Skip to main content

Radiomics in Medical Imaging—Detection, Extraction and Segmentation

  • Chapter
  • First Online:
Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 140))

Abstract

Radiomics, as a newly emerging technology, converts medical images into high-dimensional data via high-throughput extraction of quantitative features, followed by subsequent data analysis for decision support. It identifies general diagnostic or prognostic phenotypes with target clinical need, providing an unprecedented opportunity to improve individualized treatment in cancer at low cost. In this chapter, we will introduce radiomics from its development to its clinical applications. We divide the clinical applications into three sections based on three most common medical modality, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET), to give a comprehensive introduction of how radiomics works with the example of a typical cancer type. The workflow and detailed technology skills are well described in each section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014)

    Google Scholar 

  2. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M.M., Leemans, C.R., Dekker, A., Quackenbush, J., Gillies, R.J., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Google Scholar 

  3. Agnihotri, S., Burrell, K.E., Wolf, A., Jalali, S., Hawkins, C., Rutka, J.T., Zadeh, G.: Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Archivum Immunologiae Et Therapiae Experimentalis 61(1), 25–41 (2013)

    Article  Google Scholar 

  4. Al Gindi, A., Rashed, E., Sami, M.: Development and Evaluation of a computer-aided diagnostic algorithm for lung nodule characterization and classification in chest radiographs using multiscale wavelet transform. J. Am. Sci. 10(2) (2014)

    Google Scholar 

  5. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  6. Arbonès, D.R., Jensen, H.G., Jakobsen, A.L., af Rosenschöld, P.M., Hansen, A.E., Igel, C., Darkner, S.: Automatic FDG-PET-based tumor and metastatic lymph node segmentation in cervical cancer. In: SPIE Medical Imaging. International Society for Optics and Photonics (2014)

    Google Scholar 

  7. Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  8. Armato, S.G., Giger, M.L., MacMahon, H.: Automated detection of lung nodules in CT scans: preliminary results. Med. Phys. 28(8), 1552–1561 (2001)

    Article  Google Scholar 

  9. Armato, S.G., Sensakovic, W.F.: Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis. Acad. Radiol. 11(9), 1011–1021 (2004)

    Article  Google Scholar 

  10. Athelogou, M., Schmidt, G., Schäpe, A., Baatz, M., Binnig, G.: Cognition Network Technology—A Novel Multimodal Image Analysis Technique for Automatic Identification and Quantification of Biological Image Contents. Springer, Berlin (2006)

    Google Scholar 

  11. Auffray, C., Sieweke, M.H., Geissmann, F.: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009)

    Article  Google Scholar 

  12. Bach Cuadra, M., De Craene, M., Duay, V., Macq, B., Pollo, C., Thiran, J.P.: Dense deformation field estimation for atlas-based segmentation of pathological MR brain images. Comput. Methods Programs Biomed. 84(2–3), 66–75 (2006)

    Article  Google Scholar 

  13. Balagurunathan, Y., Gu, Y., Wang, H., Kumar, V., Grove, O., Hawkins, S., Kim, J., Goldgof, D.B., Hall, L.O., Gatenby, R.A., Gillies, R.J.: Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 7(1), 72–87 (2014)

    Article  Google Scholar 

  14. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011: 14th International Conference, Toronto, Canada, 18–22 Sept 2011, Proceedings, Part III, pp. 354–361. Springer, Berlin (2011)

    Google Scholar 

  15. Belden, C.J., Valdes, P.A., Ran, C., Pastel, D.A., Harris, B.T., Fadul, C.E., Israel, M.A., Paulsen, K., Roberts, D.W.: Genetics of glioblastoma: a window into its imaging and histopathologic variability. Radiographics 31(6), 1717–1740 (2011)

    Article  Google Scholar 

  16. Bendtsen, C., Kietzmann, M., Korn, R., Mozley, P.D., Schmidt, G., Binnig, G.: X-ray computed tomography: semiautomated volumetric analysis of late-stage lung tumors as a basis for response assessments. Int. J. Biomed. Imaging 2011, 361589 (2011)

    Article  Google Scholar 

  17. Bian, Z., Tan, W., Yang, J., Liu, J., Zhao, D.: Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis. Biomed. Mater. Eng. 24(6), 3239–3249 (2014)

    Google Scholar 

  18. Bocchino, C., Carabellese, A., Caruso, T., Della Sala, G., Ricart, S., Spinella, A.: Use of gray value distribution of run lengths for texture analysis. Pattern Recogn. Lett. 11(6), 415–419 (1990)

    Article  Google Scholar 

  19. Brett, M., Leff, A.P., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14(2), 486–500 (2001)

    Article  Google Scholar 

  20. by Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. (2012)

    Google Scholar 

  21. Cameron, A., Khalvati, F., Haider, M., Wong, A.: MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection (2015)

    Google Scholar 

  22. Campos, D.M., Simões, A., Ramos, I., Campilho, A.: Feature-Based Supervised Lung Nodule Segmentation 42, 23–26 (2014)

    Google Scholar 

  23. Cancer, I. A. f. R. o.: World Cancer Report 2014. Lyon, International Agency for Research on Cancer Press (2014)

    Google Scholar 

  24. Candemir, S., Jaeger, S., Palaniappan, K., Musco, J.P., Singh, R.K., Zhiyun, X., Karargyris, A., Antani, S., Thoma, G., McDonald, C.J.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2), 577–590 (2014)

    Article  Google Scholar 

  25. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  26. Cheng, N.-M., Fang, Y.-H.D., Chang, J.T.-C., Huang, C.-G., Tsan, D.-L., Ng, S.-H., Wang, H.-M., Lin, C.-Y., Liao, C.-T., Yen, T.-C.: Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J. Nucl. Med. 54(10), 1703–1709 (2013)

    Article  Google Scholar 

  27. Chicklore, S., Goh, V., Siddique, M., Roy, A., Marsden, P.K., Cook, G.J.: Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur. J. Nucl. Med. Mol. Imaging 40(1), 133–140 (2013)

    Article  Google Scholar 

  28. Choi, E.-S., Ha, S.-G., Kim, H.-S., Ha, J.H., Paeng, J.C., Han, I.: Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur. J. Nucl. Med. Mol. Imaging 40(12), 1836–1842 (2013)

    Article  Google Scholar 

  29. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  30. Clark, M.C., Hall, L.O., Goldgof, D.B., Velthuizen, R., Murtagh, F.R., Silbiger, M.S.: Automatic tumor segmentation using knowledge-based techniques. IEEE Trans. Med. Imaging 17(2), 187–201 (1998)

    Article  Google Scholar 

  31. Cobzas, D., Schmidt, M.: Increased discrimination in level set methods with embedded conditional random fields. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009 (2009)

    Google Scholar 

  32. Cook, G.J., Siddique, M., Taylor, B.P., Yip, C., Chicklore, S., Goh, V.: Radiomics in PET: principles and applications. Clin. Transl. Imaging 2(3), 269–276 (2014)

    Article  Google Scholar 

  33. Cook, G.J., Yip, C., Siddique, M., Goh, V., Chicklore, S., Roy, A., Marsden, P., Ahmad, S., Landau, D.: Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J. Nucl. Med. 54(1), 19–26 (2013)

    Article  Google Scholar 

  34. Coroller, T.P., Grossmann, P., Hou, Y., Velazquez, E.R., Leijenaar, R.T., Hermann, G., Lambin, P., Haibe-Kains, B., Mak, R.H., Aerts, H.J.: CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 114(3), 345–350 (2015)

    Article  Google Scholar 

  35. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)

    Article  Google Scholar 

  36. Dasarathy, B.V., Holder, E.B.: Image characterizations based on joint gray level—run length distributions. Pattern Recogn. Lett. 12(8), 497–502 (1991)

    Article  Google Scholar 

  37. de Carvalho Filho, A.O., de Sampaio, W.B., Silva, A.C., de Paiva, A.C., Nunes, R.A., Gattass, M.: Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif. Intell. Med. 60(3), 165–177 (2014)

    Article  Google Scholar 

  38. Diciotti, S., Lombardo, S., Falchini, M., Picozzi, G., Mascalchi, M.: Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. IEEE Trans. Biomed. Eng. 58(12), 3418–3428 (2011)

    Article  Google Scholar 

  39. Diciotti, S., Picozzi, G., Falchini, M., Mascalchi, M., Villari, N., Valli, G.: 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans. Inf. Technol. Biomed. 12(1), 7–19 (2008)

    Article  Google Scholar 

  40. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4), 198–211 (2007)

    Article  Google Scholar 

  41. Doi, K.: Current status and future potential of computer-aided diagnosis in medical imaging. Br. J. Radiol. (2014)

    Google Scholar 

  42. Dong, X., Xing, L., Wu, P., Fu, Z., Wan, H., Li, D., Yin, Y., Sun, X., Yu, J.: Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma: relationship between tumor 18F-fluorodeoxyglucose uptake heterogeneity, maximum standardized uptake value, and tumor stage. Nucl. Med. Commun. 34(1), 40–46 (2013)

    Article  Google Scholar 

  43. Dunn, G.P., Rinne, M.L., Jill, W., Giannicola, G., Quayle, S.N., Dunn, I.F., Agarwalla, P.K., Chheda, M.G., Benito, C., Alan, W.: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 26(8), 756–784 (2012)

    Article  Google Scholar 

  44. Eary, J.F., O’Sullivan, F., O’Sullivan, J., Conrad, E.U.: Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J. Nucl. Med. 49(12), 1973–1979 (2008)

    Article  Google Scholar 

  45. El-Baz, A., Nitzken, M., Khalifa, F., Elnakib, A., Gimel’farb, G., Falk, R., El-Ghar, M.A.: 3D shape analysis for early diagnosis of malignant lung nodules. In: Information Processing in Medical Imaging. Springer (2011)

    Google Scholar 

  46. El Naqa, I., Grigsby, P., Apte, A., Kidd, E., Donnelly, E., Khullar, D., Chaudhari, S., Yang, D., Schmitt, M., Laforest, R.: Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 42(6), 1162–1171 (2009)

    Article  Google Scholar 

  47. Farag, A.A., Abd El Munim, H.E., Graham, J.H., Farag, A.A.: A novel approach for lung nodules segmentation in chest CT using level sets. IEEE Trans. Image Process. 22(12), 5202–5213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Görlitz, L., Menze, B.H., Weber, M.-A., Kelm, B.M., Hamprecht, F.A.: Semi-supervised tumor detection in magnetic resonance spectroscopic images using discriminative random fields. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) Pattern Recognition: 29th DAGM Symposium, Heidelberg, Germany, 12–14 Sept 2007. Proceedings, pp. 224–233. Springer, Berlin (2007)

    Google Scholar 

  49. Galavis, P.E., Hollensen, C., Jallow, N., Paliwal, B., Jeraj, R.: Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 49(7), 1012–1016 (2010)

    Article  Google Scholar 

  50. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  51. Ganesan, K., Acharya, U., Chua, C.K., Min, L.C., Abraham, K.T., Ng, K.B.: Computer-aided breast cancer detection using mammograms: a review. IEEE Rev. Biomed. Eng. 6, 77–98 (2013)

    Article  Google Scholar 

  52. Ganeshan, B., Goh, V., Mandeville, H.C., Ng, Q.S., Hoskin, P.J., Miles, K.A.: Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266(1), 326–336 (2013)

    Article  Google Scholar 

  53. Ganeshan, B., Panayiotou, E., Burnand, K., Dizdarevic, S., Miles, K.: Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur. Radiol. 22(4), 796–802 (2012)

    Article  Google Scholar 

  54. Ganeshan, B., Skogen, K., Pressney, I., Coutroubis, D., Miles, K.: Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin. Radiol. 67(2), 157–164 (2012)

    Article  Google Scholar 

  55. Gatenby, R.A., Grove, O., Gillies, R.J.: Quantitative imaging in cancer evolution and ecology. Radiology 269(1), 8–14 (2013)

    Article  Google Scholar 

  56. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012)

    Article  Google Scholar 

  57. Gevaert, O., Xu, J., Hoang, C.D., Leung, A.N., Xu, Y., Quon, A., Rubin, D.L., Napel, S., Plevritis, S.K.: Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary results. Radiology 264(2), 387–396 (2012)

    Article  Google Scholar 

  58. Giger, M., MacMahon, H.: Image processing and computer-aided diagnosis. Radiol. Clin. North Am. 34(3), 565–596 (1996)

    Google Scholar 

  59. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 151169 (2015)

    Google Scholar 

  60. Glasser, O., Tucker, J.C., Boveri, M.: Wilhelm Conrad Röntgen and the Early History of the Roentgen Rays. C. C. Thomas, Springfield, IL (1934)

    Google Scholar 

  61. Glover, G.H.: Abstract: MRI: basic principles and future potential. Comput. Aided Surg. 5(2), 132 (2000)

    Google Scholar 

  62. Goh, V., Ganeshan, B., Nathan, P., Juttla, J.K., Vinayan, A., Miles, K.A.: Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1), 165–171 (2011)

    Article  Google Scholar 

  63. Golosio, B., Masala, G.L., Piccioli, A., Oliva, P., Carpinelli, M., Cataldo, R., Cerello, P., De Carlo, F., Falaschi, F., Fantacci, M.E., Gargano, G., Kasae, P., Torsello, M.: A novel multithreshold method for nodule detection in lung CT. Med. Phys. 36(8), 3607–3618 (2009)

    Article  Google Scholar 

  64. Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011: 14th International Conference, Toronto, Canada, 18–22 Sept 2011, Proceedings, Part II, pp. 532–540. Springer, Berlin (2011)

    Google Scholar 

  65. Greimel, E., Thiel, I., Peintinger, F., Cegnar, I., Pongratz, E.: Prospective assessment of quality of life of female cancer patients. Gynecol. Oncol. 85(1), 140–147 (2002)

    Article  Google Scholar 

  66. Grove, O., Berglund, A.E., Schabath, M.B., Aerts, H.J., Dekker, A., Wang, H., Velazquez, E.R., Lambin, P., Gu, Y., Balagurunathan, Y.: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PloS one 10(3) (2015)

    Google Scholar 

  67. Gu, Y., Kumar, V., Hall, L.O., Goldgof, D.B., Li, C.-Y., Korn, R., Bendtsen, C., Velazquez, E.R., Dekker, A., Aerts, H.: Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recogn. 46(3), 692–702 (2013)

    Article  Google Scholar 

  68. Gutman, D.A., Cooper, L.A.D., Hwang, S.N., Holder, C.A., Jingjing, G., Aurora, T.D., Dunn, W.D., Lisa, S., Tom, M., Rajan, J.: MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2), 560–569 (2013)

    Article  Google Scholar 

  69. Han, F., Wang, H., Zhang, G., Han, H., Song, B., Li, L., Moore, W., Lu, H., Zhao, H., Liang, Z.: Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J. Digit. Imaging 28(1), 99–115 (2015)

    Article  Google Scholar 

  70. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)

    Google Scholar 

  71. Hassner, M., Sklansky, J.: The use of Markov random fields as models of texture. Comput. Graph. Image Process. 12(4), 357–370 (1980)

    Article  Google Scholar 

  72. Hegi, M.E.: MGMT gene silencing and benefit from temozolomide in glioblastoma. Dkgest World Latest Med. Inf. 352(10), 997–1003 (2005)

    Google Scholar 

  73. Hu, S.Y., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6), 490–498 (2001)

    Article  Google Scholar 

  74. Hu, Z., Zou, J., Gui, J., Rong, J., Zhang, Q., Xia, D., Zheng, H.: geometric calibration based on identification of ellipse parameters of a micro-CT system for small-animal imaging. Sens. Lett. 9(5), 1938–1942 (2011)

    Article  Google Scholar 

  75. Huang, R.Y., Neagu, M.R., Reardon, D.A., Wen, P.Y.: Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy—detecting illusive disease, defining response. Front. Neurol. 6, 33 (2015)

    Article  Google Scholar 

  76. Hyun, S.H., Ahn, H.K., Kim, H., Ahn, M.-J., Park, K., Ahn, Y.C., Kim, J., Shim, Y.M., Choi, J.Y.: Volume-based assessment by 18F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 41(1), 50–58 (2014)

    Article  Google Scholar 

  77. Itakura, H., Achrol, A.S., Mitchell, L.A., Loya, J.J., Liu, T., Westbroek, E.M., Feroze, A.H., Rodriguez, S., Echegaray, S., Azad, T.D.: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci. Trans. Med. 7(303) (2015)

    Google Scholar 

  78. Jain, R., Poisson, L., Narang, J., Gutman, D., Scarpace, L., Hwang, S.N., Holder, C., Wintermark, M., Colen, R.R., Kirby, J., Freymann, J., Brat, D.J., Jaffe, C., Mikkelsen, T.: Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 267(1), 212–220 (2013)

    Article  Google Scholar 

  79. Jalalian, A., Mashohor, S.B., Mahmud, H.R., Saripan, M.I.B., Ramli, A.R.B., Karasfi, B.: Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37(3), 420–426 (2013)

    Article  Google Scholar 

  80. Jiang, Y., Nishikawa, R.M., Schmidt, R.A., Metz, C.E., Giger, M.L., Doi, K.: Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 6(1), 22–33 (1999)

    Google Scholar 

  81. Kakar, M., Olsen, D.R.: Automatic segmentation and recognition of lungs and lesion from CT scans of thorax. Comput. Med. Imaging Graph. 33(1), 72–82 (2009)

    Article  Google Scholar 

  82. Kapur, T., Grimson, W.E.L., Wells Iii, W.M., Kikinis, R.: Segmentation of brain tissue from magnetic resonance images. Med. Image Anal. 1(2), 109–127 (1996)

    Article  Google Scholar 

  83. Karlo, C.A., Pier Luigi, D.P., Joshua, C., Ari, H.A., Irina, O., Paul, R., Hedvig, H., Robert, M., Hsieh, J.J., Oguz, A.: Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2), 464–471 (2014)

    Article  Google Scholar 

  84. Klabatsa, A., Chicklore, S., Barrington, S.F., Goh, V., Lang-Lazdunski, L., Cook, G.J.: The association of 18F-FDG PET/CT parameters with survival in malignant pleural mesothelioma. Eur. J. Nucl. Med. Mol. Imaging 41(2), 276–282 (2014)

    Article  Google Scholar 

  85. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. (2012)

    Google Scholar 

  86. Kubota, T., Jerebko, A.K., Dewan, M., Salganicoff, M., Krishnan, A.: Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med. Image Anal. 15(1), 133–154 (2011)

    Article  Google Scholar 

  87. Kumar, D., Shafiee, M.J., Chung, A.G., Khalvati, F., Haider, M.A., Wong, A.: Discovery Radiomics for Computed Tomography Cancer Detection. arXiv preprint arXiv:1509.00117 (2015)

  88. Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., Forster, K., Aerts, H.J., Dekker, A., Fenstermacher, D.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012)

    Article  Google Scholar 

  89. Kuo, M.D., Neema, J.: Behind the numbers: decoding molecular phenotypes with radiogenomics–guiding principles and technical considerations. Radiology 270(2), 320–325 (2014)

    Article  Google Scholar 

  90. Kuo, W.-J., Chang, R.-F., Chen, D.-R., Lee, C.C.: Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images. Breast Cancer Res. Treat. 66(1), 51–57 (2001)

    Article  Google Scholar 

  91. Kyriacou, S.K., Davatzikos, C., Zinreich, S.J., Bryan, R.N.: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model [MRI]. IEEE Trans. Med. Imaging 18(7), 580–592 (1999)

    Article  Google Scholar 

  92. Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G., Granton, P., Zegers, C.M., Gillies, R., Boellard, R., Dekker, A.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  93. Larson, S.M., Erdi, Y., Akhurst, T., Mazumdar, M., Macapinlac, H.A., Finn, R.D., Casilla, C., Fazzari, M., Srivastava, N., Yeung, H.W.: Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging: the visual response score and the change in total lesion glycolysis. Clin. Positron Imaging 2(3), 159–171 (1999)

    Article  Google Scholar 

  94. Lassen, B., van Rikxoort, E.M., Schmidt, M., Kerkstra, S., van Ginneken, B., Kuhnigk, J.M.: Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi. IEEE Trans. Med. Imaging 32(2), 210–222 (2013)

    Article  Google Scholar 

  95. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  96. Lee, C.-H., Schmidt, M., Murtha, A., Bistritz, A., Sander, J., Greiner, R.: Segmenting brain tumors with conditional random fields and support vector machines. In: Liu, Y., Jiang, T., Zhang, C. (eds.) Computer Vision for Biomedical Image Applications: First International Workshop, CVBIA 2005, Beijing, China, 21 Oct 2005. Proceedings, pp. 469–478. Springer, Berlin (2005)

    Google Scholar 

  97. Leijenaar, R.T., Nalbantov, G., Carvalho, S., van Elmpt, W.J., Troost, E.G., Boellaard, R., Aerts, H.J., Gillies, R.J., Lambin, P.: The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci. Rep. 5 (2015)

    Google Scholar 

  98. Li, M., Zhou, Z.-H.: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 37(6), 1088–1098 (2007)

    Article  Google Scholar 

  99. Liang, W., Zhang, L., Jiang, G., Wang, Q., Liu, L., Liu, D., Wang, Z., Zhu, Z., Deng, Q., Xiong, X., Shao, W., Shi, X., He, J.: Development and validation of a nomogram for predicting survival in patients with resected non-small-cell lung cancer. J. Clin. Oncol. 33(8), 861–869 (2015)

    Article  Google Scholar 

  100. Liu, J., Udupa, J.K., Odhner, D., Hackney, D., Moonis, G.: A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput. Med. Imaging Graph. 29(1), 21–34 (2005)

    Article  Google Scholar 

  101. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W., Kleihues, P.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007)

    Article  Google Scholar 

  102. Macyszyn, L., Akbari, H., Pisapia, J.M., Da, X., Attiah, M., Pigrish, V., Bi, Y., Pal, S., Davuluri, R.V., Roccograndi, L.: 135 imaging patterns predict patient survival and molecular subtype in glioblastoma using machine learning techniques. Neurosurgery 62(Suppl 1) (2015). Clinical Neurosurgery

    Google Scholar 

  103. Madabhushi, A., Metaxas, D.N.: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. Med. Imaging 22(2), 155–169 (2003)

    Article  Google Scholar 

  104. Maffione, A.M., Ferretti, A., Grassetto, G., Bellan, E., Capirci, C., Chondrogiannis, S., Gava, M., Marzola, M.C., Rampin, L., Bondesan, C.: Fifteen different 18F-FDG PET/CT qualitative and quantitative parameters investigated as pathological response predictors of locally advanced rectal cancer treated by neoadjuvant chemoradiation therapy. Eur. J. Nucl. Med. Mol. Imaging 40(6), 853–864 (2013)

    Article  Google Scholar 

  105. Mandeville, H.C., Ng, Q.S., Daley, F.M., Barber, P.R., Pierce, G., Finch, J., Burke, M., Bell, A., Townsend, E.R., Kozarski, R., Vojnovic, B., Hoskin, P.J., Goh, V.: Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. Radiology 264(2), 581–589 (2012)

    Article  Google Scholar 

  106. Mansoor, A., Bagci, U., Xu, Z.Y., Foster, B., Olivier, K.N., Elinoff, J.M., Suffredini, A.F., Udupa, J.K., Mollura, D.J.: A generic approach to pathological lung segmentation (vol. 33, p. 2293, 2014). IEEE Trans. Med. Imaging 34(1), 354–354 (2015)

    Google Scholar 

  107. Maximilian, D., Christine, N., Wang, D.S., Susan, M.G., Mahesh, J., Yu, L., Kenneth, A., Soonmee, C., Kuo, M.D.: Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. U.S.A. 105(13), 5213–5218 (2008)

    Article  Google Scholar 

  108. McNitt-Gray, M.F., Armato, S.G., Meyer, C.R., Reeves, A.P., McLennan, G., Pais, R.C., Freymann, J., Brown, M.S., Engelmann, R.M., Bland, P.H.: The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation. Acad. Radiol. 14(12), 1464–1474 (2007)

    Article  Google Scholar 

  109. Menze, B.H., Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A.: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010: 13th International Conference, Beijing, China, 20–24 Sept 2010, Proceedings, Part II, pp. 151–159. Springer, Berlin (2010)

    Google Scholar 

  110. Messay, T., Hardie, R.C., Rogers, S.K.: A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med. Image Anal. 14(3), 390–406 (2010)

    Article  Google Scholar 

  111. Miller, T.R., Grigsby, P.W.: Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 53(2), 353–359 (2002)

    Article  Google Scholar 

  112. Miller, T.R., Pinkus, E., Dehdashti, F., Grigsby, P.W.: Improved prognostic value of 18F-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J. Nucl. Med. 44(2), 192–197 (2003)

    Google Scholar 

  113. Mohamed, S., Youssef, A., El-Saadany, E., Salama, M.M.: Prostate tissue characterization using TRUS image spectral features, pp. 589–601. Springer, Image Anal. Recogn. (2006)

    Google Scholar 

  114. Mu, W., Chen, Z., Liang, Y., Shen, W., Yang, F., Dai, R., Wu, N., Tian, J.: Staging of cervical cancer based on tumor heterogeneity characterized by texture features on 18F-FDG PET images. Phys. Med. Biol. 60(13), 5123 (2015)

    Article  Google Scholar 

  115. Mu, W., Chen, Z., Shen, W., Yang, F., Liang, Y., Dai, R., Wu, N., Tian, J.: A Segmentation Algorithm for Quantitative Analysis of Heterogeneous Tumors of the Cervix with 18F-FDG PET/CT (2015)

    Google Scholar 

  116. Murphy, K., van Ginneken, B., Schilham, A.M.R., de Hoop, B.J., Gietema, H.A., Prokop, M.: A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med. Image Anal. 13(5), 757–770 (2009)

    Article  Google Scholar 

  117. Nair, V.S., Gevaert, O., Davidzon, G., Napel, S., Graves, E.E., Hoang, C.D., Shrager, J.B., Quon, A., Rubin, D.L., Plevritis, S.K.: Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res. 72(15), 3725–3734 (2012)

    Article  Google Scholar 

  118. Neema, J., Maximilian, D., Markus, B., Kuo, M.D.: Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology 270(1), 212–222 (2014)

    Google Scholar 

  119. Nestle, U., Kremp, S., Grosu, A.-L.: Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother. Oncol. 81(2), 209–225 (2006)

    Article  Google Scholar 

  120. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Adv. Neural. Inf. Process. Syst. 28(3), 169–187 (2001)

    Google Scholar 

  121. Ng, F., Ganeshan, B., Kozarski, R., Miles, K.A., Goh, V.: Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266(1), 177–184 (2013)

    Article  Google Scholar 

  122. Nishizuka, Y.: The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334(6184), 661–665 (1988)

    Article  Google Scholar 

  123. O’Sullivan, F., Roy, S., O’Sullivan, J., Vernon, C., Eary, J.: Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostatistics 6(2), 293–301 (2005)

    Article  MATH  Google Scholar 

  124. O’Sullivan, F., Wolsztynski, E., O’Sullivan, J., Richards, T., Conrad, E., Eary, J.: A statistical modeling approach to the analysis of spatial patterns of FDG-PET uptake in human sarcoma. IEEE Trans. Med. Imag. 30(12), 2059–2071 (2011)

    Article  Google Scholar 

  125. Ohgaki, H., Kleihues, P.: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 64(6), 479–489 (2005)

    Article  Google Scholar 

  126. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  127. Okazumi, S., Dimitrakopoulou-Strauss, A., Schwarzbach, M., Strauss, L.G.: Quantitative, dynamic 18F-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hellenic J. Nucl. Med. 12(3), 223–228 (2008)

    Google Scholar 

  128. Olivier, G., Mitchell, L.A., Achrol, A.S., Jiajing, X., Sebastian, E., Steinberg, G.K., Cheshier, S.H., Sandy, N., Greg, Z., Plevritis, S.K.: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 276(1), 168–174 (2015)

    Google Scholar 

  129. Oncology, F. C. o. G.: FIGO staging for carcinoma of the vulva, cervix, and corpus uteri. Int. J. Gynecol. Obstet. 125(2), 97–98 (2014)

    Google Scholar 

  130. Oransky, I.: Sir Godfrey N. Hounsfield. Lancet 364(9439), 1032 (2004)

    Article  Google Scholar 

  131. Orban, G., Horvath, G.: Lung nodule detection on digital tomosynthesis images: a preliminary study. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE (2014)

    Google Scholar 

  132. Ostrom, Q.T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y.W., Wolinsky, Y., Stroup, N.E., Kruchko, C., Barnholtz-Sloan, J.S.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15, 1–56 (2013)

    Article  Google Scholar 

  133. Ozkan, E., West, A., Dedelow, J.A., Chu, B.F., Zhao, W., Yildiz, V.O., Otterson, G.A., Shilo, K., Ghosh, S., King, M.: CT gray-level texture analysis as a quantitative imaging biomarker of epidermal growth factor receptor mutation status in adenocarcinoma of the lung. Am. J. Roentgenol. 205(5), 1016–1025 (2015)

    Article  Google Scholar 

  134. Pannu, H.K., Corl, F.M., Fishman, E.K.: CT evaluation of cervical cancer: spectrum of disease 1. Radiographics 21(5), 1155–1168 (2001)

    Article  Google Scholar 

  135. Parmar, C., Leijenaar, R.T., Grossmann, P., Velazquez, E.R., Bussink, J., Rietveld, D., Rietbergen, M.M., Haibe-Kains, B., Lambin, P., Aerts, H.J.: Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci. Rep. 5 (2015)

    Google Scholar 

  136. Phillips, H.S., Kharbanda, S., Chen, R., Forrest, W.F., Soriano, R.H., Wu, T.D., Misra, A., Nigro, J.M., Colman, H., Soroceanu, L., Williams, P.M., Modrusan, Z., Feuerstein, B.G., Aldape, K.: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3), 157–173 (2006)

    Article  Google Scholar 

  137. Pignon, J.P., Tribodet, H., Scagliotti, G.V., Douillard, J.Y., Shepherd, F.A., Stephens, R.J., Dunant, A., Torri, V., Rosell, R., Seymour, L., Spiro, S.G., Rolland, E., Fossati, R., Aubert, D., Ding, K., Waller, D., Le Chevalier, T., L. C. Group: Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26(21), 3552–3559 (2008)

    Google Scholar 

  138. Pohl, K.M., Fisher, J., Levitt, J.J., Shenton, M.E., Kikinis, R., Grimson, W.E.L., Wells, W.M.: A unifying approach to registration, segmentation, and intensity correction. In: Duncan, J.S., Gerig, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005: 8th International Conference, Palm Springs, CA, USA, 26–29 Oct 2005, Proceedings, Part I, pp. 310–318. Springer, Berlin (2005)

    Google Scholar 

  139. Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10(12), 1341–1348 (2003)

    Article  Google Scholar 

  140. Rahim, M.K., Kim, S.E., So, H., Kim, H.J., Cheon, G.J., Lee, E.S., Kang, K.W., Lee, D.S.: Recent trends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl. Med. Mol. Imaging 48(1), 1–15 (2014)

    Article  Google Scholar 

  141. Roman-Jimenez, G., Leseur, J., Devillers, A., David, J.: Segmentation and characterization of tumors in 18F-FDG PET-CT for outcome prediction in cervical cancer radio-chemotherapy. In: Image-Guidance and Multimodal Dose Planning in Radiation Therapy: A MICCAI Workshop, vol. 17 (2012)

    Google Scholar 

  142. Rutman, A.M., Kuo, M.D.: Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur. J. Radiol. 70(2), 232–241 (2009)

    Article  Google Scholar 

  143. Ryu, I.S., Kim, J.S., Roh, J.-L., Cho, K.-J., Choi, S.-H., Nam, S.Y., Kim, S.Y.: Prognostic significance of preoperative metabolic tumour volume and total lesion glycolysis measured by 18F-FDG PET/CT in squamous cell carcinoma of the oral cavity. Eur. J. Nucl. Med. Mol. Imaging 41(3), 452–461 (2014)

    Article  Google Scholar 

  144. Schmidt, M., Levner, I., Greiner, R., Murtha, A., Bistritz, A.: Segmenting brain tumors using alignment-based features. In: Fourth International Conference on Machine Learning and Applications, 2005. Proceedings (2005)

    Google Scholar 

  145. Schmidt, M.C., Antweiler, S., Urban, N., Mueller, W., Kuklik, A., Meyer-Puttlitz, B., Wiestler, O.D., Louis, D.N., Fimmers, R., von Deimling, A.: Impact of genotype and morphology on the prognosis of glioblastoma. J. Neuropathol. Exp. Neurol. 61(4), 321–328 (2002)

    Article  Google Scholar 

  146. Schover, L.R.: Quality counts: the value of women’s perceived quality of life after cervical cancer. Gynecol. Oncol. 76(1), 3–4 (2000)

    Article  Google Scholar 

  147. Segal, E., Sirlin, C.B., Ooi, C., Adler, A.S., Gollub, J., Chen, X., Chan, B.K., Matcuk, G.R., Barry, C.T., Chang, H.Y., Kuo, M.D.: Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 25(6), 675–680 (2007)

    Article  Google Scholar 

  148. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Information Processing in Medical Imaging. Springer (2015)

    Google Scholar 

  149. Shota, Y., Maki, D.D., Korn, R.L., Kuo, M.D.: Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. Am. J. Roentgenol. 199(3), 654–663 (2012)

    Article  Google Scholar 

  150. Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics, 2013. CA Cancer J. Clin. 63(1), 11–30 (2013)

    Article  Google Scholar 

  151. Simon, R.: Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Personalized Med. 7(1), 33–47 (2010)

    Article  Google Scholar 

  152. Slattery, M.L., Robison, L.M., Schuman, K.L., French, T.K., Abbott, T.M., Overall, J.C., Gardner, J.W.: Cigarette smoking and exposure to passive smoke are risk factors for cervical cancer. JAMA 261(11), 1593–1598 (1989)

    Article  Google Scholar 

  153. Song, J., Liu, Z., Zhong, W., Huang, Y., Ma, Z., Dong, D., Liang, C., Tian, J.: Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. Sci. Rep. 6 (2016)

    Google Scholar 

  154. Song, J.D., Yang, C.Y., Fan, L., Wang, K., Yang, F., Liu, S.Y., Tian, J.: Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE Trans. Med. Imaging 35(1), 337–353 (2016)

    Article  Google Scholar 

  155. Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R.C., Ludwin, S.K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J.G., Eisenhauer, E., Mirimanoff, R.O.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005)

    Article  Google Scholar 

  156. Sun, S.S., Guo, Y.: Juxta-vascular nodule segmentation based on the flowing entropy and geodesic distance feature. J. Invest. Med. 61(4), S8–S8 (2013)

    Google Scholar 

  157. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  158. Tan, M., Deklerck, R., Jansen, B., Bister, M., Cornelis, J.: A novel computer-aided lung nodule detection system for CT images. Med. Phys. 38(10), 5630–5645 (2011)

    Article  Google Scholar 

  159. Tan, S., Kligerman, S., Chen, W., Lu, M., Kim, G., Feigenberg, S., D’Souza, W.D., Suntharalingam, M., Lu, W.: Spatial-temporal [18 F] FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int. J. Radiat. Oncol.* Biol.* Phys. 85(5), 1375–1382 (2013)

    Article  Google Scholar 

  160. Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Levy, N., Sequeira, J., Mari, J.: Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification (2009)

    Google Scholar 

  161. Thibault, G., Fertil, B., Navarro, C., Pereira, S., Levy, N., Sequeira, J., Mari, J.L.: Texture indexes and gray level size zone matrix application to cell nuclei classification. In: Pattern Recognition and Information Processing (PRIP) (2009)

    Google Scholar 

  162. Tixier, F., Le Rest, C.C., Hatt, M., Albarghach, N., Pradier, O., Metges, J.-P., Corcos, L., Visvikis, D.: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J. Nucl. Med. 52(3), 369–378 (2011)

    Article  Google Scholar 

  163. Tomasi, G., Turkheimer, F., Aboagye, E.: Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol. Imag. Biol. 14(2), 131–146 (2012)

    Article  Google Scholar 

  164. Vaidya, M., Creach, K.M., Frye, J., Dehdashti, F., Bradley, J.D., El Naqa, I.: Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother. Oncol. 102(2), 239–245 (2012)

    Article  Google Scholar 

  165. van Ginneken, B., Setio, A.A., Jacobs, C., Ciompi, F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE (2015)

    Google Scholar 

  166. van Velden, F.H., Cheebsumon, P., Yaqub, M., Smit, E.F., Hoekstra, O.S., Lammertsma, A.A., Boellaard, R.: Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur. J. Nucl. Med. Mol. Imaging 38(9), 1636–1647 (2011)

    Article  Google Scholar 

  167. Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., Alexe, G., Lawrence, M., O’Kelly, M., Tamayo, P., Weir, B.A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H.S., Hodgson, J.G., James, C.D., Sarkaria, J.N., Brennan, C., Kahn, A., Spellman, P.T., Wilson, R.K., Speed, T.P., Gray, J.W., Meyerson, M., Getz, G., Perou, C.M., Hayes, D.N.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)

    Article  Google Scholar 

  168. Verma, R., Zacharaki, E.I., Ou, Y., Cai, H., Chawla, S., Lee, S.-K., Melhem, E.R., Wolf, R., Davatzikos, C.: Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad. Radiol. 15(8), 966–977 (2008)

    Article  Google Scholar 

  169. Waggoner, S.E.: Cervical cancer. Lancet 361(9376), 2217–2225 (2003)

    Article  Google Scholar 

  170. Wahl, R.L., Wagner, H.N., Beanlands, R.S.: Principles and Practice of PET and PET/CT. Lippincott Williams & Wilkins Philadelphia, PA (2009)

    Google Scholar 

  171. Wang, Q., Song, E.M., Jin, R.C., Han, P., Wang, X.T., Zhou, Y.Y., Zeng, J.C.: Segmentation of lung nodules in computed tomography images using dynamic programming and multidirection fusion techniques. Acad. Radiol. 16(6), 678–688 (2009)

    Article  Google Scholar 

  172. Watabe, T., Tatsumi, M., Watabe, H., Isohashi, K., Kato, H., Yanagawa, M., Shimosegawa, E., Hatazawa, J.: Intratumoral heterogeneity of F-18 FDG uptake differentiates between gastrointestinal stromal tumors and abdominal malignant lymphomas on PET/CT. Ann. Nucl. Med. 26(3), 222–227 (2012)

    Article  Google Scholar 

  173. Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008: 11th International Conference, New York, NY, USA, 6–10 Sept 2008, Proceedings, Part I, pp. 67–75. Springer, Berlin (2008)

    Google Scholar 

  174. Wong, K.-P., Zhang, X., Huang, S.-C.: Improved derivation of input function in dynamic mouse [18F] FDG PET using bladder radioactivity kinetics. Mol. Imag. Biol. 15(4), 486–496 (2013)

    Article  Google Scholar 

  175. Wright, A.A., Howitt, B.E., Myers, A.P., Dahlberg, S.E., Palescandolo, E., Hummelen, P., MacConaill, L.E., Shoni, M., Wagle, N., Jones, R.T.: Oncogenic mutations in cervical cancer. Cancer 119(21), 3776–3783 (2013)

    Article  Google Scholar 

  176. Wu, D.J., Lu, L., Bi, J.B., Shinagawa, Y., Boyer, K., Krishnan, A., Salganicoff, M.: Stratified Learning of Local Anatomical Context for Lung Nodules in CT Images. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr), pp. 2791–2798 (2010)

    Google Scholar 

  177. Xiaoou, T.: Texture information in run-length matrices. IEEE Trans. Image Process. 7(11), 1602–1609 (1998)

    Article  Google Scholar 

  178. Yan, J., Chu-Shern, J.L., Loi, H.Y., Khor, L.K., Sinha, A.K., Quek, S.T., Tham, I.W., Townsend, D.: Impact of image reconstruction settings on texture features in 18F-FDG PET. J. Nucl. Med. 56(11), 1667–1673 (2015)

    Article  Google Scholar 

  179. Yan, W., Li, R., Liu, Y., Yang, P., Wang, Z., Zhang, C., Bao, Z., Zhang, W., You, Y., Jiang, T.: MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5(24), 12908–12915 (2014)

    Article  Google Scholar 

  180. Yang, F., Thomas, M.A., Dehdashti, F., Grigsby, P.W.: Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur. J. Nucl. Med. Mol. Imaging 40(5), 716–727 (2013)

    Article  Google Scholar 

  181. Yankelevitz, D.F., Reeves, A.P., Kostis, W.J., Zhao, B., Henschke, C.I.: Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 217(1), 251–256 (2000)

    Article  Google Scholar 

  182. Zacharaki, E.I., Shen, D., Lee, S.K., Davatzikos, C.: ORBIT: a multiresolution framework for deformable registration of brain tumor images. IEEE Trans. Med. Imaging 27(8), 1003–1017 (2008)

    Article  Google Scholar 

  183. Zhang, J., Ma, K.-K., Er, M.-H., Chong, V.: Tumor Segmentation from Magnetic Resonance Imaging by Learning via one-class support vector machine. In: International Workshop on Advanced Image Technology (IWAIT ‘04), Singapore (2004)

    Google Scholar 

  184. Zhao, B., James, L.P., Moskowitz, C.S., Guo, P., Ginsberg, M.S., Lefkowitz, R.A., Qin, Y., Riely, G.J., Kris, M.G., Schwartz, L.H.: Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology 252(1), 263–272 (2009)

    Article  Google Scholar 

  185. Zhao, B., Schwartz, L.H., Moskowitz, C.S., Ginsberg, M.S., Rizvi, N.A., Kris, M.G.: Lung cancer: computerized quantification of tumor response–initial results. Radiology 241(3), 892–898 (2006)

    Article  Google Scholar 

  186. Zhou, M., Hall, L.O., Goldgof, D.B., Gillies, R.J., Gatenby, R.A.: Survival time prediction of patients with glioblastoma multiforme tumors using spatial distance measurement. In: Medical Imaging 2013: Computer-Aided Diagnosis 8670 (2013)

    Google Scholar 

  187. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012: 15th International Conference, Nice, France, October 1–5, 2012, Proceedings, Part III, pp. 369–376. Springer, Berlin (2012)

    Google Scholar 

  188. Zikic, D., Glocker, B., Shotton, J., Criminisi, A., Thomas, O.M., Das, T., Konukoglu, E., Ye, D.H., Demiralp, C., Jena, R.: Context-sensitive Classification Forests for Segmentation of Brain Tumor Tissues. Miccai (2012)

    Google Scholar 

  189. Zinn, P.O., Bhanu, M., Bhanu, M., Pratheesh, S., Singh, S.K., Sadhan, M., Jolesz, F.A., Colen, R.R.: Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. Plos One 6(10), e25451 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, J. et al. (2018). Radiomics in Medical Imaging—Detection, Extraction and Segmentation. In: Suzuki, K., Chen, Y. (eds) Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-68843-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68843-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68842-8

  • Online ISBN: 978-3-319-68843-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics