Skip to main content

Synthesis of Nanocrystalline Photo-Active Semiconductors

  • Chapter
  • First Online:
Solar Light Harvesting with Nanocrystalline Semiconductors

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 99))

  • 1214 Accesses

Abstract

Photochemical activity of a semiconductor substance depends on a variety of different properties, including the spectral sensitivity range, band gap E g, positions (potentials) of the conduction band E CB and valence band E VB, mobility of photogenerated charge carriers and density of donor and acceptor states, surface morphology, adsorption capability, etc. Only a limited number of the reported semiconductors has a “complete” set of characteristics necessary for the photocatalytic action, mostly from the AIVBVI and AIIBVI groups. The photochemical activity was broadly reported for metal oxides (mostly TiO2, ZnO and rarely—WO3, Fe2O3, SnO2, Bi2O3, etc.), metal chalcogenides (most frequently—CdS, CdxZn1−xS, ZnS and rarely—CdSe, CdTe, In2S3, HgS, MoS2, etc.), and salts of metal based acids—metallates (for example, Na2Ti2O7, NaTaO3, SrTiO3, etc.). The photochemical activity of other semiconductors is reported much scarcely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henglein A (1989) Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. doi:10.1021/cr00098a010

    Article  Google Scholar 

  2. Eychmüller A (2000) Structure and photophysics of semiconductor nanocrystals. J Phys Chem B 104:6514–6528. doi:10.1021/jp9943676

    Article  Google Scholar 

  3. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  Google Scholar 

  4. Fujiwara H, Hosokawa H, Murakoshi K et al (1997) Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. J Phys Chem B 101:8270–8278. doi:10.1021/jp971621q

    Article  Google Scholar 

  5. Stroyuk OL, Granchak VM, Korzhak AV, Sya Kuchmii (2004) Photoinitiation of buthylmethacrylate polymerization by colloidal semiconductor nanoparticles. J Photochem Photobiol, A 162:339–351. doi:10.1016/S1010-6030(03)00371-X

    Article  Google Scholar 

  6. Shiragami T, Ankyu H, Fukami S et al (1992) Semiconductor photocatalysis: visible light induced photoreduction of aromatic ketones and electro-deficient alkenes catalyzed by quantised cadmium sulfide. J Chem Soc, Faraday Trans 88:1055–1061. doi:10.1039/FT9928801055

    Article  Google Scholar 

  7. Stroyuk OL, Shvalagin VV, Raevskaya AE et al (2003) Photocatalysis of Cd2+ ions reduction in 2-propanol by CdS nanoparticles. Theoret Exp Chem 39:331–336

    Article  Google Scholar 

  8. Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized CdS: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96:5546–5552. doi:10.1021/j100192a067

    Article  Google Scholar 

  9. Shiragami T, Pac C, Yanagida S (1990) Visible-light-induced two-electron-transfer photoreductions on CdS: Effect of morphology. J Phys Chem 94:504–506. doi:10.1021/j100365a002

    Article  Google Scholar 

  10. Kanemoto M, Hosokawa H, Wada Y et al (1996) Semiconductor photocatalysis. Part 20. Role of surface in the photoreduction of carbon dioxide catalyzed by colloidal ZnS nanocrystallites in organic solvent. J Chem Soc, Faraday Trans 92:2401–2411. doi:10.1039/FT9969202401

    Article  Google Scholar 

  11. Kanemoto M, Shiragami T, Pac C, Yanagida S (1992) Semiconductor photocatalysis. Effective photoreduction of carbon dioxide catalyzed by ZnS quantum crystallites with low density of surface defects. J Phys Chem 96:3521–3526. doi:10.1021/j100187a062

    Article  Google Scholar 

  12. Korgel BA, Monbouquette HG (1997) Quantum confinement effects enable photocatalyzed nitrate reduction at neutral pH using CdS nanocrystals. J Phys Chem B 101:5010–5017. doi:10.1021/jp971016n

    Article  Google Scholar 

  13. Zhang JZ, O’Neil RH, Roberti TW (1994) Femtosecond studies of photoinduced electron dynamics at the liquid-solid interface of aqueous CdS colloids. J Phys Chem 98:3859–3864. doi:10.1021/j100065a049

    Article  Google Scholar 

  14. Datta A, Priyam A, Bhattacharyya SN et al (2008) Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics. J Colloid Interface Sci 322:128–135. doi:10.1016/j.jcis.2008.02.052

    Article  Google Scholar 

  15. Fisher CH, Henglein A (1989) Photochemistry of colloidal semiconductors. 31. Preparation and photolysis of CdS sols in organic solvents. J Phys Chem 93:5578–5581. doi:10.1021/j100351a049

    Article  Google Scholar 

  16. Weiβ H, Fernandez A, Kisch H (2001) Elektronische Halbleiter-träger-wechselwirkung – ein neuer Effekt in der Halbleiterphotokatalyse. Angew Chem 113:3942–3945

    Article  Google Scholar 

  17. Nenadović MT, Čomor MI, Vasić V, Mićić OI (1990) Transient bleaching of small PbS colloids. Influence of surface properties. J Phys Chem 94:6390–6396. doi:10.1021/j100379a044

    Article  Google Scholar 

  18. Nanda J, Sapra S, Sarma DD et al (2000) Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies. Chem Mater 12:1018–1024. doi:10.1021/cm990583f

    Article  Google Scholar 

  19. Riley DJ, Waggett JP, Wijayantha KGU (2004) Colloidal bismuth sulfide nanoparticles: a photoelectrochemical study of the relationship between bandgap and particle size. J Mater Chem 14:704–708. doi:10.1039/B311517H

    Article  Google Scholar 

  20. Haram SK, Kshirsagar A, Gujarathi YD et al (2011) Quantum confinement in CdTe quantum dots: investigation through cyclic voltammetry supported by density functional theory (DFT). J Phys Chem C 115:6243–6249. doi:10.1021/jp111463f

    Article  Google Scholar 

  21. Warrier M, Lo MKF, Monbouquette H, Garcia-Garibay MA (2004) Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles. Photochem Photobiol Sci 3:859–863. doi:10.1039/B404268A

    Article  Google Scholar 

  22. Kumar A, Mital S (2004) Synthesis and photophysics of 6-dimethylaminopurine-capped Q-CdS nanoparticles—a study of its photocatalytic behavior. Inter J Photoenergy 6:61–68. doi:10.1155/S1110662X04000091

    Article  Google Scholar 

  23. Torimoto T, Sakata T, Mori H, Yoneyama H (1994) Effect of surface charge of 4-amino-thiophenol-modified PbS microcrystal photocatalysts on photoinduced charge transfer. J Phys Chem 98:3036–3043. doi:10.1021/j100062a048

    Article  Google Scholar 

  24. Nakashima T, Sakashita M, Nonoguchi Y, Kawai T (2007) Sensitized photopolymerization of an ionic liquid-based monomer by using CdTe nanocrystals. Macromol 40:6540–6544. doi:10.1021/ma0707988

    Article  Google Scholar 

  25. Raevskaya AE, Stroyuk OL, Sya Kuchmii (2004) Photocatalytic oxidation of hydrosulfide ions by molecular oxygen over cadmium sulfide nanoparticles. J Nanopart Res 6:149–158. doi:10.1023/B:NANO.0000034719.30620.d3

    Article  Google Scholar 

  26. Stroyuk OL, Sobran IV, Korzhak AV et al (2008) Photopolymerization of water-soluble acrylic monomers induced by colloidal CdS and CdxZn1−xS nanoparticles. Colloid Polym Sci 286:489–498. doi:10.1007/s00396-007-1824-4

    Article  Google Scholar 

  27. Matsumoto H, Uchida H, Matsunaga T et al (1994) Photoinduced reduction of viologens on size-separated CdS nanocrystals. J Phys Chem 98:11549–11556. doi:10.1021/j100095a041

    Article  Google Scholar 

  28. Nosaka Y, Miyama H, Terauchi M, Kobayashi T (1988) Photoinduced electron transfer from colloidal cadmium sulfide to methylviologen: a picosecond transient absorption study. J Phys Chem 92:255–256. doi:10.1021/j100313a003

    Article  Google Scholar 

  29. Nosaka Y, Fox MA (1986) Effect of light intensity on the quantum yield of photoinduced electron transfer from colloidal cadmium sulfide to methylviologen. J Phys Chem 90:6521–6522. doi:10.1021/j100282a021

    Article  Google Scholar 

  30. Raevskaya AE, Korzhak AV, Stroyuk OL, Kuchmiy SY (2005) Spectral, optical and photochemical properties of ZnS nanoparticles. Theoret Exp Chem 41:105–109

    Article  Google Scholar 

  31. Raevskaya AE, Korzhak AV, Stroyuk OL, Kuchmiy SY (2005) Photocatalytic reduction of (II) with the participation of ZnS nanoparticles. Theoret Exp Chem 41:231–235

    Google Scholar 

  32. Raevskaya AE, Korzhak AV, Stroyuk OL, Kuchmiy SY (2005) Photocatalysis of the formation of ZnS/Au heterostructure via reduction of complex gold ions by ZnS nanoparticles. Theoret Exp Chem 41:359–364

    Article  Google Scholar 

  33. Stroyuk OL, Raevskaya AE, Korzhak AV, Kuchmiy SY (2007) Zink sulfide nanoparticles: spectral properties and photocatalytic activity in metals reduction reactions. J Nanopart Res 9:1027–1039. doi:10.1007/s11051-006-9183-5

    Article  Google Scholar 

  34. Kryukov AI, Zinchuk NN, Korzhak AV et al (2004) Optical and catalytic properties of Ag2S nanoparticles. J Mol Catal A 221:209–221. doi:10.1016/j.molcata.2004.07.009

    Article  Google Scholar 

  35. Meahcov L, Sandu I (2004) Colloidal CdS fluorescence quenching by MV2+ under continuous irradiation. J Fluorescence 14:181–185. doi:10.1023/B:JOFL.0000016289.30498.e9

    Article  Google Scholar 

  36. Rossetti R, Brus LE (1986) Picosecond resonance Raman scattering study of methylviologen reduction on the surface of photoexcited colloidal CdS crystallites. J Phys Chem 90:558–560. doi:10.1021/j100276a014

    Article  Google Scholar 

  37. Kanade KG, Baeg JO, Mulik UP et al (2006) Nano-CdS by polymer-inorganic solid-state reaction: visible light pristine photocatalyst for hydrogen generation. Mater Res Bull 41:2219–2225. doi:10.1016/j.materresbull.2006.04.031

    Article  Google Scholar 

  38. Kamat PV, Dimitrijević NM, Fessenden RW (1988) Photoelectrochemistry in particulate systems. 7. Electron-transfer reactions of indium sulfide semiconductor colloids. J Phys Chem 92:2324–2329. doi:10.1021/j100319a044

    Article  Google Scholar 

  39. Henglein A (1982) Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. J Phys Chem 86:2291–2293. doi:10.1021/j100210a010

    Article  Google Scholar 

  40. Igumenova TI, Vasil’tsova OV, Parmon VN (1996) Formation and photocatalytic properties of Q-sized nanoparticles of various transition metal sulphides in the inner cavities of lecithin vesicles modified with sodium dodecylsulphate. J Photochem Photobiol, A 94:205–213. doi:10.1016/1010-6030(95)04175-3

    Article  Google Scholar 

  41. Raevskaya AE, Stroyuk OL, Kuchmiy SY (2006) Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions. J Colloid Interface Sci 302:133–141. doi:10.1016/j.jcis.2006.06.018

    Article  Google Scholar 

  42. Bavykin DV, Savinov EN, Parmon VN (2000) Studies on the kinetics of interfacial electron transfer sensitized by colloidal CdS. J Photochem Photobiol, A 130:57–61. doi:10.1016/S1010-6030(99)00196-3

    Article  Google Scholar 

  43. Variano BF, Hwang DM, Sandroff CJ et al (1987) Quantum effects in anisotropic semiconductor clusters: colloidal suspensions of Bi2S3 and Sb2S3. J Phys Chem 91:6455–6458. doi:10.1021/j100310a006

    Article  Google Scholar 

  44. Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4:198–203. doi:10.1039/B107544F

    Article  Google Scholar 

  45. Yagi I, Mikami K, Ebina K et al (2006) Size-dependent carrier dynamics in CdS nanoparticles by femtosecond visible-pump/IR-probe measurements. J Phys Chem B 110:14192–14197. doi:10.1021/jp061073t

    Article  Google Scholar 

  46. Hirai T, Nanba M, Komasawa I (2002) Dithiol-mediated immobilization of CdS nanoparticles from reverse micellar system onto Zn-doped silica particles and their high photocatalytic activity. J Colloid Interface Sci 252:89–92. doi:10.1006/jcis.2002.8430

    Article  Google Scholar 

  47. Thurston TR, Wilcoxon JP (1999) Photooxidation of organic chemicals catalyzed by nanoscale MoS. J Phys Chem B 103:11–17. doi:10.1021/jp982337h

    Article  Google Scholar 

  48. Wilcoxon JP, Samara GA (1995) Strong quantum-size effects in a layered semiconductor: MoS2 nanoclusters. Phys Rev B 51:7299–7302. doi:10.1103/PhysRevB.51.7299

    Article  Google Scholar 

  49. Matsumoto H, Matsunaga T, Sakata T et al (1995) Size dependent fluorescence quenching of CdS nanocrystals caused by TiO2 colloids as a potential-variable quencher. Langmuir 11:4283–4287. doi:10.1021/la00011a019

    Article  Google Scholar 

  50. Raevskaya AE, Stroyuk OL, Kuchmiy SY et al (2006) Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids Surfaces A 290:304–309. doi:10.1016/j.colsurfa.2006.05.038

    Article  Google Scholar 

  51. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi:10.1021/cr0500535

    Article  Google Scholar 

  52. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J Phys Chem 99:16646–16654. doi:10.1021/j100045a026

    Article  Google Scholar 

  53. Hykrdova L, Jirkovsky J, Mailhot G, Bolte M (2002) Fe (III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism. J Photochem Photobiol, A 151:181–193. doi:10.1016/S1010-6030(02)00014-X

    Article  Google Scholar 

  54. Ahn WY, Sheeley SA, Rajh T, Cropek DM (2007) Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl Catal B 74:103–110. doi:10.1016/j.apcatb.2007.01.016

    Article  Google Scholar 

  55. Pelet S, Grätzel M, Moser JE (2003) Femtosecond dynamics of interfacial and intermolecular electron transfer at eosin-sensitized metal oxide nanoparticles. J Phys Chem B 107:3215–3224. doi:10.1021/jp027358x

    Article  Google Scholar 

  56. Huber R, Moser JE, Grätzel M, Wachtveitl J (2002) Real-time observation of photoinduced adiabatic electron transfer in strongly coupled dye/semiconductor colloidal systems with a 6 fs time constant. J Phys Chem B 106:6494–6499. doi:10.1021/jp0155819

    Article  Google Scholar 

  57. Huber R, Spörlein S, Moser JE et al (2000) The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J Phys Chem B 104:8995–9003. doi:10.1021/jp9944381

    Article  Google Scholar 

  58. Chen LX, Rajh T, Wang Z, Thurnauer MC (1997) XAFS studies of surface strutures of TiO2 nanoparticles and photocatalytic reduction of metal ions. J Phys Chem B 101:10688–10697. doi:10.1021/jp971930g

    Article  Google Scholar 

  59. Dimitrijevic NM, Rajh T, Saponjic ZV et al (2004) Light-induced charge separation and redox chemistry at the surface of TiO2/host-guest hybrid nanoparticles. J Phys Chem B 108:9105–9110. doi:10.1021/jp049028d

    Article  Google Scholar 

  60. Dimitrijevic NM, Saponjic ZV, Bartels DM et al (2003) Revealing the nature of trapping sites in nanocrystalline titanium dioxide by selective surface modification. J Phys Chem B 107:7368–7375. doi:10.1021/jp034064i

    Article  Google Scholar 

  61. Bahnemann D, Henglein A, Lilie J, Spanhel L (1984) Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2. J Phys Chem 88:709–711. doi:10.1021/j150648a018

    Article  Google Scholar 

  62. Ban T, Kondoh S, Ohya T et al (2003) Photocatalysis of a transparent titanate aqueous sol prepared from titanium tetraisopropoxide and tetramethylammonium hydroxide. J Photochem Photobiol, A 156:219–225. doi:10.1016/S1010-6030(02)00404-5

    Article  Google Scholar 

  63. Serpone N, Sharma DK, Moser J, Grätzel M (1987) Reduction of acceptor relay species by conduction band electrons of colloidal titanium dioxide: light-induced charge separation in picosecond time domain. Chem Phys Lett 136:47–51. doi:10.1016/0009-2614(87)87296-2

    Article  Google Scholar 

  64. Moser J, Grätzel M (1983) Light-induced electron transfer in colloidal semiconductor dispersions: single vs. dielectronic reduction of acceptors by conduction-band electrons. J Am Chem Soc 105:6547–6555. doi:10.1021/ja00360a003

    Article  Google Scholar 

  65. Matylitsky VV, Lenz MO, Wachtveitl J (2006) Observation of pH-dependent back-electron-transfer dynamics in alizarin/TiO2 adsorbates: importance of trap states. J Phys Chem B 110:8372–8379. doi:10.1021/jp060588h

    Article  Google Scholar 

  66. Walters KA, Gaal DA, Hupp JT (2002) Interfacial charge transfer and colloidal semiconductor dye-sensitization: mechanism assessment via stark emission spectroscopy. J Phys Chem B 106:5139–5142. doi:10.1021/jp015540c

    Article  Google Scholar 

  67. Ramakrishna G, Ghosh HN (2001) Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the Marcus inverted regime. J Phys Chem B 105:7000–7008. doi:10.1021/jp011291g

    Article  Google Scholar 

  68. Kölle U, Moser J, Grätzel M (1985) Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal TiO2. Inorg Chem 24:2253–2258. doi:10.1021/ic00208a026

    Article  Google Scholar 

  69. Müller BR, Majoni S, Meissner D, Memming R (2002) Photocatalytic oxidation of ethanol on micrometer and nanometer-sized semiconductor particles. J Photochem Photobiol, A 151:253–265. doi:10.1016/S1010-6030(02)00010-2

    Article  Google Scholar 

  70. Shchukin DG, Möhwald H (2005) Photosynthesis inside polyelectrolyte capsules: effect of confined media. Langmuir 21:5582–5587. doi:10.1021/la050429+

    Article  Google Scholar 

  71. Zang L, Rodgers MAJ (2000) Diffusion-controlled charge transfer from excited Ru(bpy) 2+3 into nanosized TiO2 colloids with EDTA. J Phys Chem B 104:468–474. doi:10.1021/jp992636m

    Article  Google Scholar 

  72. Fessenden RW, Kamat PV (1995) Rate constants for charge injection from excited sensitizer into SnO2, ZnO, and TiO2 semiconductor nanocrystallites. J Phys Chem 99:12902–12906. doi:10.1021/j100034a032

    Article  Google Scholar 

  73. Weng YX, Wang YQ, Asbury JB et al (2000) Back electron transfer from TiO2 nanoparticles to FeIII(CN) 3−6 : origin of non-single-exponential and particle size independent dynamics. J Phys Chem B 104:93–104. doi:10.1021/jp992522a

    Article  Google Scholar 

  74. Yang X, Tamai N (2001) How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy. Phys Chem Chem Phys 3:3393–3398. doi:10.1039/B101721G

    Article  Google Scholar 

  75. Fernandez A, Caballero A, Gonzalez-Elipe AR et al (1995) In situ EXAFS study of the photocatalytic reduction and deposition of gold on colloidal titania. J Phys Chem 99:3303–3309. doi:10.1021/j100010a047

    Article  Google Scholar 

  76. Rabani J, Yamashita K, Ushida K et al (1998) Fundamental reactions in illuminated titanium dioxide nanocrystallite levels studied by pulsed laser. J Phys Chem B 102:1689–1695. doi:10.1021/jp973411j

    Article  Google Scholar 

  77. Yoshihara T, Katoh R, Furube A et al (2004) Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2500 nm) transient absorption spectroscopy. J Phys Chem B 108:3817–3823. doi:10.1021/jp031305d

    Article  Google Scholar 

  78. Hao YQ, Wang YF, Weng YX (2008) Particle-size-dependent hydrophilicity of TiO2 nanoparticles characterized by Marcus reorganization energy of interfacial charge recombination. J Phys Chem B 112:8995–9000. doi:10.1021/jp802532w

    Google Scholar 

  79. Martini I, Hodak JH, Hartland GV (1999) Dynamics of semiconductor-to-dye electron transfer from anthracene dyes bound to different sized TiO2 particles. J Phys Chem B 103:9104–9111. doi:10.1021/jp990302r

    Article  Google Scholar 

  80. Ghosh HN (1999) Charge transfer emission in coumarin 343 sensitized TiO2 nanoparticle: a direct measurement of back electron transfer. J Phys Chem B 103:10382–10387. doi:10.1021/jp9918611

    Article  Google Scholar 

  81. Kim J, Lee D (2007) Size-controlled interparticle charge transfer between TiO2 and quantized capacitors. J Am Chem Soc 129:7706–7707. doi:10.1021/ja071329o

    Article  Google Scholar 

  82. Behar D, Rabani J (2001) Laser photolysis of TiO2 layers in the presence of aqueous iodide. J Phys Chem B 105:6324–6329. doi:10.1021/jp003176w

    Article  Google Scholar 

  83. Skinner DE, Colombo DP, Cavaleri JJ, Bowman RM (1995) Femtosecond investigation of electron trapping in semiconductor nanoclusters. J Phys Chem 99:7853–7856. doi:10.1021/j100020a003

    Article  Google Scholar 

  84. Grabner G, Quint RM (1991) Pulsed-laser-induced charge-transfer reactions in aqueous TiO2 colloids. A study of the dependence of transient formation on photon fluence. Langmuir 7:1091–1096. doi:10.1021/la00054a012

    Article  Google Scholar 

  85. Yonezawa Y, Kometani N, Sakaue T, Yano A (2005) Photoreduction of silver ions in a colloidal titanium dioxide suspension. J Photochem Photobiol, A 171:1–8. doi:10.1016/j.jphotochem.2004.08.020

    Article  Google Scholar 

  86. Zhang R, Gao L, Zhang Q (2004) Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium. Chemosphere 54:405–411. doi:10.1016/S0045-6535(03)00588-5

    Article  Google Scholar 

  87. Chae SY, Park MK, Le SK et al (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15:3326–3331. doi:10.1021/cm030171d

    Article  Google Scholar 

  88. Bahnemann DW, Kormann C, Hoffmann MR (1987) Preparation and characterization of quantum size zinc oxide. A detailed spectroscopic study. J Phys Chem 91:3789–3798. doi:10.1021/j100298a015

    Article  Google Scholar 

  89. Bahnemann DW (1993) Ultrasmall metal oxide particles: preparation, photophysical characterization, and photocatalytic properties. Isr J Chem 33:115–136. doi:10.1002/ijch.199300017

    Article  Google Scholar 

  90. Wang CY, Böttcher C, Bahnemann DW, Dohrmann JK (2003) A comparative study of nanometer sized Fe (III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J Mater Chem 13:2322–2329. doi:10.1039/B303716A

    Article  Google Scholar 

  91. Kamat PV, Patrick B (1992) Photophysics and photochemistry of quantized ZnO colloids. J Phys Chem 96:6829–6834. doi:10.1021/j100195a055

    Article  Google Scholar 

  92. Hoffman AJ, Yee H, Mills G, Hofmann MR (1992) Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids. J Phys Chem 96:5540–5546. doi:10.1021/j100192a066

    Article  Google Scholar 

  93. Henglein A (1993) Physicochemical properties of small metal particles in solution “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471. doi:10.1021/j100123a004

    Article  Google Scholar 

  94. Su S, Lu SX, Xu WG (2008) Photocatalytic degradation of reactive brilliant blue X-BR in aqueous solution using quantum-sized ZnO. Mater Res Bull 43:2172–2178. doi:10.1016/j.materresbull.2007.08.029

    Article  Google Scholar 

  95. van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B 104:1715–1723. doi:10.1021/jp993327z

    Article  Google Scholar 

  96. Stroyuk OL, Shvalagin VV, Kuchmiy SY (2007) Photochemical synthesis of ZnO/Ag nanocomposites. J Nanopart Res 9:427–440. doi:10.1007/s11051-006-9086-5

    Article  Google Scholar 

  97. Stroyuk OL, Dzhagan VM, Shvalagin VV et al (2010) Size-dependent optical properties of colloidal ZnO nanoparticles charged by photoexcitation. J Phys Chem C 114:220–225. doi:10.1021/jp908879h

    Article  Google Scholar 

  98. Panasiuk YV, Raevskaya OE, Stroyuk OL et al (2014) Colloidal ZnO nanocrystals in dimethylsulfoxide: a new synthesis, optical, photo- and electroluminescent properties. Nanotechnology 25:075601. doi:10.1088/0957-4484/25/7/075601

    Article  Google Scholar 

  99. Raevskaya AE, Panasiuk YV, Stroyuk OL et al (2014) Spectral and luminescent properties of ZnO/SiO2 core/shell nanoparticles with size-selected ZnO cores. RSC Adv 4:63393–63401. doi:10.1039/C4RA07959K

    Article  Google Scholar 

  100. Bao N, Shen L, Takata T et al (2007) Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. J Phys Chem C 111:17527–17534. doi:10.1021/jp076566s

    Article  Google Scholar 

  101. Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287. doi:10.1021/jp072683b

    Article  Google Scholar 

  102. Xiong S, Xi B, Wang C et al (2007) Tunable synthesis of various wurtzite ZnS architectural structures and their photocatalytic properties. Adv Func Mater 17:2728–2738. doi:10.1002/adfm.200600891

    Article  Google Scholar 

  103. Wang X, Wan F, Han K et al (2008) Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties. Mater Charact 59:1765–1770. doi:10.1016/j.matchar.2008.04.005

    Article  Google Scholar 

  104. Song L, Wei H, Xu H, Zhan J (2010) Ethanol-thermal synthesis of Cd1−xZnxS nanoparticles with enhanced photodegradation of 4-chlorophenol. Mater Res Bull 45:1396–1400. doi:10.1016/j.materresbull.2010.06.044

    Article  Google Scholar 

  105. Kale BB, Baeg JO, Lee SM et al (2006) CdIn2S4 nanotubes and marigold nanostructures: a visible-light photocatalyst. Adv Func Mater 16:1349–1354. doi:10.1002/adfm.200500525

    Article  Google Scholar 

  106. Shen S, Zhao L, Guo L (2008) Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. Inter J Hydrogen En 33:4501–4510. doi:10.1016/j.ijhydene.2008.05.043

    Article  Google Scholar 

  107. Shen S, Zhao L, Guo L (2009) Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Mater Res Bull 44:100–105. doi:10.1016/j.materresbull.2008.03.027

    Article  Google Scholar 

  108. Chai B, Peng T, Zeng P et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155. doi:10.1021/jp1112729

    Article  Google Scholar 

  109. Fan WJ, Zhou ZF, Xu WB et al (2010) Preparation of ZnIn2S4/fluoropolymer fiber composites and its photocatalytic H2 evolution from splitting of water using Xe lamp irradiation. Inter J Hydrogen En 35:6525–6530. doi:10.1016/j.ijhydene.2010.04.036

    Article  Google Scholar 

  110. Jing D, Liu M, Chen Q, Guo L (2010) Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process. Inter J Hydrogen En 35:8521–8527. doi:10.1016/j.ijhydene.2010.04.170

    Article  Google Scholar 

  111. Kale BB, Baeg JO, Kong K et al (2011) Self assembled CdLa2S4 hexagon flowers, nanoprisms and nanowires: novel photocatalysts for solar hydrogen production. J Mater Chem 21:2624–2631. doi:10.1039/C0JM02890H

    Article  Google Scholar 

  112. Cao F, Shi W, Zhao L et al (2008) Hydrothermal hynthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostructures. J Phys Chem C 112:17095–17101. doi:10.1021/jp8047345

    Article  Google Scholar 

  113. Li G, Ciston S, Saponjic ZV et al (2008) Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photooxidation and photoreduction applications. J Catal 253:105–110. doi:10.1016/j.jcat.2007.10.014

    Article  Google Scholar 

  114. Kanna M, Wongnawa S (2008) Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: Characterization and photocatalytic study. Mater Chem Phys 110:166–175. doi:10.1016/j.matchemphys.2008.01.037

    Article  Google Scholar 

  115. Melghit K, Al-Rabaniah SS, Al-Amri I (2008) Low temperature preparation and characterization of nanospherical anatase TiO2 and its photocatalytic activity on Congo red degradation under sunlight. Ceram Internat 34:479–483. doi:10.1016/j.ceramint.2006.11.011

    Article  Google Scholar 

  116. Tang W, Chen Z, Katoh S (2004) Preparation of a nanocrystalline TiO2 photocatalyst using a dry-process with acetylene black. Chem Lett 33:1200–1201. doi:10.1246/cl.2004.1200

    Article  Google Scholar 

  117. Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130:13885–13891. doi:10.1021/ja8034637

    Article  Google Scholar 

  118. Kolen′ko YV, Churagulov BR, Kunst M et al (2004) Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B 54:51–58. doi:10.1016/j.apcatb.2004.06.006

    Article  Google Scholar 

  119. Neppolian B, Yamashita H, Okada Y et al (2004) Preparation of TiO2 photo-catalysts by multi-gelation and their photocatalytic reactivity for the degradation of 2-propanol. Chem Lett 33:268–269. doi:10.1246/cl.2004.268

    Article  Google Scholar 

  120. Neppolian B, Yamashita H, Okada Y et al (2005) Preparation of unique TiO2 nanoparticle photocatalysts by a multigelation method for control of the physicochemical parameters and reactivity. Catal Lett 105:111–117. doi:10.1007/s10562-005-8013-1

    Article  Google Scholar 

  121. Chou TP, Zhang Q, Russo B et al (2007) Titania particle size effect on the overall per–formance of dye-sensitized solar cells. J Phys Chem C 111:6296–6302. doi:10.1021/jp068939f

    Article  Google Scholar 

  122. Nakade S, Saito Y, Kubo W et al (2003) Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J Phys Chem B 107:8607–8611. doi:10.1021/jp034773w

    Article  Google Scholar 

  123. Li Y, Lee NH, Hwang DS et al (2004) Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl2 aqueous solution at low temperatures. Langmuir 20:10838–10844. doi:10.1021/la0489716

    Article  Google Scholar 

  124. Testino A, Bellobono IR, Buscaglia V et al (2007) Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc 129:3564–2575. doi:10.1021/ja067050+

  125. Di Paola A, Cufalo G, Addamo M et al (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surfaces A 17:366–367. doi:10.1016/j.colsurfa.2007.11.005

    Article  Google Scholar 

  126. Jia H, Xu H, Hu Y et al (2007) TiO2@CdS core–shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties. Electrochem Commun 9:354–360. doi:10.1016/j.elecom.2006.10.010

    Article  Google Scholar 

  127. Bavykin DV, Kulak AN, Shvalagin VV et al (2011) Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. J Photochem Photobiol, A 218:231–238. doi:10.1016/j.jphotochem.2011.01.006

    Article  Google Scholar 

  128. Yu JC, Tang HY, Yu J et al (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. J Photochem Photobiol, A 153:211–219. doi:10.1016/S1010-6030(02)00275-7

    Article  Google Scholar 

  129. Xia XH, Liang Y, Wang Z et al (2008) Synthesis and photocatalytic properties of TiO2 nanostructures. Mater Res Bull 43:2187–2195. doi:10.1016/j.materresbull.2007.08.026

    Article  Google Scholar 

  130. Jung JM, Wang M, Kim EJ et al (2008) Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering. Appl Catal B 84:389–392. doi:10.1016/j.apcatb.2008.04.020

    Article  Google Scholar 

  131. Hou YD, Wang XC, Wu L et al (2008) N-Doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. Chemosphere 72:414–421. doi:10.1016/j.chemosphere.2008.02.035

    Article  Google Scholar 

  132. Wilhelm P, Stephan D (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol, A 185:19–25. doi:10.1016/j.jphotochem.2006.05.003

    Article  Google Scholar 

  133. Xu G, Zheng Z, Wu Y, Feng N (2009) Effect of silica on the microstructure and photocatalytic properties of titania. Ceram Internat 35:1–5. doi:10.1016/j.ceramint.2007.09.008

    Article  Google Scholar 

  134. Ismail AA, Ibrahim IA, Ahmed MS et al (2004) Sol–gel synthesis of titania-silica photocatalyst for cyanide photodegradation. J Photochem Photobiol, A 163:445–451. doi:10.1016/j.jphotochem.2004.01.017

    Article  Google Scholar 

  135. Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. J Phys Chem 99:9882–9885. doi:10.1021/j100024a033

    Article  Google Scholar 

  136. Kominami H, Yukishita K, Kimura T et al (2008) Direct solvothermal formation of nanocrystalline TiO2 on porous SiO2 adsorbent and photocatalytic removal of nitrogen oxides in air over TiO2–SiO2 composites. Topics Catal 47:155–161. doi:10.1007/s11244-007-9016-5

    Article  Google Scholar 

  137. Lim SH, Phonthammachai N, Pramana SS, White TJ (2008) Simple route to monodispersed silica-titania core-shell photocatalysts. Langmuir 24:6226–6231. doi:10.1021/la703899j

    Article  Google Scholar 

  138. Li K, Ding YY, Guo J, Wang D (2008) Surface electron structures and mechanism of nonradiative transitions on crystalline TiO2 nanoparticles. Mater Chem Phys 112:1001–1007. doi:10.1016/j.matchemphys.2008.07.010

    Article  Google Scholar 

  139. Liao DL, Liao BQ (2007) Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. J Photochem Photobiol, A 187:363–369. doi:10.1016/j.jphotochem.2006.11.003

    Article  Google Scholar 

  140. Scotti R, Bellobono IR, Canevali C et al (2008) Sol–gel pure and mixed-phase titanium dioxide for photocatalytic purposes: Relations between phase composition, catalytic activity, and charge-trapped sites. Chem Mater 20:4051–4061. doi:10.1021/cm800465n

    Article  Google Scholar 

  141. Neppolian B, Celik E, Anpo M, Choi H (2008) Ultrasonic-assisted pH swing method for the synthesis of highly efficient TiO2 nano-size photocatalysts. Catal Lett 125:183–191. doi:10.1007/s10562-008-9563-9

    Article  Google Scholar 

  142. Choi H, Stathatos E, Dionysiou DD (2007) Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles. Topics Catal 44:513–521. doi:10.1007/s11244-006-0099-1

    Article  Google Scholar 

  143. Jiu J, Isoda S, Adachi M, Wang F (2007) Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell. J Photochem Photobiol, A 189:314–321. doi:10.1016/j.jphotochem.2007.02.021

    Article  Google Scholar 

  144. Stengl V, Bakardjieva S, Murafa N et al (2007) Preparation, characterization and photocatalytic activity of optically transparent titanium dioxide nanoparticles. Mater Chem Phys 105:38–46. doi:10.1016/j.matchemphys.2007.04.037

    Article  Google Scholar 

  145. Carrera R, Vázquez AL, Arce E et al (2007) Photodecomposition of NO by sol–gel TiO2 catalysts under atmospheric conditions: Effect of the method on the textural and morphologic properties. J Alloys Compounds 434–435:788–791. doi:10.1016/j.jallcom.2006.08.334

    Article  Google Scholar 

  146. Zhang S, Yu Q, Chen Z et al (2007) Nano-TiO2 particles with increased photocatalytic activity prepared by the miniemulsion method. Mater Lett 61:4839–4842. doi:10.1016/j.matlet.2007.03.054

    Article  Google Scholar 

  147. Kubacka A, Fuerte A, Martinez-Arias A, Fernandez-Garcia M (2007) Nanosized Ti–V mixed oxides: Effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation. Appl Catal B 74:26–33. doi:10.1016/j.apcatb.2007.01.011

    Article  Google Scholar 

  148. Jang HD, Kim SK, Kim SJ (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3:141–147. doi:10.1023/A:1017948330363

    Article  Google Scholar 

  149. Marimuthu A, Madras G (2008) Photocatalytic oxidative degradation of poly(alkylacrylates) with nanoTiO2. Ind Eng Chem Res 47:2182–2190. doi:10.1021/ie0712939

    Article  Google Scholar 

  150. Vinu R, Madras G (2008) Photocatalytic degradation of poly(acrylamide-co-acrylic acid). J Phys Chem C 112:8928–8935. doi:10.1021/jp801887t

    Article  Google Scholar 

  151. Surolia PK, Lazar MA, Tayade RJ, Jasra RV (2008) Photocatalytic degradation of 3,3′-dimethylbiphenyl-4,4′-diamine (o-tolidine) over nanocrystalline TiO2 synthesized by sol–gel, solution combustion, and hydrothermal methods. Ind Eng Chem Res 47:5847–5855. doi:10.1021/ie800073j

    Article  Google Scholar 

  152. Priya MH, Madras G (2006) Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2. J Photochem Photobiol, A 178:1–7. doi:10.1016/j.jphotochem.2005.06.012

    Article  Google Scholar 

  153. Vinu R, Madras G (2008) Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2. Environ Sci Technol 42:913–919. doi:10.1021/es8025648

    Article  Google Scholar 

  154. Alves AK, Berutti FA, Clemens FJ et al (2009) Photocatalytic activity of titania fibers obtained by electrospinning. Mater Res Bull 44:312–317. doi:10.1016/j.materresbull.2008.06.001

    Article  Google Scholar 

  155. Li W, Liu C, Zhou Y et al (2008) Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber. J Phys Chem C 112:20539–20545. doi:10.1021/jp808183q

    Article  Google Scholar 

  156. Lin Y (2008) Photocatalytic activity of TiO2 nanowire arrays. Mater Lett 62:1246–1248. doi:10.1016/j.matlet.2007.08.021

    Article  Google Scholar 

  157. Ren X, Han D, Chen D, Tang F (2007) Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation. Mater Res Bull 42:807–813. doi:10.1016/j.materresbull.2006.08.030

    Article  Google Scholar 

  158. Wang H, Xie C (2008) Effect of annealing temperature on the microstructures and photocatalytic property of colloidal ZnO nanoparticles. J Phys Chem Solids 69:2440–2444. doi:10.1016/j.jpcs.2008.04.036

    Article  Google Scholar 

  159. Ye C, Bando Y, Shen G, Golberg D (2006) Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J Phys Chem B 110:15146–15151. doi:10.1021/jp061874w

    Article  Google Scholar 

  160. Dodd AC, McKinley AJ, Saunders M, Tsuzuki T (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanopart Res 8:43–51. doi:10.1007/s11051-005-5131-z

    Article  Google Scholar 

  161. Liqiang J, Baifu X, Fulong Y et al (2004) Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Appl Catal A 275:49–54. doi:10.1016/j.apcata.2004.07.019

    Article  Google Scholar 

  162. Wang G, Chen D, Zhang H et al (2008) Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity. J Phys Chem C 112:8850–8855. doi:10.1021/jp800379k

    Article  Google Scholar 

  163. Sun T, Qiu J, Liang C (2008) Controllable fabrication and photocatalytic activity of ZnO nanobelt array. J Phys Chem C 112:715–721. doi:10.1021/jp710071f

    Article  Google Scholar 

  164. Wan Q, Wang TH, Zhao JC (2005) Enhanced photocatalytic activity of ZnO nanotetrapods. Appl Phys Lett 87:083105. doi:10.1063/1.2034092

    Article  Google Scholar 

  165. Wang Y, Li X, Lu G et al (2008) Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities. J Phys Chem C 112:7332–7336. doi:10.1021/jp7113175

    Article  Google Scholar 

  166. Sadakane M, Sasaki K, Kunioku H et al (2008) Preparation of nano-structured crystalline tun–gsten (VI) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation. Chem Commun 48:6552–6554. doi:10.1039/B815214D

    Article  Google Scholar 

  167. Sadakane M, Tamura N, Kanome N et al (2011) Preparation of crystalline tungsten oxide nanorods with enhanced photocatalytic activity under visible light irradiation. Chem Lett 40:443–444. doi:10.1246/cl.2011.443

    Article  Google Scholar 

  168. Su J, Feng X, Sloppy JD et al (2011) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11:203–208. doi:10.1021/nl1034573

    Article  Google Scholar 

  169. Zhang J, Shi F, Lin J et al (2008) Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem Mater 20:2937–2941. doi:10.1021/cm7031898

    Article  Google Scholar 

  170. Zhang X, Ai Z, Jia F, Zhang L (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753. doi:10.1021/jp077471t

    Article  Google Scholar 

  171. Xiao X, Zhang WD (2010) Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J Mater Chem 20:5866–5870. doi:10.1039/C0JM00333F

    Article  Google Scholar 

  172. Sun M, Li D, Zhang W et al (2010) Rapid microwave hydrothermal synthesis of GaOOH nano-rods with photocatalytic activity toward aromatic compounds. Nanotechnology 21:355601. doi:10.1088/0957-4484/21/35/355601

    Article  Google Scholar 

  173. Chang CA, Ray B, Paul DK et al (2008) Photocatalytic reaction of acetaldehyde over SrTiO3 nanoparticles. J Mol Catal A 281:99–106. doi:10.1016/j.molcata.2007.08.014

    Article  Google Scholar 

  174. Liu Y, Xie L, Li Y et al (2008) Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources 193:701–707. doi:10.1016/j.jpowsour.2008.05.057

    Article  Google Scholar 

  175. Zhang G, He F, Zou X et al (2008) Hydrothermal preparation and photocatalytic properties of sheet-like nanometer niobate K4Nb6O17. J Phys Chem Solids 69:1471–1474. doi:10.1016/j.jpcs.2007.10.095

    Article  Google Scholar 

  176. Zhou C, Chen C, Wang Q (2011) High photocatalytic activity of porous K4Nb6O17 microsphere with large surface area prepared by homogeneous precipitation using urea. J Mol Catal A 339:37–42. doi:10.1016/j.molcata.2011.02.009

    Article  Google Scholar 

  177. Sarahan MC, Carrol EC, Allen M et al (2008) K4Nb6O17-derived photocatalysts for hydrogen evolution from water: nanoscrolls versus nanosheets. J Solid State Chem 181:1681–1686. doi:10.1016/j.jssc.2008.06.021

    Article  Google Scholar 

  178. Zhang S, Zhang C, Man Y, Zhu Y (2006) Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties. J Solid State Chem 179:62–69. doi:10.1016/j.jssc.2005.09.041

    Article  Google Scholar 

  179. Wu L, Bi J, Li Z et al (2008) Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal Today 131:15–20. doi:10.1016/j.cattod.2007.10.089

    Article  Google Scholar 

  180. Bi J, Wu L, Li J et al (2007) Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies. Acta Mater 55:4699–4705. doi:10.1016/j.actamat.2007.04.034

    Article  Google Scholar 

  181. Wu J, Duan F, Zheng Y, Xie Y (2007) Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C 111:12866–12871. doi:10.1021/jp073877u

    Article  Google Scholar 

  182. Zhang C, Zhu Y (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545. doi:10.1021/cm0501517

    Article  Google Scholar 

  183. Lin J, Lin J, Zhu Y (2007) Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance. Inorg Chem 46:8372–8378. doi:10.1021/ic701036k

    Article  Google Scholar 

  184. Zhang L, Chen D, Jiao X (2006) Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J Phys Chem B 110:2668–2673. doi:10.1021/jp056367d

    Article  Google Scholar 

  185. Mahapatra S, Nayak SK, Madras G, Guru Row TN (2008) Microwave synthesis and photocatalytic activity of nano lanthanide (Ce, Pr, and Nd) orthovanadates. Ind Eng Chem Res 47:6509–6516. doi:10.1021/ie8003094

    Article  Google Scholar 

  186. Bouras P, Lianos P (2005) Photodegradation of dyes in aqueous solutions catalyzed by highly efficient nanocrystalline titania films. J Appl Electrochem 35:831–836. doi:10.1007/s10800-005-1616-9

    Article  Google Scholar 

  187. Bouras P, Stathatos E, Lianos P (2007) Pure versus ion-metal-doped nanocrystalline titania for photocatalysis. Appl Catal B 73:51–59. doi:10.1016/j.apcatb.2006.06.007

    Article  Google Scholar 

  188. Strataki N, Bekiari V, Kondarides DI, Lianos P (2007) Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl Catal B 77:184–189. doi:10.1016/j.apcatb.2007.07.015

    Article  Google Scholar 

  189. Strataki N, Bekiari V, Stathatos E, Pianos P (2007) Effect of aggregation of dyes adsorbed on nanocrystalline titania films on the efficiency of photodegradation. J Photochem Photobiol, A 191:13–18. doi:10.1016/j.jphotochem.2007.03.023

    Article  Google Scholar 

  190. Yu JC, Yu J, Ho W, Zhao J (2002) Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. J Photochem Photobiol, A 148:331–339. doi:10.1016/S1010-6030(02)00060-6

    Article  Google Scholar 

  191. Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Micropor Mesopor Mater 114:431–439. doi:10.1016/j.micromeso.2008.01.032

    Article  Google Scholar 

  192. Angelome PC, Andrini L, Calvo ME et al (2007) Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. J Phys Chem C 111:10886–10893. doi:10.1021/jp069020z

    Article  Google Scholar 

  193. Chen Y, Dionysiou DD (2008) Bimodal mesoporous TiO2–P25 composite thick films with high photocatalytic activity and improved structural integrity. Appl Catal B 80:147–155. doi:10.1016/j.apcatb.2007.11.010

    Article  Google Scholar 

  194. Habibi MH, Esfahani MN, Egerton TA (2007) Photochemical charactrization and photocatalytic properties of a nanostructure composite TiO2 film. Inter J Photoen 2007:1–8

    Article  Google Scholar 

  195. Negishi N, Matsuzawa S, Takeuchi K, Pichat P (2007) Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: characteristics and photocatalytic activities for removing acetaldehyde or toluene in air. Chem Mater 19:3808–3814. doi:10.1021/cm070320i

    Article  Google Scholar 

  196. Guan H, Zhu L, Zhou H, Tang H (2008) Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe. Anal Chem Acta 608:73–78. doi:10.1016/j.aca.2007.12.009

    Article  Google Scholar 

  197. Yang J, Chen C, Ji H et al (2005) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B 109:21900–21907. doi:10.1021/jp0540914

    Article  Google Scholar 

  198. Ercan A, Bakir U, Karakas G (2006) Photocatalytic microbal inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol, A 184:313–321. doi:10.1016/j.jphotochem.2006.05.001

    Article  Google Scholar 

  199. Mills A, Elliott N, Hill G et al (2003) Preparation and characterisation of novel thick sol–gel titania film photocatalysts. Photochem Photobiol Sci 2:591–596. doi:10.1039/B212865A

    Article  Google Scholar 

  200. Ao CH, Lee SC, Yu JC (2003) Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J Photochem Photobiol, A 156:171–177. doi:10.1016/S1010-6030(03)00009-1

    Article  Google Scholar 

  201. Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol, A 156:227–233. doi:10.1016/S1010-6030(02)00434-3

    Article  Google Scholar 

  202. Xu J, Ao Y, Fu D et al (2008) Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light. J Photochem Photobiol, A 199:165–169. doi:10.1016/j.jphotochem.2008.05.019

    Article  Google Scholar 

  203. Yang B, Barnes PRF, Zhang Y, Luca V (2007) Tungsten trioxide films with controlled morphology and strong photocatalytic activity via a simple sol–gel route. Catal Lett 118:280–284. doi:10.1007/s10562-007-9188-4

    Article  Google Scholar 

  204. Nakamura N, Tanaka T, Nakato Y (2004) Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J Phys Chem B 108:10617–10620. doi:10.1021/jp048112q

    Article  Google Scholar 

  205. Umemura Y, Shinohara E, Koura A et al (2006) Photocatalytic decomposition of an alkylammonium cation in a Langmuir-Blodgett film of a titania nanosheet. Langmuir 22:3870–3877. doi:10.1021/la0530743

    Article  Google Scholar 

  206. Mills A, Elliott N, Parkin IP et al (2002) Novel TiO2 CVD films for semiconductor photocatalysis. J Photochem Photobiol, A 151:171–179. doi:10.1016/S1010-6030(02)00190-9

    Article  Google Scholar 

  207. Brook LA, Evans P, Foster HA et al (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol, A 187:53–63. doi:10.1016/j.jphotochem.2006.09.014

    Article  Google Scholar 

  208. Ohko Y, Nakamura Y, Fukuda A et al (2008) Photocatalytic oxidation of nitrogen dioxide with TiO2 thin films under continuous UV-light illumination. J Phys Chem C 112:10502–10508. doi:10.1021/jp802959c

    Article  Google Scholar 

  209. Yoon KH, Noh JS, Kwon CH, Muhammed M (2006) Photocatalytic behavior of TiO2 thin films prepared by sol–gel process. Mater Chem Phys 95:79–83. doi:10.1016/j.matchemphys.2005.06.001

    Article  Google Scholar 

  210. Mishra PR, Shukla PK, Srivastava ON (2007) Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes. Inter J Hydrogen En 32:1680–1685. doi:10.1016/j.ijhydene.2006.10.002

    Article  Google Scholar 

  211. Li D, Guo Y, Hu C et al (2004) Preparation, characterization and photocatalytic property of the PW11O39 7−/TiO2 composite film towards azo-dye degradation. J Mol Catal A 207:183–193. doi:10.1016/S1381-1169(03)00491-6

    Article  Google Scholar 

  212. Gao R, Stark J, Bahnemann DW, Rabani J (2002) Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J Photochem Photobiol, A 148:387–391. doi:10.1016/S1010-6030(02)00066-7

    Article  Google Scholar 

  213. Ao Y, Xu J, Fu D, Yuan C (2008) Preparation of porous titania thin film and its photocatalytic activity. Appl Surf Sci 255:3137–3140. doi:10.1016/j.apsusc.2008.08.102

    Article  Google Scholar 

  214. Piris J, Ferguson AJ, Blackburn JL et al (2008) Efficient photoinduced charge injection from chemical bath deposited CdS mesoporous TiO2 probed with time-resolved microwave conductivity. J Phys Chem C 112:7742–7749. doi:10.1021/jp800527r

    Article  Google Scholar 

  215. Song XM, Wu JM, Yan M (2008) Photocatalytic and photoelectrocatalytic degradation of aqueous Rhodamine B by low-temperature deposited anatase thin films. Mater Chem Phys 112:510–515. doi:10.1016/j.matchemphys.2008.06.009

    Article  Google Scholar 

  216. Yu JG, Yu HG, Cheng B et al (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879. doi:10.1021/jp036158y

    Article  Google Scholar 

  217. Gu DE, Yang BC, Hu YD (2007) A novel method for preparing V-doped titanium dioxide thin film photocatalysts with high photocatalytic activity under visible light irradiation. Catal Lett 118:254–259. doi:10.1007/s10562-007-9179-5

    Article  Google Scholar 

  218. Sagawa T, Kotani M, Nada H et al (2003) Photoinduced reduction of methylviologen with TiO2/polymer films. Chem Lett 32:962–963. doi:10.1246/cl.2003.962

    Article  Google Scholar 

  219. Zhao Y, Zhang X, Zhai J et al (2008) Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films. Appl Catal B 83:24–29. doi:10.1016/j.apcatb.2008.01.035

    Article  Google Scholar 

  220. Takeuchi M, Yamashita H, Matsuoka M et al (2000) Photocatalytic decomposition of NO on titanium oxide thin film photocatalysts prepared by an ionized cluster beam technique. Catal Lett 66:185–187. doi:10.1023/A:1019095406121

    Article  Google Scholar 

  221. Burlacov I, Jirkovsky J, Kavan L et al (2007) Cold gas dynamic spraying (CGDS) of TiO2 (anatase) powders onto poly(sulfone) substrates: microstructural characterisation and photocata–lytic efficiency. J Photochem Photobiol, A 187:285–292. doi:10.1016/j.jphotochem.2006.10.023

    Article  Google Scholar 

  222. Ryu J, Park DS, Hahn BD et al (2008) Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature. Appl Catal B 83:1–7. doi:10.1111/j.1551-2916.2009.03391.x

    Article  Google Scholar 

  223. Ohko Y, Tatsuma T, Fujishima A (2001) Characterization of TiO2 photocatalysis in the gas phase as a photoelectrochemical system: behavior of salt-modified systems. J Phys Chem B 105:10016–10021. doi:10.1021/jp011459y

    Article  Google Scholar 

  224. Shinde PS, Sadale SB, Patil PS et al (2008) Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis. Sol En Mater Sol Cells 92:283–290. doi:10.1016/j.solmat.2007.09.001

    Article  Google Scholar 

  225. Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112:4134–4140. doi:10.1021/jp710422f

    Article  Google Scholar 

  226. Li M, Su J, Guo L (2008) Preparation and characterization of ZnIn2S4 thin films deposited by spray pyrolysis for hydrogen production. Inter J Hydrogen En 33:2891–2896. doi:10.1016/j.ijhydene.2008.04.008

    Article  Google Scholar 

  227. Kemell M, Pore V, Tupala J et al (2007) Atomic layer deposition of nanostructured TiO2 photocatalyst via template approach. Chem Mater 19:1816–1820. doi:10.1021/cm062576e

    Article  Google Scholar 

  228. Liu R, Lin Y, Chou LY et al (2011) Splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem Int Ed 50:499–502. doi:10.1002/ange.201004801

    Article  Google Scholar 

  229. Klahr BM, Martinson ABF, Hamann TW (2011) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27:461–468. doi:10.1021/la103541n

    Article  Google Scholar 

  230. Kitano M, Tsujimaru K, Anpo M (2008) Hydrogen production using highly active titanium oxide-based photocatalysts. Topics Catal 49:4–17. doi:10.1007/s11244-008-9059-2

    Article  Google Scholar 

  231. Dholam R, Patel N, Adami M, Miotello A (2008) Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Inter J Hydrogen En 33:6896–6903. doi:10.1016/j.ijhydene.2008.08.061

    Article  Google Scholar 

  232. Selli E, Chiarello GL, Quartarone E et al (2007) A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chem Commun 5022–5024. doi:10.1039/B711747G

  233. Kitano M, Takeuchi M, Matsuoka M et al (2005) Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. Chem Lett 34:616–617. doi:10.1246/cl.2005.616

    Article  Google Scholar 

  234. Cao J, Kako T, Li P et al (2011) Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochem Commun 13:275–278. doi:10.1016/j.elecom.2011.01.002

    Article  Google Scholar 

  235. Hu YS, Kleiman-Shwarsctein A, Forman AJ et al (2008) Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem Mater 20:3803–3805. doi:10.1021/cm800144q

    Article  Google Scholar 

  236. Kleiman-Shwarsctein A, Hu YS, Forman AJ et al (2008) Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J Phys Chem C 112:15900–15907. doi:10.1021/jp803775j

    Article  Google Scholar 

  237. Nian JN, Hu CC, Teng H (2008) Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Inter J Hydrogen En 33:2897–2903. doi:10.1016/j.ijhydene.2008.03.052

    Article  Google Scholar 

  238. Yu H, Quan X, Zhang Y et al (2008) Electrochemically assisted photocatalytic inactivation of Escherichia coli under visible light using a ZnIn2S4 film electrode. Langmuir 24:7599–7604. doi:10.1021/la800835k

    Article  Google Scholar 

  239. Chu SZ, Inoue S, Wada K et al (2003) Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol–gel process. J Phys Chem B 107:6586–6589. doi:10.1021/jp0349684

    Article  Google Scholar 

  240. Kang Z, Tsang CHA, Wong NB et al (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129:12090–12091. doi:10.1021/ja075184x

    Article  Google Scholar 

  241. Schürch D, Currao A, Sarkar S et al (2002) The silver chloride photoanode in photoelectrochemical water splitting. J Phys Chem B 106:12764–12775. doi:10.1021/jp0265081

    Article  Google Scholar 

  242. Soller-Illia G, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138. doi:10.1021/cr0200062

    Article  Google Scholar 

  243. Shchukin DG, Sviridov DV (2006) Photocatalytic processes in spatially confined micro- and nanoreactors. J Photochem Photobiol, C 7:23–39. doi:10.1016/j.jphotochemrev.2006.03.002

    Article  Google Scholar 

  244. Stroyuk OL, Shvalagin VV, Raevskaya AE et al (2008) Photochemical formation of semiconducting nanostructures. Theoret Experim Chem 44:205–231

    Article  Google Scholar 

  245. Zhang X, Yang H, Zhang F, Chan KY (3007) Preparation and characterization of Pt–TiO2–SiO2 mesoporous materials and visible-light photocatalytic performance. Mater Lett 61:2231–2234. doi:10.1016/j.matlet.2006.08.053

  246. Smirnova N, Gnatyuk Y, Eremenko A et al (2006) Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films. Inter J Photoen 1–6. doi:10.1155/IJP/2006/85469

  247. Mohamed MM, Bayoumy WA, Khairy M, Mousa MA (2008) Structural features and photocatalytic behavior of titania and titania supported vanadia synthesized by polyol functionalized materials. Mircopor Mesopor Mater 109:445–457. doi:10.1016/j.micromeso.2007.05.055

    Article  Google Scholar 

  248. Deshpande AS, Shchukin DG, Ustinovich E et al (2005) Titania and mixed titania/aluminum, gallium, or indium oxide spheres: sol–gel/template synthesis and photocatalytic properties. Adv Func Mater 15:239–245. doi:10.1002/adfm.200400220

    Article  Google Scholar 

  249. Yuan S, Sheng Q, Zhang J et al (2008) Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity. Micropor Mesopor Mater 110:501–507. doi:10.1016/j.micromeso.2007.06.039

    Article  Google Scholar 

  250. Oh ST, Choi JS, Lee HS et al (2007) H2O-controlled synthesis of TiO2 with nanosized channel structure through in situ esterification and its application to photocatalytic oxidation. J Mol Catal A 267:112–119. doi:10.1016/j.molcata.2006.11.028

    Article  Google Scholar 

  251. Chen L, Yao B, Cao Y, Fan K (2007) Synthesis of well-ordered mesoporous titania with tunable phase content and high photoactivity. J Phys Chem C 111:11849–11853. doi:10.1021/jp072070z

    Article  Google Scholar 

  252. Fan X, Yu T, Wang Y et al (2008) Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. Appl Surf Sci 254:5191–5198. doi:10.1016/j.apsusc.2008.02.038

    Article  Google Scholar 

  253. Huang J, Wang X, Hou Y et al (2008) Synthesis of functionalized mesoporous TiO2 molecular sieves and their application in photocatalysis. Micropor Mesopor Mater 110:543–552. doi:10.1016/j.micromeso.2007.06.055

    Article  Google Scholar 

  254. Zhang L, Yu JC (2003) A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem Commun 2078–2079. doi:10.1039/B306013F

  255. Ismail AA, Bahnemann DW (2011) Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J Phys Chem C 115:5784–5791. doi:10.1021/jp110959b

    Article  Google Scholar 

  256. Wang X, Mitchell DRG, Prince K et al (2008) Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:3917–3926. doi:10.1021/cm703509f

    Article  Google Scholar 

  257. van der Meulen T, Mattson A, Österlund L (2007) A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: role of surface intermediates. J Catal 251:131–144. doi:10.1016/j.jcat.2007.07.002

    Article  Google Scholar 

  258. An T, Liu J, Li G et al (2008) Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2. Appl Catal A 350:237–243. doi:10.1016/j.apcata.2008.08.022

    Article  Google Scholar 

  259. Shen Q, Yang H, Gao J, Yang J (2007) Low-temperature fabrication of porous anatase TiO2 film with tiny slots and its photocatalytic activity. Mater Lett 61:4160–4162. doi:10.1016/j.matlet.2007.01.045

    Article  Google Scholar 

  260. Sang L, Dai H, Sun J et al (2010) Fabrication of the hydrogen-evolving photocatalyst with mesoporous structure. Inter J Hydrogen En 35:7098–7103. doi:10.1016/j.ijhydene.2010.01.019

    Article  Google Scholar 

  261. Wang HW, Lin HC, Kuo CH et al (2008) Synthesis and photocatalysis of mesoporous anatase TiO2 powders incorporated Ag nanoparticles. J Phys Chem Solids 69:633–636. doi:10.1016/j.jpcs.2007.07.052

    Article  Google Scholar 

  262. Sreethawong T, Suzuki Y, Yoshikawa S (2006) Platinum-loaded mesoporous titania by single-step sol–gel process with surfactant template: photocatalytic activity for hydrogen evolution. Compt Rend Chim 9:307–314. doi:10.1016/j.crci.2005.05.015

    Article  Google Scholar 

  263. Kozlova EA, Vorontsov AV (2007) Influence of mesoporous and platinum-modified titanium dioxide preparation methods on photocatalytic activity in liquid and gas phase. Appl Catal B 77:35–45. doi:10.1016/j.apcatb.2007.07.001

    Article  Google Scholar 

  264. Tian G, Fu H, Jing L et al (2008) Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. J Phys ChemC 112:3083–3089. doi:10.1021/jp710283p

    Google Scholar 

  265. De Witte K, Ribbens S, Meynen V et al (2008) Photoatalytic study of P25 and mesoporous titania in aqueous and gaseous environment. Catal Commun 9:1787–1792. doi:10.1016/j.catcom.2008.02.013

    Google Scholar 

  266. Ao Y, Xu J, Fu D, Yuan C (2008) Preparation of Ag-doped mesoporous titania and its enhanced photocatalytic activity under UV light irradiation. J Phys Chem Solids 69:2660–2664. doi:10.1016/j.jpcs.2008.06.100

    Article  Google Scholar 

  267. Song C, Wang D, Xu Y, Hu Z (2011) Preparation of Ag-TiO2 hollow structures with enhanced photocatalytic activity. Mater Lett 65:908–910. doi:10.1016/j.matlet.2010.12.015

    Article  Google Scholar 

  268. Dai Q, Shi LY, Luo YG et al (2002) Effect of templates on the structure, stability and photocatalytic activity mesostructured TiO2. J Photochem Photobiol, A 148:295–301. doi:10.1016/S1010-6030(02)00056-4

    Article  Google Scholar 

  269. Lakshminarasimhan N, Bae E, Choi W (2007) Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: role of interparticle charge transfer. J Phys Chem C 111:15244–15250. doi:10.1021/jp0752724

    Article  Google Scholar 

  270. Matsunaga T, Yamaoka H, Ohtani S et al (2008) High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers. Appl Catal A 351:231–238. doi:10.1016/j.apcata.2008.09.020

    Article  Google Scholar 

  271. Pavasupree S, Ngamsinlapasathian S, Nakajima M et al (2006) Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J Photochem Photobiol, A 184:163–169. doi:10.1016/j.jphotochem.2006.04.010

    Article  Google Scholar 

  272. Wang G (2007) Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol–water mixed solutions. J Mol Catal A 274:185–191. doi:10.1016/j.molcata.2007.05.009

    Article  Google Scholar 

  273. Yu J, Zhang L, Cheng B, Su Y (2007) Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. J Phys Chem C 111:10582–10589. doi:10.1021/jp0707889

    Article  Google Scholar 

  274. Yu JC, Zhang L, Yu J (2002) Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J Chem 26:416–420. doi:10.1039/B109173E

    Article  Google Scholar 

  275. Fang J, Wang F, Qian K et al (2008) Bifunctional N-doped mesoporous TiO2 photocatalysts. J Phys ChemC 112:18150–18156. doi:10.1021/jp805926b

    Google Scholar 

  276. Sreethawong T, Ngamsinlapasathian S, Suzuki Y, Yoshikawa S (2005) Nanocrystalline meso–porous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol–gel process for photocatalytic H2 evolution. J Mol Catal A 235:1–11. doi:10.1016/j.molcata.2005.03.021

    Article  Google Scholar 

  277. Noda Y, Lee B, Domen K, Kondo JN (2008) Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem Mater 20:5361–5367. doi:10.1021/cm703202n

    Article  Google Scholar 

  278. Chen X, Yu T, Fan X et al (2007) Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl Surface Sci 253:8500–8506. doi:10.1016/j.apsusc.2007.04.035

    Article  Google Scholar 

  279. Abe R, Shinohara K, Tanaka A et al (1997) Preparation of porous niobium oxides by soft-chemical process and their photocatalytic activity. Chem Mater 9:2179–2184. doi:10.1021/cm970284v

    Article  Google Scholar 

  280. Zhu H, Hagfeldt A, Boschloo G (2007) Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. J Phys Chem C 111:17455–17458. doi:10.1021/jp077134k

    Article  Google Scholar 

  281. Sathish M, Viswanath RP (2007) Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: effect of particle size, noble metal and support. Catal Today 129:421–427. doi:10.1016/j.cattod.2006.12.008

    Article  Google Scholar 

  282. Wang L, Tang K, Liu Z et al (2011) Single-crystalline ZnSn(OH)6 hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties. J Mater Chem 21:4352–4357. doi:10.1039/C0JM03734F

    Article  Google Scholar 

  283. Jang JS, Yu CJ, Choi SH et al (2008) Topotactic synthesis of mesoporous ZnO and ZnS nanoplates and their photocatalytic activity. J Catal 254:144–155. doi:10.1016/j.jcat.2007.12.010

    Article  Google Scholar 

  284. Li Y, He X, Cao M (2008) Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity. Mater Res Bull 43:3100–3110. doi:10.1016/j.materresbull.2007.11.016

    Article  Google Scholar 

  285. Kartsonakis IA, Liatsi P, Danilidis I et al (2008) Synthesis, characterization and antibacterial action of hollow titania spheres. J Phys Chem Sol 69:214–221. doi:10.1016/j.jpcs.2007.08.071

  286. Song X, Gao L (2007) Fabrication of hollow hybrid microspheres coated with silica/titania via sol–gel process and enhanced photocatalytic activities. J Phys Chem C 111:8180–8187. doi:10.1021/jp071142j

    Article  Google Scholar 

  287. Deng Z, Chen M, Gu G, Wu L (2008) A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J Phys Chem C 112:16–22. doi:10.1021/jp077662w

    Article  Google Scholar 

  288. Syoufian A, Nakashima K (2008) Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: study of reaction enhancement by various electron scavengers. J Colloid Interface Sci 317:507–512. doi:10.1016/j.jcis.2007.04.027

    Article  Google Scholar 

  289. Cao FL, Wang JG, Lv FJ et al (2011) Photocatalytic oxidation of toluene to benzaldehyde over anatase TiO2 hollow spheres with exposed 001 facets. Catal Commun 12:946–950. doi:10.1016/j.catcom.2011.03.007

    Article  Google Scholar 

  290. Yu J, Wang G (2008) Hydrothermal synthesis and photocatalytic activity of mesoporous titania hollow spheres. J Phys Chem Sol 69:1147–1151. doi:10.1016/j.jpcs.2007.09.024

    Article  Google Scholar 

  291. Ao Y, Xu J, Fu D, Yuan C (2008) Photoelectrochemical application of hollow titania film. Electrochem Commun 10:1812–1814. doi:10.1016/j.elecom.2008.09.015

    Article  Google Scholar 

  292. Ao Y, Xu J, Fu D, Yuan D (2009) Visible-light responsive C, N-codoped titania hollow spheres for X-3B dye photodegradation. Micropor Mesopor Mater 118:382–386. doi:10.1016/j.micromeso.2008.09.010

    Article  Google Scholar 

  293. Lee SC, Lee CW, Lee SC, Lee JS (2008) Optical and photocatalytic properties of TiO2 with hollow nanostructure. Mater Lett 62:564–566. doi:10.1016/j.matlet.2007.09.008

    Article  Google Scholar 

  294. Yang L, Zhu L, Liu C et al (2008) Synthesis and photocatalytic property of porous TiO2 microspheres. Mater Res Bull 43:806–810. doi:10.1016/j.materresbull.2007.06.044

    Article  Google Scholar 

  295. Li H, Bian Z, Zhu J et al (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407. doi:10.1021/ja072191c

    Article  Google Scholar 

  296. Cao SW, Zhu YJ (2008) Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J Phys Chem C 112:6253–6257. doi:10.1021/jp8000465

    Article  Google Scholar 

  297. Cao SW, Zhu YJ, Cheng GF, Huang YH (2010) Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J Phys Chem Sol 71:1680–1683. doi:10.1016/j.jpcs.2010.09.006

    Article  Google Scholar 

  298. Yu J, Liu S, Zhou M (2008) Enhanced photocatalytic activity of hollow anatase microspheres by Sn4+ incorporation. J Phys Chem C 112:2050–2057. doi:10.1021/jp0770007

    Article  Google Scholar 

  299. Grimes CA (2007) Synthesis and application of hyghly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457. doi:10.1039/B701168G

    Article  Google Scholar 

  300. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824. doi:10.1002/adma.200502696

    Article  Google Scholar 

  301. Bavykin DV, Walsch FC (2010) Titanate and titania nanotubes: synthesis, properties and applications. RSC Nanoscience and Nanotechnology, N 12. R.S.C., London

    Google Scholar 

  302. Zhuang HF, Lin CJ, Lai YK et al (2007) Some critical structure factors of titanium dioxide nanotube array in its photocatalytic activity. Environ Sci Technol 41:4735–4740. doi:10.1021/es0702723

    Article  Google Scholar 

  303. Zhang G, Huang H, Zhang Y et al (2007) Highly ordered nanoporous TiO2 and its photo–catalytic properties. Electrochem Commun 9:2854–2858. doi:10.1016/j.elecom.2007.10.014

    Article  Google Scholar 

  304. Zhang Z, Yuan Y, Shi G et al (2007) Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ Sci Technol 41:6259–6263. doi:10.1021/es070212x

    Article  Google Scholar 

  305. Bae S, Shim E, Yoon J, Joo H (2008) Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode. Sol En Mater Sol Cells 92:402–409. doi:10.1016/j.solmat.2007.09.019

    Article  Google Scholar 

  306. Wu X, Ling Y, Sun J et al (2008) Photoelectrocatalytic degradation of methylene blue dye on titania nanotube array film. Chem Lett 37:416–417. doi:10.1246/cl.2008.416

    Article  Google Scholar 

  307. Quan X, Ruan X, Zhao H et al (2007) Photoelectrocatalytic degraation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Pollution 147:409–414. doi:10.1016/j.envpol.2006.05.023

    Article  Google Scholar 

  308. Bae S, Shim E, Yoon J, Joo H (2008) Photoanodic and cathodic role of anodized tubular titania in light-sensitized enzymatic hydrogen production. J Power Sources 185:439–444. doi:10.1016/j.jpowsour.2008.06.094

    Article  Google Scholar 

  309. Allam NK, Shankar K, Grimes CA (2008) Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J Mater Chem 18:2341–2348. doi:10.1039/B718580D

  310. Paulose M, Mor GK, Varghese OK et al (2006) Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photochem Photobiol, A 178:8–15. doi:10.1016/j.jphotochem.2005.06.013

    Article  Google Scholar 

  311. Zlamal M, Macak JM, Schmuki P, Krysa J (2007) Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem Commun 9:2822–2826. doi:10.1016/j.elecom.2007.10.002

    Article  Google Scholar 

  312. Mohapatra SK, Raja KS, Mahajan VK, Misra M (2008) Efficient photoelectrolysis of water using TiO2 nanotube arrays by minimizing recombination losses with organic additives. J Phys Chem C 112:11007–11012. doi:10.1021/jp7100539

    Article  Google Scholar 

  313. Sohn YS, Smith YR, Misra M, Subramanian VR (2008) Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Appl Catal B 84:372–378. doi:10.1016/j.apcatb.2008.04.021

    Article  Google Scholar 

  314. In S, Nielsen MG, Vesborg PCK et al (2011) Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays. Chem Commun 47:2613–2615. doi:10.1039/C0CC02570D

    Article  Google Scholar 

  315. He X, Cai Y, Zhang H, Liang C (2011) Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J Mater Chem 21:475–480. doi:10.1039/C0JM02404J

    Article  Google Scholar 

  316. Zhang H, Liu P, Liu X (2010) Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. Langmuir 26:11226–11232. doi:10.1021/la1005314

    Article  Google Scholar 

  317. Paek MJ, Kim TW, Hwang SJ (2008) Effects of hydronium intercalation and cation substitution on the photocatalytic performance of layered titanium oxide. J Phys Chem Sol 69:1444–1446. doi:10.1016/j.jpcs.2007.09.012

    Article  Google Scholar 

  318. Ohtani B, Ikeda S, Nakayama H, Nishimoto S (2000) Shape- and size-selective photocatalytic reactions by layered titanic acid powder suspended in deaerated aqueous alcohol solutions. Phys Chem Chem Phys 2:5308–5313. doi:10.1039/B006497L

    Article  Google Scholar 

  319. Choy JH, Lee HC, Jung H, Hwang SJ (2011) A novel synthetic route to TiO2-pillared titanate with enhanced photocatalytic activity. J Mater Chem 11:2232–2234. doi:10.1039/B104551M

    Article  Google Scholar 

  320. Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc 126:5851–5858. doi:10.1021/ja0394582

    Article  Google Scholar 

  321. Compton OC, Carroll EC, Kim JY et al (2007) Calcium niobate semiconductor nanosheets as catalysts for photochemical hydrogen evolution from water. J Phys Chem C 111:14589–14592. doi:10.1021/jp0751155

    Article  Google Scholar 

  322. Compton OC, Mullet CH, Chiang S, Osterloh FE (2008) A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets. J Phys Chem C 112:6202–6208. doi:10.1021/jp711589z

    Article  Google Scholar 

  323. Zhou H, Sabio EM, Townsend TK et al (2010) Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol. Chem Mater 22:3362–3368. doi:10.1021/cm903839t

    Article  Google Scholar 

  324. Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416. doi:10.1039/C0JM02741C

    Article  Google Scholar 

  325. Yang X, Zhu H, Liu J et al (2008) A mesoporous structure for efficient photocatalysts: anatase nanocrystals attached to leached clay layers. Micropor Mesopor Mater 112:32–44. doi:10.1016/j.micromeso.2007.09.017

    Article  Google Scholar 

  326. Nikazar M, Golivand M, Mahanpur K (2007) Clinoptylolite-supported titania as a photoatalyst of disperse yellow 23 decomposition in water. Kin Catal 48:230–236

    Google Scholar 

  327. Miao S, Liu Z, Han B et al (2006) Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue. J Mater Chem 16:579–584. doi:10.1039/B511426H

    Article  Google Scholar 

  328. Menesi J, Körösi L, Bazso E et al (2008) Photocatalytic oxidation of organic pollutants on titania–clay composites. Chemosphere 70:538–542. doi:10.1016/j.chemosphere.2007.06.049

    Article  Google Scholar 

  329. Liu S, Yang JH, Choi JH (2006) Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange. J Photochem Photobiol, A 179:75–80. doi:10.1016/j.jphotochem.2005.07.016

    Article  Google Scholar 

  330. Zhang G, Ding X, Hu Y et al (2008) Photocatalytic degradation of 4BS dye by N, S-codoped TiO2 pillared montmorillonite photocatalysts under visible-light irradiation. J Phys Chem C 112:17994–17997. doi:10.1021/jp803939z

    Article  Google Scholar 

  331. Chen J, Liu X, Li G et al (2011) Synthesis and characterization of novel SiO2 and TiO2 co-pil–lared montmorillonite composite for adsorption and photocatalytic degradation of hydrophobic organic pollutants in water. Catal Today 164:364–369. doi:10.1016/j.cattod.2010.11.014

    Article  Google Scholar 

  332. Salama TM, Ali IO, Mohamed MM (2007) Synthesis and characterization of mordenites encapsulated titania nanoparticles: photocatalytic degradation of meta-chlorophenol. J Mol Catal A 273:198–210. doi:10.1016/j.molcata.2007.03.071

    Article  Google Scholar 

  333. Sun Z, Chen Y, Ke Q et al (2002) Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite. J Photochem Photobiol, A 149:169–174. doi:10.1016/S1010-6030(01)00649-9

    Article  Google Scholar 

  334. Zhang GK, Ding XM, He FS et al (2008) Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir 24:1026–1030. doi:10.1021/la702649v

    Article  Google Scholar 

  335. Zhao D, Zhou J, Liu N (2007) Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide nanoparticles. Mater Character 58:249–255. doi:10.1016/j.matchar.2006.04.024

    Article  Google Scholar 

  336. Koči K, Matejka V, Kovař P et al (2011) Comparison of the pure TiO2 and kaoli-nite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catal Today 161:105–109. doi:10.1016/j.cattod.2010.08.026

    Article  Google Scholar 

  337. Wang WY, Irawan A, Ku Y (2008) Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res 42:4725–4732. doi:10.1016/j.watres.2008.08.021

    Article  Google Scholar 

  338. Dubey N, Labhsetwar NK, Devotta S, Rayalu SS (2007) Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst. Catal Today 129:428–434. doi:10.1016/j.cattod.2006.09.041

    Article  Google Scholar 

  339. Zhang J, Hu Y, Matsuoka M et al (2001) Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J Phys Chem B 105:8395–8398. doi:10.1021/jp012080e

    Article  Google Scholar 

  340. Cosa G, Galletero MS, Fernandez L et al (2002) Tuning the photocatalytic activity of titanium dioxide by encapsulation inside zeolites exemplified by the cases of thianthrene photooxygenation and horseradish peroxidase photodeactivation. New J Chem 26:1448–1455. doi:10.1039/B201397E

    Article  Google Scholar 

  341. Zheng S, Gao L, Zhang Q, Guo J (2000) Synthesis, characterization and photocatalytic properties of titania-modifed mesoporous silicate MCM-41. J Mater Chem 10:723–727. doi:10.1039/A908799K

    Article  Google Scholar 

  342. Shankar H, Rajasudha G, Karthikeyan A et al (2008) Synthesis, characterization and photocatalytic activity of nanotitania loaded W-MCM-41. Nanotechnology 19:315711

    Article  Google Scholar 

  343. Bouazza N, Lillo-Rodenas MA, Linares-Solano A (2008) Photocatalytic activity of TiO2-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Appl Catal B 84:691–698. doi:10.1016/j.apcatb.2008.06.002

    Article  Google Scholar 

  344. Zheng S, Gao L (2002) Synthesis and characterization of Pt, Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41. Mater Chem Phys 78:512–517. doi:10.1016/S0254-0584(02)00353-X

    Article  Google Scholar 

  345. Reddy EP, Sun B, Smirniotis PG (2004) Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organic pollutants. J Phys Chem B 108:17198–17205. doi:10.1021/jp047419m

    Article  Google Scholar 

  346. De Witte K, Busuioc AM, Meyen V et al (2008) Influence of the synthesis parameters of TiO2–SBA-15 materials on the adsorption and photodegradation of rhodamine-6G. Micropor Mesopor Mater 110:100–110. doi:10.1016/j.micromeso.2007.09.035

    Article  Google Scholar 

  347. Phanikrishna Sharma MV, Durga Kumari V, Subrahmanyam M (2008) TiO2 supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 73:1562–1569. doi:10.1016/j.chemosphere.2008.07.081

    Article  Google Scholar 

  348. Panpa W, Sujaridworakun P, Jinawath S (2008) Photocatalytic activity of TiO2/ZSM-5 composites in the presence of SO4 2− ion. Appl Catal B 80:271–276. doi:10.1016/j.apcatb.2007.11.029

    Article  Google Scholar 

  349. Neren Ökte A, Yilmaz Ö (2008) Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5. Appl Catal B 85:92–102. doi:10.1016/j.apcatb.2008.07.025

    Article  Google Scholar 

  350. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Recent developments in titanium oxide-based photocatalysts. Appl Catal A 325:1–14. doi:10.1016/j.apcata.2007.03.013

    Article  Google Scholar 

  351. Shen S, Guo L (2006) Structural, textural and photocatalytic properties of quantum-sized In2S3-sensitized Ti-MCM-41 prepared by ion-exchange and sulfidation methods. J Sol State Chem 179:2629–2635. doi:10.1016/j.jssc.2006.05.010

    Article  Google Scholar 

  352. Shen S, Guo L (2008) Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst. Mater Res Bull 43:437–446. doi:10.1016/j.materresbull.2007.02.034

    Article  Google Scholar 

  353. Sathish M, Viswanathan B, Viswanath RP (2006) Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Inter J Hydrogen En 31:891–898. doi:10.1016/j.ijhydene.2005.08.002

    Article  Google Scholar 

  354. Ryu SY, Choi J, Balcerski W et al (2007) Photocatalytic production of H2 on nanocomposite Photocatalysts. Ind Eng Chem Res 46:7476–7488. doi:10.1021/ie0703033

    Article  Google Scholar 

  355. Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111:18195–18203. doi:10.1021/jp074860e

    Article  Google Scholar 

  356. Hirai T, Nanba M, Komasawa I (2003) Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties. J Colloid Interface Sci 268:394–399. doi:10.1016/j.jcis.2003.09.011

    Article  Google Scholar 

  357. Wang S, Liu P, Wang X, Fu X (2005) Homogeneously distributed CdS nanoparticles in Nafion membranes: preparation, characterization, and photocatalytic properties. Langmuir 21:11969–11973. doi:10.1021/la051072c

    Article  Google Scholar 

  358. Pathak P, Meziani MJ, Li Y et al (2004) Improving photoreduction of CO2 with homogene–ously dispersed nanoscale TiO2 catalysts. Chem Commun 1234–1235. doi:10.1039/B400326H

  359. Pathak P, Meziani MJ, Castillo L, Sun YP (2005) Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem 7:667–670. doi:10.1039/B507103H

    Article  Google Scholar 

  360. Lunawat PS, Senapati S, Kumar R, Gupta NM (2007) Visible light-induced splitting of water using CdS nanocrystallites immobilized overwater-repellent polymeric surface. Inter J Hydrogen En 32:2784–2790. doi:10.1016/j.ijhydene.2007.04.001

    Article  Google Scholar 

  361. Roy AM, De GC (2003) Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper. Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J Photochem Photobiol, A 157:87–92. doi:10.1016/S1010-6030(02)00430-6

    Article  Google Scholar 

  362. Yi X, Liqin D, Lizhen A et al (2008) Photocatalytic degradation of rhodamine B and phenol by TiO2 loaded on mesoporous graphitic carbon. Chin J Catal 29:31–36. doi:10.1016/S1872-2067(08)60014-5

    Article  Google Scholar 

  363. Zhang X, Lu X, Shen Y et al (2011) Three-dimentional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem Commun 47:5804–5806. doi:10.1039/C1CC10389J

    Article  Google Scholar 

  364. Zhang X, Du AJ, Lee P et al (2008) Grafted multifunctional titanium dioxide nanotube membrane: Separation and photodegradation of aquatic pollutant. Appl Catal B 84:262–267. doi:10.1016/j.apcatb.2008.04.009

    Article  Google Scholar 

  365. Plesch G, Gorbar M, Vogt UF et al (2009) Reticulated macroporous ceramic foam supported TiO2 for photocatalytic applications. Mater Lett 63:461–463. doi:10.1016/j.matlet.2008.11.008

    Article  Google Scholar 

  366. Skorb EV, Ustinovich EA, Kulak AI, Sviridov DV (2008) Photocatalytic activity of TiO2:In2O3 nanocomposite films towards the degradation of arylmethane and azo dyes. J Photochem Photobiol, A 193:97–102. doi:10.1016/j.jphotochem.2007.06.012

    Article  Google Scholar 

  367. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol, C 1:1–21. doi:10.1016/S1389-5567(00)00002-2

    Article  Google Scholar 

  368. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758. doi:10.1021/cr00035a013

    Article  Google Scholar 

  369. Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J Phys Chem C 112:5275–5300. doi:10.1021/jp077275m

    Article  Google Scholar 

  370. Anpo M (2004) Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–visible light irradiation: approaches in realizing high efficiency in the use of visible light. Bull Chem Soc Jpn 77:1427–1442. doi:10.1246/bcsj.77.1427

    Article  Google Scholar 

  371. Liu G, Wang L, Yang HG et al (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20:831–843. doi:10.1039/B909930A

    Article  Google Scholar 

  372. Vinu R, Madras G (2008) Synthesis and photoactivity of Pd substituted nano-TiO2. J Mol Catal A 291:5–11. doi:10.1016/j.molcata.2008.07.005

    Article  Google Scholar 

  373. Xiao Q, Si Z, Yu Z, Qiu G (2008) Characterization and photocatalytic activity of Sm3+-doped TiO2 nanocrystalline prepared by low temperature combustion method. J Alloys Comp 450:426–431. doi:10.1016/j.jallcom.2006.10.137

    Article  Google Scholar 

  374. Zhou J, Takeuchi M, Zhao XS et al (2006) Photocatalytic decomposition of formic acid under visible light irradiation over V-ion-implanted TiO2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam (ICB) deposition method. Catal Lett 106:67–70. doi:10.1007/s10562-005-9192-5

    Article  Google Scholar 

  375. Zhou J, Takeuchi M, Ray AK et al (2007) Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation. J Colloid Interface Sci 311:497–501. doi:10.1016/j.jcis.2007.03.007

    Article  Google Scholar 

  376. Takeuchi M, Yamashita H, Matsuoka M et al (2000) Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst. Catal Lett 67:135–137. doi:10.1023/A:1019065521567

    Article  Google Scholar 

  377. Ventkatachalam N, Palanichamy M, Arabindoo B, Murugesan V (2007) Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A. Catal Commun 8:1088–1093. doi:10.1016/j.catcom.2006.10.025

    Article  Google Scholar 

  378. Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A 273:177–185. doi:10.1016/j.molcata.2007.03.077

    Article  Google Scholar 

  379. Kryukov AI, Kuchmiy SY, Pokhodenko VD (1997) Nanostructured composite photocatalysts based on polycrystalline cadmium sulfide. Theoret Exp Chem 33:306–321

    Google Scholar 

  380. Yin S, Aita Y, Komatsu M, Sato T (2006) Visible-light-induced photocatalytic activity of TiO2−xNy prepared by solvothermal process in urea–alcohol system. J Eur Ceram Soc 26:2735–2742. doi:10.1016/j.jeurceramsoc.2005.05.012

    Article  Google Scholar 

  381. Gandhe AR, Fernandes JB (2005) A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight. J Sol State Chem 178:2953–2957. doi:10.1016/j.jssc.2005.06.034

    Article  Google Scholar 

  382. Xu JH, Dai WL, Li J et al (2008) Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation. Catal Commun 9:146–152. doi:10.1016/j.catcom.2007.05.043

    Article  Google Scholar 

  383. Matsumoto T, Iyi N, Kaneko Y et al (2007) High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite. Catal Today 120:226–232. doi:10.1016/j.cattod.2006.07.047

    Article  Google Scholar 

  384. Li Y, Xie C, Peng S et al (2008) Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J Mol Catal A 282:117–123. doi:10.1016/j.molcata.2007.12.005

    Article  Google Scholar 

  385. Gao B, Ma Y, Cao Y et al (2006) Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J Phys Chem B 110:14391–14397. doi:10.1021/jp0624606

    Article  Google Scholar 

  386. Li H, Li J, Huo Y (2006) Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. J Phys Chem B 110:1559–1565. doi:10.1021/jp055830j

    Article  Google Scholar 

  387. Rhee CH, Bae SW, Lee JS (2005) Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chem Lett 34:660–661. doi:10.1246/cl.2005.660

    Article  Google Scholar 

  388. Livraghi S, Chierotti MR, Giamello E et al (2008) Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: a multi-technique characterization of differently prepared materials. J Phys Chem C 112:17244–17252. doi:10.1021/jp803806s

    Article  Google Scholar 

  389. Sun H, Bai Y, Liu H et al (2009) Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. J Photochem Photobiol, A 201:15–22. doi:10.1016/j.jphotochem.2008.08.021

    Article  Google Scholar 

  390. Sun H, Bai Y, Jin W, Xu N (2008) Visible-light-driven TiO2 catalysts doped with low-con–centration nitrogen species. Sol En Mater Sol Cells 92:76–83. doi:10.1016/j.solmat.2007.09.003

    Article  Google Scholar 

  391. Li D, Huang H, Chen X et al (2007) New synthesis of excellent visible-light TiO2 − xNx photocatalyst using a very simple method. J Sol State Chem 180:2630–2634. doi:10.1016/j.jssc.2007.07.009

    Article  Google Scholar 

  392. Cheng P, Deng C, Gu M, Dai X (2008) Effect of urea on the photoactivity of titania powder prepared by sol–gel method. Mater Chem Phys 107:77–81. doi:10.1016/j.matchemphys.2007.06.051

    Article  Google Scholar 

  393. Yuan J, Chen M, Shi J, Shanguang W (2006) Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Inter J Hydrogen En 31:1326–1331. doi:10.1016/j.ijhydene.2005.11.016

    Article  Google Scholar 

  394. Bacsa R, Kiwi J, Ohno T et al (2005) Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J Phys Chem B 109:5994–6003. doi:10.1021/jp044979c

    Article  Google Scholar 

  395. Sreethawong T, Laehsalee S, Chavadej S (2008) Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. Inter J Hydrogen En 33:5947–5957. doi:10.1016/j.ijhydene.2008.08.007

    Article  Google Scholar 

  396. Wang Y, Zhou G, Li T et al (2009) Catalytic activity of meso-porous TiO2 − xNx photocatalysts for the decomposition of methyl orange under solar simulated light. Catal Commun 10:412–415. doi:10.1016/j.catcom.2008.10.007

    Article  Google Scholar 

  397. Chen D, Yang D, Geng J et al (2008) Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Appl Surf Sci 255:2879–2884. doi:10.1016/j.apsusc.2008.08.032

    Article  Google Scholar 

  398. Gole JL, Stout JD, Burda C et al (2004) Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240. doi:10.1021/jp030843n

    Article  Google Scholar 

  399. Jagadale TC, Takale SP, Sonawane RS et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J Phys Chem C 112:14595–14602. doi:10.1021/jp803567f

    Article  Google Scholar 

  400. Xu J, Ao Y, Fu D, Yuan C (2008) A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature. J Cryst Growth 310:4319–4324. doi:10.1016/j.jcrysgro.2008.07.045

    Article  Google Scholar 

  401. Zhao Y, Qiu X, Burda C (2008) The Effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chem Mater 20:2629–2636. doi:10.1021/cm703043j

    Article  Google Scholar 

  402. Lopez-Luke T, Wolcott A, Xu L et al (2008) Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. J Phys Chem C 112:1282–1292. doi:10.1021/jp077345p

    Article  Google Scholar 

  403. Sano T, Negishi N, Koike K et al (2004) Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand. J Mater Chem 14:380–384. doi:10.1039/B311444A

    Article  Google Scholar 

  404. Feng C, Wang Y, Jin Z et al (2008) Photoactive centers responsible for visible-light photoactivity of N-doped TiO2. New J Chem 32:1038–1047. doi:10.1039/B719498F

    Article  Google Scholar 

  405. Ozaki H, Iwamoto S, Inoue M (2007) Marked promotive effect of iron on visible-light-induced photocatalytic activities of nitrogen- and silicon-codoped titanias. J Phys Chem C 111:17061–17066. doi:10.1021/jp0751211

    Article  Google Scholar 

  406. Yang S, Gao L (2008) Photocatalytic activity of nitrogen doped rutile TiO2 nanoparticles under visible light irradiation. Mater Res Bull 43:1872–1876. doi:10.1016/j.materresbull.2007.06.058

    Article  Google Scholar 

  407. Morikawa T, Ohwaki T, Suzuki K et al (2008) Visible-light-induced photocatalytic oxidation of carboxylic acids and aldehydes over N-doped TiO2 loaded with Fe, Cu or Pt. Appl Catal B 83:56–62. doi:10.1016/j.apcatb.2008.01.034

    Article  Google Scholar 

  408. Yin S, Liu B, Zhang P et al (2008) Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading. J Phys Chem C 112:12425–12431. doi:10.1021/jp803371s

    Article  Google Scholar 

  409. Shouxin L, Xiaoyun C, Xi C (2006) Preparation of N-doped visible-light response nanosize TiO2 photocatalyst using the acid-catalyzed hydrolysis method. Chin J Catal 27:697–702. doi:10.1016/S1872-2067(06)60037-5

    Article  Google Scholar 

  410. Balcerski W, Ryu SY, Hoffmann MR (2007) Visible-light photoactivity of nitrogen-doped TiO2: photo-oxidation of HCO2H to CO2 and H2O. J Phys Chem C 111:15357–15362. doi:10.1021/jp074989o

    Article  Google Scholar 

  411. Abe H, Kimitani T, Naito M (2006) Influence of NH3/Ar plasma irradiation on physical and photocatalytic properties of TiO2 nanopowder. J Photochem Photobiol, A 183:171–175. doi:10.1016/j.jphotochem.2006.03.013

    Article  Google Scholar 

  412. Sano T, Puzenat E, Guillard C et al (2008) Degradation of C2H2 with modified-TiO2 photocatalysts under visible light irradiation. J Mol Catal A 284:127–133. doi:10.1016/j.molcata.2008.01.014

    Article  Google Scholar 

  413. Yin S, Yamaki H, Komatsu M et al (2003) Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J Mater Chem 13:2996–3001. doi:10.1039/B309217H

    Article  Google Scholar 

  414. Shen H, Mi L, Xu P et al (2007) Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl Surf Sci 253:7024–7028. doi:10.1016/j.apsusc.2007.02.023

    Article  Google Scholar 

  415. Cui X, Ma M, Zhang W et al (2008) Nitrogen-doped TiO2 from TiN and its visible light photoelectrochemical properties. Electrochem Commun 10:367–371. doi:10.1016/j.elecom.2007.12.037

    Article  Google Scholar 

  416. Liu B, Wen L, Zhao X (2008) The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Sol En Mater Sol Cells 92:1–10. doi:10.1016/j.solmat.2007.07.009

    Article  Google Scholar 

  417. Lin HF, Liao SC, Hung SW (2005) The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol, A 174:82–87. doi:10.1016/j.jphotochem.2005.02.015

    Article  Google Scholar 

  418. Wang H, Zhang Z, Chang W (2008) A novel one-step photocatalytic synthesis of benzo[d]oxazol-2(3H)-one with C-doped TiO2 nanoparticle. Chem Lett 37:1156–1157. doi:10.1246/cl.2008.1156

    Article  Google Scholar 

  419. Huang Y, Ho W, Lee S et al (2008) Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir 24:3510–3516. doi:10.1021/la703333z

    Article  Google Scholar 

  420. Treschev SY, Chou PW, Tseng YH et al (2008) Photoactivities of the visible-light-activated mixed-phase carbon-containing titanium dioxide: the effect of carbon incorporation. Appl Catal B 79:8–16. doi:10.1016/j.apcatb.2007.09.046

    Article  Google Scholar 

  421. Wang X, Meng S, Zhang X et al (2007) Multi-type carbon doping of TiO2 photocatalyst. Chem Phys Lett 444:292–296. doi:10.1016/j.cplett.2007.07.026

    Article  Google Scholar 

  422. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2 − xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C 111:8677–8685. doi:10.1021/jp071906v

    Article  Google Scholar 

  423. Hu X, Zhang T, Jin Z et al (2008) Fabrication of carbon-modified TiO2 nanotube arrays and their photocatalytic activity. Mater Lett 62:4579–4581. doi:10.1016/j.matlet.2008.08.051

    Article  Google Scholar 

  424. Xiao Q, Zhang J, Xiao C et al (2008) Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol En 82:706–713. doi:10.1016/j.solener.2008.02.006

    Article  Google Scholar 

  425. Randeniya LK, Murphy AB, Plumb IC (2008) A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J Mater Sci 43:1389–1399. doi:10.1007/s10853-007-2309-z

    Article  Google Scholar 

  426. Xu J, Ao Y, Fu D, Yuan C (2008) Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl Surf Sci 254:3033–3038. doi:10.1016/j.apsusc.2007.10.065

    Article  Google Scholar 

  427. Xu J, Ao Y, Fu D, Yuan C (2008) Synthesis of fluorine-doped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light. J Phys Chem Sol 69:2366–2370. doi:10.1016/j.jpcs.2008.03.017

    Article  Google Scholar 

  428. Zhou JK, Lv L, Yu J et al (2008) Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J Phys Chem C 112:5316–5321. doi:10.1021/jp709615x

    Article  Google Scholar 

  429. Wu G, Chen A (2008) Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J Photochem Photobiol, A 195:47–53. doi:10.1016/j.jphotochem.2007.09.005

    Article  Google Scholar 

  430. Wu G, Wang J, Thomas DF, Chen A (2008) Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 24:3503–3509. doi:10.1021/la703098g

    Article  Google Scholar 

  431. Khan R, Kim SW, Kim TJ, Nam CM (2008) Comparative study of the photocatalytic performance of boron-iron Co-doped and boron-doped TiO2 nanoparticles. Mater Chem Phys 112:167–172. doi:10.1016/j.matchemphys.2008.05.030

    Article  Google Scholar 

  432. Yu HF (2007) Photocatalytic abilities of gel-derived P-doped TiO2. J Phys Chem Sol 68:600–607. doi:10.1016/j.jpcs.2007.01.050

    Article  Google Scholar 

  433. Lin L, Lin W, Zhu Y et al (2005) Phosphor-doped titania—a novel photocatalyst active in visible light. Chem Lett 34:284–285. doi:10.1246/cl.2005.284

    Article  Google Scholar 

  434. Zaleska A, Sobczak JW, Grabowska E, Hupka J (2008) Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl Catal B 78:92–100. doi:10.1016/j.apcatb.2007.09.005

    Article  Google Scholar 

  435. Li J, Lu N, Quan X et al (2008) Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Ind Eng Chem Res 47:3804–3808. doi:10.1021/ie0712028

    Article  Google Scholar 

  436. In S, Orlov A, Berg R et al (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791. doi:10.1021/ja0749237

    Article  Google Scholar 

  437. Tristao JC, Magalhaes F, Corio P, Sansiviero MTC (2006) Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J Photochem Photobiol, A 181:152–157. doi:10.1016/j.jphotochem.2005.11.018

    Article  Google Scholar 

  438. Demeestere K, Dewulf J, Ohno T et al (2005) Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Appl Catal B 61:140–149. doi:10.1016/j.apcatb.2005.04.017

    Article  Google Scholar 

  439. Yin H, Wada Y, Kitamura T et al (2001) Enhanced photocatalytic dechlorination of 1,2,3,4-tetrachlorobenzene using nanosized CdS/TiO2 hybrid photocatalyst under visible light irradiation. Chem Lett 30:334–335. doi:10.1246/cl.2001.334

    Article  Google Scholar 

  440. Blackburn JL, Selmarten DC, Nozik AJ (2003) Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J Phys Chem B 107:14154–14157. doi:10.1021/jp0366771

    Article  Google Scholar 

  441. Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188. doi:10.1021/j100063a022

    Article  Google Scholar 

  442. Hong JS, Choi DS, Kang MG et al (2001) Photocurrent instability of PbS-sensitized TiO2 electrodes in S2− and SO3 2− solution. J Photochem Photobiol, A 143:87–92. doi:10.1016/S1010-6030(01)00455-5

    Article  Google Scholar 

  443. Sun WT, Yu T, Pan HY et al (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125. doi:10.1021/ja0777741

    Article  Google Scholar 

  444. Shalom M, Dor S, Rühle S et al (2009) Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J Phys Chem C 113:3895–3898. doi:10.1021/jp8108682

    Article  Google Scholar 

  445. Das K, De SK (2009) Optical properties of the type-II core-shell TiO2@CdS nanorods for photovoltaic applications. J Phys Chem C 113:3494–3501. doi:10.1021/jp8083953

    Article  Google Scholar 

  446. Chen H, Fu W, Yang H et al (2010) Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic devices. Electrochim Acta 56:919–924. doi:10.1016/j.electacta.2010.10.003

    Article  Google Scholar 

  447. Xia M, Wang F, Wang Y et al (2010) TiO2 nanowires sensitized with CdS quantum dots and the surface photovoltage properties. Mater Lett 64:1688–1690. doi:10.1016/j.matlet.2010.05.003

    Article  Google Scholar 

  448. Nayak J, Sahu SN, Kasuya J, Nozaki S (2008) CdS–ZnO composite nanorods: synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid. Appl Surf Sci 254:7215–7218. doi:10.1016/j.apsusc.2008.05.268

    Article  Google Scholar 

  449. Lee W, Min SK, Dhas V et al (2009) Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochem Commun 11:103–106. doi:10.1016/j.elecom.2008.10.042

    Article  Google Scholar 

  450. Zhang YJ, Yan W, Wu YP, Wang ZH (2008) Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition. Mater Lett 62:3846–3848. doi:10.1016/j.matlet.2008.04.084

    Article  Google Scholar 

  451. Xing C, Jing D, Liu M, Guo L (2009) Photocatalytic hydrogen production over Na2Ti2O4(OH)2 nanotube sensitized by CdS nanoparticles. Mater Res Bull 44:442–445. doi:10.1016/j.materresbull.2008.04.016

    Article  Google Scholar 

  452. Peter LM, Upul Wijayantha KG, Jason Riley D, Waggett JP (2003) Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J Phys Chem B 107:8378–8381. doi:10.1021/jp030334l

    Article  Google Scholar 

  453. Smith YR, Subramanian VR (2011) Heterostructural composites of TiO2 mesh-TiO2 nanoparticles photosensitized with CdS: a new flexible photoanode for solar cells. J Phys Chem B 115:8376–8385. doi:10.1021/jp110200s

    Google Scholar 

  454. Lin ZQ, Lai YK, Hu RG et al (2010) A highly efficient ZnS/CdS@TiO2 photo-electrode for photogenerated cathodic protection of metals. Electrochim Acta 55:8717–8723. doi:10.1016/j.electacta.2010.08.017

    Article  Google Scholar 

  455. Gao C, Li J, Shan Z et al (2010) Preparation ans visible-light photocatalytic activity of In2S3/TiO2 composite. Mater Chem Phys 122:183–187. doi:10.1016/j.matchemphys.2010.02.030

    Article  Google Scholar 

  456. Patil RS, Lokhande CD, Mane RS et al (2007) Room temperature PbS nanoparticle growth, incubation in porous TiO2 electrode for photosensitization application. J Non-Cryst Sol 353:1645–1649. doi:10.1016/j.jnoncrysol.2007.01.014

    Article  Google Scholar 

  457. Lee W, Lee J, Min SK et al (2009) Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells. Mater Sci Eng, B 156:48–51. doi:10.1016/j.mseb.2008.11.014

    Article  Google Scholar 

  458. Ratanatawanate C, Bui A, Vu K, Balkus KJ (2011) Low-temperature synthesis of copper (II) sulfide quantum dot decorated TiO2 nanotubes and their photocatalytic properties. J Phys Chem C 115:6175–6180. doi:10.1021/jp109716q

    Article  Google Scholar 

  459. Liu Y, Zhou H, Zhou B et al (2011) Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. Inter J Hydrogen En 36:167–174. doi:10.1016/j.ijhydene.2010.09.089

    Article  Google Scholar 

  460. Seoul M, Kim H, Kim W, Yong K (2010) Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem Commun 12:1416–1418. doi:10.1016/j.elecom.2010.07.035

    Article  Google Scholar 

  461. Sasamura T, Okazaki K, Tsunoda R et al (2010) Immobilization of ZnS-AgInS2 solid solition nanoparticles on ZnO rod array electrodes and their photoresponse with visible light irradiation. Chem Lett 39:619–620. doi:10.1246/cl.2010.619

    Article  Google Scholar 

  462. Liu C, Liu Z, Li Y et al (2011) CdS/PbS co-sensitized ZnO nanorods and its photocatalytic properties. Appl Surf Sci 257:7041–7046. doi:10.1016/j.apsusc.2011.02.133

    Article  Google Scholar 

  463. Huang S, Zhang Q, Huang X et al (2010) Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21:375201

    Article  Google Scholar 

  464. Anower Hossain M, Jennings JR, Koh ZY, Wang Q (2011) Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 5:3172–3181. doi:10.1021/nn200315b

    Article  Google Scholar 

  465. Bessekhouad Y, Chaoui N, Trzpit M et al (2006) UV-vis versus visible degradation of Acid Red II in a coupled CdS/TiO2 semiconductors suspension. J Photochem Photobiol, A 183:218–224. doi:10.1016/j.jphotochem.2006.03.025

    Article  Google Scholar 

  466. Jang JS, Kim HG, Joshi UA et al (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Inter J Hydrogen En 33:5975–5980. doi:10.1016/j.ijhydene.2008.07.105

    Article  Google Scholar 

  467. Jang JS, Choi SH, Kim HG, Lee JS (2008) Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light. J Phys Chem C 112:17200–17205. doi:10.1021/jp804699c

    Article  Google Scholar 

  468. Lawless D, Kapoor S, Meisel D (1995) Bifunctional capping of CdS nanoparticles and bridging to TiO2. J Phys Chem 99:10329–10335. doi:10.1021/j100025a040

    Article  Google Scholar 

  469. Dibbell RS, Watson DF (2009) Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J Phys Chem C 113:3139–3149. doi:10.1021/jp809269m

    Article  Google Scholar 

  470. Hirai T, Suzuki K, Komasawa I (2001) Preparation and photocatalytic properties of composite CdS nanoparticles—titanium dioxide particles. J Colloid Interface Sci 244:262–265. doi:10.1006/jcis.2001.7982

    Article  Google Scholar 

  471. Peter LM, Jason Riley D, Tull EJ, Upul Wijayantha KG (2002) Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem Commun 1030–1031. doi:10.1039/B201661C

  472. Lee YL, Huang BM, Chien HT (2008) Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem Mater 20:6903–6905. doi:10.1021/cm802254u

    Article  Google Scholar 

  473. Wu J, Lin J, Yin S, Sato T (2001) Synthesis and photocatalytic properties of layered HNbWO6/(Pt, Cd0.8Zn0.2S) nanocomposites. J Mater Chem 11:3343–3347. doi:10.1039/B103838A

    Article  Google Scholar 

  474. Shangguan W (2007) Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Technol Adv Mater 8:76–81. doi:10.1016/j.stam.2006.09.007

    Article  Google Scholar 

  475. Stengl V, Bakarjieva S, Murafa N et al (2008) Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Micropor Mesopor Mater 110:370–378. doi:10.1016/j.micromeso.2007.06.052

    Article  Google Scholar 

  476. Kumar A, Jain AK (2003) Photophysics and photocatalytic properties of Ag+-activated sandwich Q-CdS–TiO2. J Photochem Photobiol, A 156:207–218. doi:10.1016/S1010-6030(02)00396-9

    Article  Google Scholar 

  477. Yu JC, Wu L, Lin J et al (2003) Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem Commun 1552–1553. doi:10.1039/B302418K

  478. Evans JE, Springer KW, Zhang JZ (1994) Femtosecond studies of interparticle electron transfer in a coupled CdS-TiO2 colloidal system. J Chem Phys 101:6222–6225. doi:10.1063/1.468376

    Article  Google Scholar 

  479. Gopidas KR, Bohorquez M, Kamat PV (1990) Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in colloidal CdS-TiO2 and CdS-AgI systems. J Phys Chem 94:6435–6440. doi:10.1021/j100379a051

    Article  Google Scholar 

  480. Hotchandani S, Kamat PV (1992) Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal CdS-ZnO system. J Phys Chem 96:6834–6839. doi:10.1021/j100195a056

    Article  Google Scholar 

  481. So WW, Kim KJ, Moon SJ (2004) Photoproduction of hydrogen over the CdS–TiO2 nano-composite particulate flms treated with TiCl4. Inter J Hydrogen En 29:229–234. doi:10.1016/S0360-3199(03)00211-8

    Article  Google Scholar 

  482. Chen S, Paulose M, Ruan C et al (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol, A 177:177–184. doi:10.1016/j.jphotochem.2005.05.023

    Article  Google Scholar 

  483. Seabold JA, Shankar K, Wilke RHT et al (2008) Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem Mater 20:5266–5273. doi:10.1021/cm8010666

    Article  Google Scholar 

  484. Lu ZX, Zhang ZL, Zhang MX et al (2005) Core/shell quantum-dot-photosensitized nano-TiO2 films: Fabrication and application to the damage of cells and DNA. J Phys Chem B 109:22663–22666. doi:10.1021/jp054472h

    Article  Google Scholar 

  485. Diguna LJ, Shen Q, Sato A et al (2007) Optical absorption and ultrafast carrier dynamics characterization of CdSe quantum dots deposited on different morphologies of nanostructured TiO2 films. Mater Sci Eng, C 27:1514–1520. doi:10.1016/j.msec.2006.06.036

    Article  Google Scholar 

  486. Shen Q, Katayama K, Yamaghuchi M et al (2005) Study of ultrafast carrier dynamics of nanostructured TiO2 films with and without CdSe quantum dot deposition using lens-free heterodyne detection transient grating technique. Thin Solid Films 486:15–19. doi:10.1016/j.tsf.2004.11.238

    Article  Google Scholar 

  487. Shen Q, Sato T, Hashimoto M et al (2006) Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films 499:299–305. doi:10.1016/j.tsf.2005.07.019

    Article  Google Scholar 

  488. Ho W, Yu JC (2006) Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. J Mol Catal A 247:268–274. doi:10.1016/j.molcata.2005.11.057

    Article  Google Scholar 

  489. Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137. doi:10.1021/ja070099a

    Article  Google Scholar 

  490. Shen Y, Bao J, Dai N et al (2009) Speedy photoelectric exchange of CdSe quantum dots/mesoporous titania composite system. Appl Surf Sci 255:3908–3911. doi:10.1016/j.apsusc.2008.10.004

    Article  Google Scholar 

  491. Loef R, Houtepen AJ, Talgorn E et al (2009) Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett 9:856–859. doi:10.1021/nl803738q

    Article  Google Scholar 

  492. Im SH, Lee YH, Seok SI et al (2010) Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition. Langmuir 26:18576–18580. doi:10.1021/la1034382

    Article  Google Scholar 

  493. Salant A, Shalom M, Hod I et al (2010) Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4:5962–5968. doi:10.1021/nn1018208

    Article  Google Scholar 

  494. Guijarro S, Lana-Villarreal T, Shen Q et al (2010) Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics study. J Phys Chem C 114:21928–21937. doi:10.1021/jp105890x

    Article  Google Scholar 

  495. Fuke N, Hoch LB, Koposov AY et al (2010) CdSe quantum-dot-sensitized solar cell with ~100% internal efficiency. ACS Nano 4:6377–6386. doi:10.1021/nn101319x

    Article  Google Scholar 

  496. Hossain MF, Biswas S, Zhang ZH, Takahashi T (2011) Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J Photochem Photobiol, A 217:68–75. doi:10.1016/j.jphotochem.2010.09.020

    Article  Google Scholar 

  497. Lin CJ, Chen S, Liou YH (2010) Wire-shaped electrode of CdSe-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Electrochem Commun 12:1513–1516. doi:10.1016/j.elecom.2010.08.021

    Article  Google Scholar 

  498. Wang H, Wu Z, Liu Y, Sheng Z (2008) The characterization of ZnO–anatase–rutile three-component semiconductor and enhanced photocatalytic activity of nitrogen oxides. J Mol Catal 287:176–181. doi:10.1016/j.molcata.2008.03.010

    Article  Google Scholar 

  499. Wang N, Li J, Zhu L et al (2008) Highly photocatalytic activity of metallic hydroxide/titanium oxide nanoparticles prepared via a modified wet precipitation process. J Photochem Photobiol, A 198:282–287. doi:10.1016/j.jphotochem.2008.03.021

    Article  Google Scholar 

  500. Wang N, Zhu LH, Li J, Tang HQ (2007) A novel Fe(OH)3/TiO2 nanoparticles and its high photocatalytic activity. Chin Chem Lett 18:1261–1264. doi:10.1016/j.cclet.2007.08.020

    Article  Google Scholar 

  501. Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C 115:4953–4958. doi:10.1021/jp111562d

    Article  Google Scholar 

  502. Mohamed MM, Othman I, Mohamed RM (2007) Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. J Photochem Photobiol, A 191:153–161. doi:10.1016/j.jphotochem.2007.04.017

    Article  Google Scholar 

  503. Lalitha K, Sadanandam G, Durga V et al (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:water mixtures. J Phys Chem C 114:22181–22189. doi:10.1021/jp107405u

    Article  Google Scholar 

  504. Xu S, Du AJ, Liu J et al (2011) Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water. Inter J Hydrogen En 36:6560–6568. doi:10.1016/j.ijhydene.2011.02.103

    Article  Google Scholar 

  505. Liao DL, Badour CA, Liao BQ (2008) Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J Photochem Photobiol, A 194:11–19. doi:10.1016/j.jphotochem.2007.07.008

    Article  Google Scholar 

  506. Chen D, Zhang H, Hu S, Li J (2008) Preparation and enhanced photo-electrochemical performance of coupled bicomponent ZnO–TiO2 nanocomposites. J Phys Chem C 112:117–122. doi:10.1021/jp077236a

    Article  Google Scholar 

  507. Abdel Aal A, Barakat MA, Mohamed RM (2008) Electrophoreted Zn–TiO2–ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol. Appl Surf Sci 254:4577–4583. doi:10.1016/j.apsusc.2008.01.049

    Article  Google Scholar 

  508. Song H, Jiang H, Liu X, Meng G (2006) Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation. J Photochem Photobiol, A 181:421–428. doi:10.1016/j.jphotochem.2006.01.001

    Article  Google Scholar 

  509. Ke D, Liu H, Peng T et al (2008) Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Mater Lett 62:447–450. doi:10.1016/j.matlet.2007.05.060

    Article  Google Scholar 

  510. Li XZ, Li FB, Yang CL, Ge WK (2001) Photocatalytic activity of Wox–TiO2 under visible light irradiation. J Photochem Photobiol, A 141:209–217. doi:10.1016/S1010-6030(01)00446-4

    Article  Google Scholar 

  511. Yasomanee JP, Bandara J (2008) Multi-electron storage of photoenergy using Cu2O–TiO2 thin film photocatalyst. Sol En Mater Sol Cells 92:348–352. doi:10.1016/j.solmat.2007.09.016

    Article  Google Scholar 

  512. Celik E, Yildiz AY, Ak Azem NF et al (2006) Preparation and characterization of Fe2O3–TiO2 thin films on glass substrate for photocatalytic applications. Mater Sci Eng, B 129:193–199. doi:10.1016/j.mseb.2006.01.013

    Article  Google Scholar 

  513. Seftel EM, Popovici E, Mertens M et al (2008) SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Appl Catal B 84:699–705. doi:10.1016/j.apcatb.2008.06.006

    Article  Google Scholar 

  514. Chen LC, Tsai FR, Fang SH, Ho YC (2009) Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination. Electrochim Acta 54:1304–1311. doi:10.1016/j.electacta.2008.09.009

    Article  Google Scholar 

  515. Ismail AA (2008) Single-step synthesis of a highly active photocatalyst for oxidation of trichloroethylene. Appl Catal B 85:33–39. doi:10.1016/j.apcatb.2008.06.025

    Article  Google Scholar 

  516. Bedja I, Kamat PV (1995) Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites. J Phys Chem 99:9182–9188. doi:10.1021/j100022a035

    Article  Google Scholar 

  517. Penpolcharoen M, Amal R, Brungs M (2001) Degradation of sucrose and nitrate over titania coated nano-hematite photocatalysts. J Nanopart Res 3:289–302. doi:10.1023/A:1017929204380

    Article  Google Scholar 

  518. Nishijima K, Ohtani B, Yan X et al (2007) Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts. Chem Phys 339:64–72. doi:10.1016/j.chemphys.2007.06.014

    Article  Google Scholar 

  519. Nishijima K, Fujisawa Y, Murakami N et al (2008) Development of an S-doped titania nanotube (TNT) site-selectively loaded with iron (III) oxide and its photocatalytic activities. Appl Catal B 84:584–590. doi:10.1016/j.apcatb.2008.05.014

    Article  Google Scholar 

  520. Xiao G, Wang X, Li D, Fu X (2008) InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. J Photochem Photobiol, A 193:213–221. doi:10.1016/j.jphotochem.2007.06.027

    Article  Google Scholar 

  521. Lee BT, Han JK, Gain AK et al (2006) TEM microstructure characterization of nano TiO2 coated on nano ZrO2 powders and their photocatalytic activity. Mater Lett 60:2101–2104. doi:10.1016/j.matlet.2005.12.102

    Article  Google Scholar 

  522. Xu J, Ao Y, Fu D, Yuan C (2008) Synthesis of Bi2O3–TiO2 composite film with high-photocatalytic activity under sunlight irradiation. Appl Surf Sci 255:2365–2369. doi:10.1016/j.apsusc.2008.07.095

    Article  Google Scholar 

  523. Tawkaew S, Chareonpanich M, Supothina S (2008) Preparation and photocatalytic study of fibrous K0.3Ti4O7.3(OH)1.7—anatase TiO2 nanocomposite photocatalyst. Mater Chem Phys 111:232–237. doi:10.1016/j.matchemphys.2008.03.031

    Article  Google Scholar 

  524. Jang JS, Kim HG, Reddy VR et al (2005) Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds. J Catal 231:213–222. doi:10.1016/j.jcat.2005.01.026

    Article  Google Scholar 

  525. Jothiramalingam R, Wang MK (2007) Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition. J Hazard Mater 147:562–569. doi:10.1016/j.jhazmat.2007.01.069

    Article  Google Scholar 

  526. Cho J, Denes FS, Timmons RB (2006) Plasma processing approach to molecular surface tailoring of nanoparticles: improved photocatalytic activity of TiO2. Chem Mater 18:2989–2996. doi:10.1021/cm060212g

    Article  Google Scholar 

  527. Martinez AI, Acosta DR, Cedillo G et al (2005) Effect of SnO2 on the photocatalytical properties of TiO2 films. Thin Solid Films 490:118–123. doi:10.1016/j.tsf.2005.04.060

    Article  Google Scholar 

  528. Li D, Haneda H (2003) Photocatalysis of sprayed nitrogen-containing Fe2O3–ZnO and WO3–ZnO composite powders in gas-phase acetaldehyde decomposition. J Photochem Photobiol, A 160:203–212. doi:10.1016/S1010-6030(03)00212-0

    Article  Google Scholar 

  529. Smith W, Zhao YP (2009) Superior photocatalytic performance by vertically aligned core–shell TiO2/WO3 nanorod arrays. Catal Commun 10:1117–1121. doi:10.1016/j.catcom.2009.01.010

    Article  Google Scholar 

  530. Jeon TH, Choi W, Park H (2011) Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays: energy level mismatch versus surface specific activity. J Phys Chem C 115:7134–7142. doi:10.1021/jp201215t

    Article  Google Scholar 

  531. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube–TiO2 composites. Adv Mater 21:2233–2239. doi:10.1002/adma.200802738

    Article  Google Scholar 

  532. Eder D (201) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348–1385. doi:10.1021/cr800433k

  533. Luo Y, Liu J, Xia X et al (2007) Fabrication and characterization of TiO2/short MWNTs with enhanced photocatalytic activity. Mater Lett 61:2467–2472. doi:10.1016/j.matlet.2006.09.051

    Article  Google Scholar 

  534. Gao B, Peng C, Chen GZ, Li Puma G (2008) Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Appl Catal B 85:17–23. doi:10.1016/j.apcatb.2008.06.027

    Article  Google Scholar 

  535. Yu H, Quan X, Chen S et al (2008) TiO2–carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis. J Photochem Photobiol, A 200:301–306. doi:10.1016/j.jphotochem.2008.08.007

    Article  Google Scholar 

  536. Wang W, Serp P, Kalck P et al (2008) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967. doi:10.1016/j.materresbull.2007.04.032

    Article  Google Scholar 

  537. Chen LC, Ho YC, Guo WS et al (2009) Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochim Acta 54:3884–3891. doi:10.1016/j.electacta.2009.02.001

  538. Yen CY, Lin YF, Hung CH et al (2008) The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology 19:045604

    Article  Google Scholar 

  539. Xia XH, Jia ZJ, Yu Y et al (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45:717–721. doi:10.1016/j.carbon.2006.11.028

    Article  Google Scholar 

  540. Wang H, Wang HL, Jiang WF, Li ZQ (2009) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43:204–210. doi:10.1016/j.watres.2008.10.003

    Article  Google Scholar 

  541. Wang H, Wang HL, Jiang WF (2009) Solar photocatalytic degradation of 2,6-dinitro-p-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)–TiO2 composite photocatalysts. Chemosphere 75:1105–1111. doi:10.1016/j.chemosphere.2009.01.014

    Article  Google Scholar 

  542. Yao Y, Li G, Ciston S et al (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42:4952–4957. doi:10.1021/es800191n

    Article  Google Scholar 

  543. Tang ZR, Li F, Zhang Y et al (2011) Composites of titanate nanotube and carbon nanotube with high mineralization ratio for gap-phase degradation of volatile aromatic pollutant. J Phys Chem C 115:7880–7886. doi:10.1021/jp1115838

    Article  Google Scholar 

  544. Zhu LP, Liao GH, Huang WY et al (2009) Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Mater Sci Eng, B 163:194–198. doi:10.1016/j.mseb.2009.05.021

    Article  Google Scholar 

  545. Oh WC, Jung AR, Ko WB (2009) Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity. Mater Sci Eng, C 29:1338–1347. doi:10.1016/j.msec.2008.10.034

    Article  Google Scholar 

  546. Wu H, Wang Q, Yao Y et al (2008) Microwave-assisted synthesis and photocatalytic properties of carbon nanotube/zinc sulfide heterostructures. J Phys Chem C 112:16779–16783. doi:10.1021/jp8069018

    Article  Google Scholar 

  547. Wu HQ, Wang Q, Yao YZ et al (2009) Microwave-assisted synthesis and highly photocatalytic activity of MWCNT/ZnSe heterostructures. Mater Chem Phys 113:539–543. doi:10.1016/j.matchemphys.2008.08.004

    Article  Google Scholar 

  548. Maeda K, Eguchi M, Youngblood WJ, Mallouk TE (2008) Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation. Chem Mater 20:6770–6778. doi:10.1021/cm801807b

    Article  Google Scholar 

  549. Tsubota T, Ono A, Murakami N, Ohno T (2009) Characterization and photocatalytic performance of carbon nanotube material-modified TiO2 synthesized by using the hot CVD process. Appl Catal B 91:533–538. doi:10.1016/j.apcatb.2009.06.024

    Article  Google Scholar 

  550. Kim TW, Lee MJ, Shim WG et al (2008) Adsorption and photocatalytic decomposition of organic molecules on carbon-coated TiO2. J Mater Sci 43:6486–6494. doi:10.1007/s10853-008-2978-2

    Article  Google Scholar 

  551. Guo Y, Wang H, He C et al (2009) Uniform carbon-coated ZnO nanorods: microwave-assisted preparation, cytotoxicity, and photocatalytic activity. Langmuir 25:4678–4684. doi:10.1021/la803530h

    Article  Google Scholar 

  552. Zhong J, Chen F, Zhang J (2010) Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance. J Phys Chem C 114:933–939. doi:10.1021/jp909835m

    Article  Google Scholar 

  553. Zhang L, Cheng H, Zong R, Zhu Y (2009) Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys Chem C 113:2368–2374. doi:10.1021/jp807778r

    Article  Google Scholar 

  554. Hu X, Huang K, Fang D, Liu S (2011) Enhanced performances of dye-sensitized solar cells based on graphite-TiO2 composites. Mater Sci Eng, B 176:431–435. doi:10.1016/j.mseb.2010.12.016

    Article  Google Scholar 

  555. Sellappan R, Zhu J, Fredriksson H et al (2011) Preparation and characterization of TiO2/carbon composite thin films with enhanced photocataloytic activity. J Mol Catal A 335:136–144. doi:10.1016/j.molcata.2010.11.025

    Article  Google Scholar 

  556. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  Google Scholar 

  557. Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63. doi:10.1038/nature05545

    Article  Google Scholar 

  558. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/B917103G

    Article  Google Scholar 

  559. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi:10.1038/nnano.2009.58

    Article  Google Scholar 

  560. Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimentional carbon support. J Phys Chem Lett 1:520–527. doi:10.1021/jz900265j

    Article  Google Scholar 

  561. Zhu H, Wei J, Wang K, Wu D (2009) Applications of carbon materials in photovoltaic solar cells. Sol En Mater Sol Cells 93:1461–1470. doi:10.1016/j.solmat.2009.04.006

    Article  Google Scholar 

  562. Stroyuk OL, Andryushina NS, Kuchmiy SY et al (2015) Photochemical processes involving graphene oxide. Theoret Exp Chem 51:1–29. doi:10.1007/s11237-015-9393-y

    Article  Google Scholar 

  563. Kamat PV, Bedja I, Hotchandani S (1994) Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions. J Phys Chem 98:9137–9142. doi:10.1021/j100088a008

    Article  Google Scholar 

  564. Brown P, Kamat PV (2008) Quantum dot solar cells. Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell. J Am Chem Soc 130:8890–8891. doi:10.1021/ja802810c

    Article  Google Scholar 

  565. Kathiravan KA, Sathish Kumar P, Renganathan R, Anandan S (2009) Photoinduced electron transfer reactions between meso-tetrakis(4-sulfonatophenyl)porphyrin and colloidal metal-semiconductor nanoparticles. Colloids Surf A 333:175–181. doi:10.1016/j.colsurfa.2008.09.042

    Article  Google Scholar 

  566. Dai W, Zheng X, Yang H et al (2009) The promoted effect of UV irradiation on preferential oxidation of CO in an H2-rich stream over Au/TiO2. J Power Sources 188:507–514. doi:10.1016/j.jpowsour.2008.12.028

    Article  Google Scholar 

  567. Bannat I, Wessels K, Oekermann T et al (2009) Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures. Chem Mater 21:1645–1653. doi:10.1021/cm803455k

    Article  Google Scholar 

  568. Abdulla-Al-Mamun M, Kusumoto Y, Ahmmad B, Shariful Islam M (2010) Photocatalytic cancer (HeLa) cell-killing enhanced with Cu–TiO2 nanocomposite. Topics Catal 53:571–577. doi:10.1007/s11244-010-9489-5

    Article  Google Scholar 

  569. Yoshinaga M, Yamamoto K, Sato N et al (2009) Remarkably enhanced photocatalytic activity by nickel nanoparticle deposition on sulfur-doped titanium dioxide thin film. Appl Catal B 87:239–244. doi:10.1016/j.apcatb.2008.08.023

    Article  Google Scholar 

  570. Lin HY, Chang YS (2010) Photocatalytic water splitting for hydrogen production on Au/KTiNbO5. Inter J Hydrogen En 35:8463–8471. doi:10.1016/j.ijhydene.2010.06.006

    Article  Google Scholar 

  571. Wang W, Zhang J, Chen F et al (2008) Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles. J Colloid Interface Sci 323:182–186. doi:10.1016/j.jcis.2008.03.043

    Article  Google Scholar 

  572. Sakai N, Fujiwara Y, Takahashi Y, Tatsuma T (2009) Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. ChemPhysChem 10:766–769. doi:10.1002/cphc.200800704

    Article  Google Scholar 

  573. Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Inter J Hydrogen En 32:2689–2692. doi:10.1016/j.ijhydene.2006.09.024

    Article  Google Scholar 

  574. Miyao T, Suzuki Y, Naito S (2000) Hydrogen formation by the photodecomposition of water over Pt/TiO2 suspended in a water in oil emulsion. Catal Lett 66:197–200. doi:10.1023/A:1019032614298

    Article  Google Scholar 

  575. Ohtani B, Iwai K, Nishimoto S, Sato S (1997) Role of platinum deposits on titanium (IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B 101:3349–3359. doi:10.1021/jp962060q

    Article  Google Scholar 

  576. Sun B, Vorontsov AV, Smirniotis PG (2003) Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19:3151–3156. doi:10.1021/la0264670

    Article  Google Scholar 

  577. Subramanian V, Wolf EE, Kamat PV (2001) Semiconductor-metal composite nanostructures: to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J Phys Chem B 105:11439–11446. doi:10.1021/jp011118k

    Article  Google Scholar 

  578. Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966. doi:10.1021/jp0033263

    Article  Google Scholar 

  579. Subramanian V, Wolf EE, Kamat PV (2003) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles. Langmuir 19:469–474. doi:10.1021/la026478t

    Article  Google Scholar 

  580. Zheng Y, Zheng L, Zhan Y et al (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46:6980–6986. doi:10.1021/ic700688f

    Article  Google Scholar 

  581. Gu C, Cheng C, Huang H et al (2009) Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Cryst Growth Design 9:3278–3285. doi:10.1021/cg900043k

    Article  Google Scholar 

  582. Lombardi I, Marchionna S, Zangari G, Pizzini S (2007) Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. Langmuir 23:12413–12420. doi:10.1021/la7016165

    Article  Google Scholar 

  583. Sheeney-Haj-Ichia L, Pogorelova S, Gofer Y, Willner I (2004) Enhanced photoelectrochemistry in CdS/Au nanoparticle bilayers. Adv Func Mater 14:416–424. doi:10.1002/adfm.200305430

    Article  Google Scholar 

  584. Lana-Villarreal T, Gomez R (2005) Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: the photoelectrochemistry of water oxidation. Electrochem Commun 7:1218–1224. doi:10.1016/j.elecom.2005.08.031

    Article  Google Scholar 

  585. Mizukoshi Y, Makise Y, Shuto T et al (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14:387–392. doi:10.1016/j.ultsonch.2006.08.001

    Article  Google Scholar 

  586. Mizukoshi Y, Sato K, Konno TJ, Masahashi N (2010) Dependence of photocatalytic activities upon the structures of Au/Pd bimetallic nanoparticles immobilized on TiO2 surface. Appl Catal B 94:248–253. doi:10.1016/j.apcatb.2009.11.015

    Article  Google Scholar 

  587. Tian B, Zhang J, Tong T, Chen F (2008) Preparation of Au/TiO2 catalysts from Au (I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl Catal B 79:394–401. doi:10.1016/j.apcatb.2007.11.001

    Article  Google Scholar 

  588. Haldar KK, Sen T, Patra A (2008) Au@ZnO core-shell nanoparticles are efficient energy acceptors with organic dye donors. J Phys Chem C 112:11650–11656. doi:10.1021/jp8031308

    Article  Google Scholar 

  589. Liu Z, Guo B, Hong L, Jiang H (2005) Physicochemical and photocatalytic characterizations of TiO2/Pt nanocomposites. J Photochem Photobiol, A 172:81–88. doi:10.1016/j.jphotochem.2004.11.008

    Article  Google Scholar 

  590. Yi Z, Wei W, Lee S, Jianhua G (2007) Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation. Catal Commun 8:906–912. doi:10.1016/j.catcom.2006.09.023

    Article  Google Scholar 

  591. Yin S, Sato T (2005) Photocatalytic activity of platinum loaded fibrous titania prepared by sol–vothermal process. J Photochem Photobiol, A 169:89–94. doi:10.1016/j.jphotochem.2004.05.038

    Article  Google Scholar 

  592. Alam Khan M, Shaheer Akhtar M, Woo SI, Yang O (2008) Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Catal Commun 10:1–5. doi:10.1016/j.catcom.2008.01.018

    Article  Google Scholar 

  593. Shan Z, Wu J, Xu F et al (2008) Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction. J Phys Chem C 112:15423–15428. doi:10.1021/jp804482k

    Article  Google Scholar 

  594. Moonsiri M, Rangsunvigit P, Chavadej S, Gulari E (2004) Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products. Chem Eng J 97:241–248. doi:10.1016/j.cej.2003.05.003

    Article  Google Scholar 

  595. Zhou G, Deng J (2007) Preparation and photocatalytic performance of Ag/ZnO nano-composites. Mater Sci Semicon Proc 10:90–96. doi:10.1016/j.mssp.2007.05.003

    Article  Google Scholar 

  596. Zhang Y, Mu J (2007) One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. J Colloid Interface Sci 309:478–484. doi:10.1016/j.jcis.2007.01.011

    Article  Google Scholar 

  597. Araña J, Doña-Rodriguez JM, Herrera Melian JA et al (2005) Role of Pd and Cu in gas-phase alcohols photocatalytic degradation with doped TiO2. J Photochem Photobiol, A 174:7–14. doi:10.1016/j.jphotochem.2005.03.003

    Article  Google Scholar 

  598. Wu NL, Lee MS (2004) Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Inter J Hydrogen En 29:1601–1605. doi:10.1016/j.ijhydene.2004.02.013

    Article  Google Scholar 

  599. Chiarello GL, Aguirre MH, Selli E (2010) Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal 273:182–190. doi:10.1016/j.jcat.2010.05.012

    Article  Google Scholar 

  600. Chiarello GL, Forni L, Selli E (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2. Catal Today 144:69–74. doi:10.1016/j.cattod.2009.01.023

    Article  Google Scholar 

  601. Lai Y, Zhuang H, Xie K et al (2010) Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. New J Chem 34:1335–1340. doi:10.1039/B9NJ00780F

    Article  Google Scholar 

  602. Pang H, Li Y, Guan L et al (2011) TiO2/Ni nanocomposites: biocompatible and recyclable magnetic photocatalysts. Catal Commun 12:611–615. doi:10.1016/j.catcom.2010.12.015

    Article  Google Scholar 

  603. Ruvarac-Bugarčić IA, Šaponjić ZV, Zec S et al (2005) Photocatalytic reduction of cadmium on TiO2 nanoparticles modified with amino acids. Chem Phys Lett 407:110–113. doi:10.1016/j.cplett.2005.03.058

    Article  Google Scholar 

  604. Somasundaram S, Ming Y, Chenthamarakshan CR et al (2004) Free radical-mediated hetero–geneous photocatalytic reduction of metal ions in UV-irradiated titanium dioxide suspensions. J Phys Chem B 108:4784–4788. doi:10.1021/jp036729m

    Article  Google Scholar 

  605. Wood A, Giersing M, Mulvaney P (2001) Fermi level equilibration in quantum dot—metal nanojunctions. J Phys Chem B 105:8810–8815. doi:10.1021/jp011576t

    Article  Google Scholar 

  606. Siemon U, Bahnemann D, Testa JJ et al (2002) Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J Photochem Photobiol, A 148:247–255. doi:10.1016/S1010-6030(02)00050-3

    Article  Google Scholar 

  607. Rabani J, Behar D (1989) Quenching of aqueous colloidal zinc oxide fluorescence by electron and hole scavengers: effect of a positive polyelectrolyte. J Phys Chem 93:2559–2563. doi:10.1021/j100343a063

    Article  Google Scholar 

  608. Subramanian V, Wolf EE, Kamat PV (2003) Green emission to probe photoinduced charging events in ZnO–Au nanoparticles. Charge distribution and Fermi level equilibration. J Phys Chem B 107:7479–7485. doi:10.1021/jp0275037

    Article  Google Scholar 

  609. Vigil E, Gonzales B, Zumeta I et al (2005) Preparation of photoelectrodes with spectral res–ponse in the visible without applied bias based on photochemically deposited copper oxide inside a porous titanium dioxide film. Thin Solid Films 489:50–55. doi:10.1016/j.tsf.2005.04.098

    Article  Google Scholar 

  610. Lu L, Hu S, Lee HI et al (2007) Photoinduced growth of Cu nanoparticles on ZnO from CuCl2 in methanol. J Nanopart Res 9:491–496. doi:10.1007/s11051-006-9087-4

    Article  Google Scholar 

  611. Liqiang J, Baiqi W, Baifu X et al (2004) Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. J Sol State Chem 177:4221–4227. doi:10.1016/j.jssc.2004.08.016

    Article  Google Scholar 

  612. Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152. doi:10.1021/es025617q

    Article  Google Scholar 

  613. Liu Y, Liu C, Zhang Z, Wang C (2001) The surface enhanced Raman scattering effects of composite nanocrystals of Ag–TiO2. Spectrochim Acta A 57:35–39. doi:10.1016/S1386-1425(00)00326-7

    Article  Google Scholar 

  614. He J, Yang P, Sato H et al (2004) Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets. J Electroanal Chem 566:227–233. doi:10.1016/j.jelechem.2003.11.031

    Article  Google Scholar 

  615. Korzhak AV, Ermokhina NI, Stroyuk OL et al (2008) Photocatalytic hydrogen evolution over mesoporous TiO2/Metal nanocomposites. J Photochem Photobiol, A 198:126–134. doi:10.1016/j.jphotochem.2008.02.026

    Article  Google Scholar 

  616. Ng YH, Ikeda S, Harada T et al (2008) Photocatalytic route for synthesis of hollow porous carbon/Pt nanocomposites with controllable density and porosity. Chem Mater 20:1154–1160. doi:10.1021/cm702034w

    Article  Google Scholar 

  617. Naoi K, Ohko Y, Tatsuma T (2004) TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J Am Chem Soc 126:3664–3668. doi:10.1021/ja039474z

    Article  Google Scholar 

  618. Uddin MJ, Cesano F, Bertarione S et al (2008) Tailoring the activity of Ti-based photocatalysts by playing with surface morphology and silver doping. J Photochem Photobiol, A 196:165–173. doi:10.1016/j.jphotochem.2007.07.037

    Article  Google Scholar 

  619. Tanahashi I, Iwagishi H, Chang G (2008) Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater Lett 62:2714–2716. doi:10.1016/j.matlet.2008.01.023

    Article  Google Scholar 

  620. Tanahashi I (2007) Photocatalytic preparation of Ag/TiO2 films and their localized surface plasmon resonance sensing properties. Bull Chem Soc Jpn 80:2019–2023. doi:10.1246/bcsj.80.2019

    Article  Google Scholar 

  621. Paramasivam I, Macak JM, Ghicov A, Schmuki P (2007) Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem Phys Lett 445:233–237. doi:10.1016/j.cplett.2007.07.107

    Article  Google Scholar 

  622. Zolotavin P, Permenova E, Sarkosov O et al (2008) Two-photon luminescence enhancement of silver nanoclusters photodeposited onto mesoporous TiO2 film. Chem Phys Lett 457:342–346. doi:10.1016/j.cplett.2008.04.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Stroyuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stroyuk, O. (2018). Synthesis of Nanocrystalline Photo-Active Semiconductors. In: Solar Light Harvesting with Nanocrystalline Semiconductors. Lecture Notes in Chemistry, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-68879-4_5

Download citation

Publish with us

Policies and ethics