites. Phys Rev B 39:10935–10942. doi:10.1103/PhysRevB.39.10935

    Article  Google Scholar 

  130. Wang Y, Herron N (1990) Quantum size effects on the exciton energy of CdS clusters. Phys Rev B 42:7253–7255. doi:10.1103/PhysRevB.42.7253

    Article  Google Scholar 

  131. Yang CC, Jiang Q (2006) Size effect on the bandgap of II–VI semiconductor nanocrystals. Mater Sci Eng B 131:191–194. doi:10.1016/j.mseb.2006.04.016

    Article  Google Scholar 

  132. Sapra S, Sarma D (2004) Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys Rev B 69:125304. doi:10.1103/PhysRevB.69.125304

    Article  Google Scholar 

  133. Gorer S, Ganske J, Hemminger J, Penner R (1998) Size-selective and epitaxial electrochemical/chemical synthesis of sulfur-passivated cadmium sulfide nanocrystals on graphite. J Am Chem Soc 120:9584–9593. doi:10.1021/ja981676l

    Article  Google Scholar 

  134. Baskoutas S, Terzis A (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99:013708. doi:10.1063/1.2158502

    Article  Google Scholar 

  135. Murakoshi K, Hosokawa H, Saitoh M et al (1998) Preparation of size-controlled hexagonal CdS nanocrystallites and the characteristics of their surface structures. J Chem Soc, Faraday Trans 94:579–586. doi:10.1039/A707192B

    Article  Google Scholar 

  136. Nandakumar P, Vijayan C, Murti Y (2002) Optical absorption and photoluminescence studies on CdS quantum dots in Nafion. J Appl Phys 91:1509–1514. doi:10.1063/1.1425077

    Article  Google Scholar 

  137. Leistikow MD, Johansen J, Kettelarij AJ et al (2009) Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Phys Rev B 79:045301. doi:10.1103/PhysRevB.79.045301

    Article  Google Scholar 

  138. Wood A, Giersig M, Hilgendorff M et al (2003) Size effects in ZnO: the cluster to quantum dot transition. Austr J Chem 56:1051–1057. doi:10.1071/CH03120

    Article  Google Scholar 

  139. Wong EM, Hörtz PG, Liang CJ et al (2001) Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles. Langmuir 17:8362–8367. doi:10.1021/la010944h

    Article  Google Scholar 

  140. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4444. doi:10.1063/1.447218

    Article  Google Scholar 

  141. Fonoberov VA, Balandin AA (2004) Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect. Phys Rev B 70:195410. doi:10.1103/PhysRevB.70.195410

    Article  Google Scholar 

  142. Wang YS, Thomas PJ, O’Brien P (2006) Nanocrystalline ZnO with ultraviolet luminescence. J Phys Chem B 110:4099–4104. doi:10.1021/jp0566313

    Article  Google Scholar 

  143. Kwak H, Tiago ML, Chelikowsky JR (2008) Quantum confinement and strong coulomb corre–lation in ZnO nanocrystals. Sol State Commun 145:227–230. doi:10.1016/j.ssc.2007.11.004

    Article  Google Scholar 

  144. van Dijken A, Janssen AH, Smitsmans MHP et al (1998) Size-selective photoetching of nano–crystalline semiconductor particles. Chem Mater 10:3513–3522. doi:10.1021/cm980715p

    Article  Google Scholar 

  145. Kumbhojkar N, Nikesh VV, Kshirsagar A, Mahamuni S (2000) Photophysical properties of ZnS nanoclusters. J Appl Phys 88:6260–6264. doi:10.1063/1.1321027

    Article  Google Scholar 

  146. Souici AH, Keghouche N, Delaire JA et al (2006) Radiolytic synthesis and optical properties of ultra-small stabilized ZnS nanoparticles. Chem Phys Lett 422:25–29. doi:10.1016/j.cplett.2006.02.013

    Article  Google Scholar 

  147. Ghosh PK, Jana S, Nandy S, Chattopadhyay KK (2007) Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique. Mater Res Bull 42:505–514. doi:10.1016/j.materresbull.2006.06.019

    Article  Google Scholar 

  148. Nanda J, Sapra S, Sarma DD, Chandrasekharan N, Hodes G (2000) Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies. Chem Mater 12:1018–1024. doi:10.1021/cm990583f

    Article  Google Scholar 

  149. Kane RS, Cohen RE, Silbey R (1996) Theoretical study of the electronic structure of PbS nanoclusters. J Phys Chem 100:7928–7932. doi:10.1021/jp952869n

    Article  Google Scholar 

  150. Kang I, Wise W (1997) Electronic structure and optical properties of PbS and PbSe quantum dots. J Opt Soc Am B 14:1632–1646. doi:10.1364/JOSAB.14.001632

    Article  Google Scholar 

  151. Wang Y, Suna A, Mahler W, Kasowski R (1987) PbS in polymers. From molecules to bulk solids. J Chem Phys 87:7315–7322. doi:10.1063/1.453325

    Article  Google Scholar 

  152. Miyoshi H, Yamachika M, Yoneyama H, Mori H (1990) Photochemical properties of PbS Microcrystallites prepared in Nafion. J Chem Soc, Faraday Trans 86:815–818. doi:10.1039/FT9908600815

    Article  Google Scholar 

  153. Sapra S, Shanthi N, Sarma DD (2002) Realistic tight-binding model for the electronic structure of II-VI semiconductors. Phys Rev B 66:205202. doi:10.1103/PhysRevB.66.205202

    Article  Google Scholar 

  154. Lippens PE, Lannoo M (1991) Electronic structure of II–VI semiconductor nanocrystals. Mater Sci Eng B 9:485–487

    Article  Google Scholar 

  155. Wang LW, Zunger A (1996) Pseudopotential calculations of nanoscale CdSe quantum dots. Phys Rev B 53:9579–9582. doi:10.1103/PhysRevB.53.9579

    Article  Google Scholar 

  156. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. doi:10.1021/cm034081k

    Article  Google Scholar 

  157. Rogach AL, Kornowski A, Gao M et al (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069. doi:10.1021/jp984833b

    Article  Google Scholar 

  158. Shiang JJ, Kadavanich AV, Grubbs RK, Alivisatos AP (1995) Symmetry of annealed wurtzite CdSe nanocrystals: assignment to the C3v point group. J Phys Chem 99:17417–17422. doi:10.1021/j100048a017

    Article  Google Scholar 

  159. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. doi:10.1021/ja00072a025

    Article  Google Scholar 

  160. Raevskaya AE, Stroyuk OL, Kuchmii SY (2003) Optical characteristics of colloidal nanoparticles of CdS stabilized with sodium polyphosphate and their behavior during pulse photoexcitation. Theor Exp Chem 39:158–165. doi:10.1023/A:1024933023783

    Article  Google Scholar 

  161. Kozytskiy AV, Stroyuk OL, Kuchmiy SY et al (2014) Photoelectrochemical and Raman characterization of nanocrystalline CdS Grown on ZnO by successive ionic layer adsorption and reaction. Thin Solid Films 562:56–62. doi:10.1016/j.tsf.2014.03.070

    Article  Google Scholar 

  162. Kozytskiy AV, Stroyuk OL, Skoryk MA et al (2015) Photochemical formation and photoelectrochemical properties of TiO2/Sb2S3 heterostructures. J Photochem Photobiol A 303–304:8–16. doi:10.1016/j.jphotochem.2015.02.005

    Article  Google Scholar 

  163. Kozytskiy AV, Stroyuk OL, Kuchmiy SY (2014) Inorganic photoelectrochemical solar cells based on nanocrystalline ZnO/ZnSe and ZnO/CuSe heterostructures. Catal Today 230:227–233. doi:10.1016/j.cattod.2013.09.043

    Article  Google Scholar 

  164. Swamy V, Kuznetsov A, Dubrovinsky LS et al (2005) Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys Rev B 71:184302. doi:10.1103/PhysRevB.71.184302

    Article  Google Scholar 

  165. Azhniuk YM, Hutych YI, Lopushansky VV et al (2007) Interplay of factors affecting Raman scattering in cadmium chalcogenide nanocrystals in dielectric media. J Phys: Conf Ser 79:012017

    Google Scholar 

  166. Bersani D, Loticci PP (1992) Confinement effects on the LO-phonons in CdSexS1−x doped glasses. Phys stat sol (b) 174:575–582. doi:10.1002/pssb.2221740227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Stroyuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stroyuk, O. (2018). Probing with Light—Optical Methods in Studies of Nanocrystalline Semiconductors. In: Solar Light Harvesting with Nanocrystalline Semiconductors. Lecture Notes in Chemistry, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-68879-4_6

Download citation

Publish with us

Policies and ethics