Skip to main content

Immunosenescence and Cutaneous Malignancies

  • Chapter
  • First Online:
Skin Diseases in the Immunosuppressed

Abstract

The increased incidence of skin malignancies in the elderly can be attributed to a myriad of environmental and genetic factors. Among these are the not fully understood cellular and molecular changes of immunosenescence. Understanding how the immune system is dysregulated in advanced age, as well as how it interfaces with the multifaceted roles of the immune system in carcinogenesis and neoplastic control, will aid in developing effective immune strategies and improved therapeutic interventions for skin malignancies in the aging population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern RS. Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol. 2010;146:279–82.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018.

    Google Scholar 

  3. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41:45–60.

    Article  PubMed  Google Scholar 

  4. DePinho RA. The age of cancer. Nature. 2000;408:248–54.

    Article  CAS  PubMed  Google Scholar 

  5. Caruso C, Lio D, Cavallone L, Franceschi C. Aging, longevity, inflammation, and cancer. Ann NY Acad Sci. 2004;1028:1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Scotto J, Fears TR, Fraumeni JF. Incidence of nonmelanoma skin cancer in the United States. Bethesda, MD: US Department of Health and Human Services Washington; 1983. p. 113.

    Google Scholar 

  7. Little EG, Eide MJ. Update on the current state of melanoma incidence. Dermatol Clin. 2012;30:355–61.

    Article  CAS  PubMed  Google Scholar 

  8. Jemal A, Saraiya M, Patel P, Cherala SS, Barnholtz-Sloan J, Kim J, et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992–2006. J Am Acad Dermatol. 2011;65:S17–25.e1–3.

    Article  PubMed  Google Scholar 

  9. Albores-Saavedra J, Batich K, Chable-Montero F, Sagy N, Schwartz AM, Henson DE. Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol. 2010;37:20–7.

    Article  PubMed  Google Scholar 

  10. Boshoff C, Weiss RA. Epidemiology and pathogenesis of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:517–34.

    Article  CAS  Google Scholar 

  11. Schwartz RA, Micali G, Nasca MR, Scuderi L. Kaposi sarcoma: a continuing conundrum. J Am Acad Dermatol. 2008;59:179–206.

    Article  PubMed  Google Scholar 

  12. Bishop JM. Molecular themes in oncogenesis. Cell. 1991;64:235–48.

    Article  CAS  PubMed  Google Scholar 

  13. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  15. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog. 1993;7:139–46.

    Article  CAS  PubMed  Google Scholar 

  17. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  CAS  PubMed  Google Scholar 

  18. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991;51:3075–9.

    CAS  PubMed  Google Scholar 

  19. Goukassian D, Gad F, Yaar M, Eller MS, Nehal US, Gilchrest BA. Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J. 2000;14:1325–34.

    Article  CAS  PubMed  Google Scholar 

  20. Ramsey MJ, Moore DH II, Briner JF, Lee DA, Olsen L, Senft JR, et al. The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res. 1995;338:95–106.

    Article  CAS  PubMed  Google Scholar 

  21. Malaguarnera G, Giordano M, Cappellani A, Berretta M, Malaguarnera M, Perrotta RE. Skin cancers in elderly patients. Anti Cancer Agents Med Chem. 2013;13:1406–11.

    Article  CAS  Google Scholar 

  22. Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 1999;59:5068–74.

    CAS  PubMed  Google Scholar 

  23. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.

    Article  CAS  PubMed  Google Scholar 

  24. Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Investig. 2014;124:24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–8.

    Article  CAS  PubMed  Google Scholar 

  26. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:10114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406:641–5.

    Article  CAS  PubMed  Google Scholar 

  30. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell. 1999;3:565–77.

    Article  CAS  PubMed  Google Scholar 

  32. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400:468–72.

    Article  CAS  PubMed  Google Scholar 

  33. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campisi J. Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc. 1997;45:482–8.

    Article  CAS  PubMed  Google Scholar 

  35. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr Biol. 1999;9:939–45.

    Article  CAS  PubMed  Google Scholar 

  36. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pawelec G, Derhovanessian E, Larbi A. Immunosenescence and cancer. Crit Rev Oncol Hematol. 2010;75:165–72.

    Article  PubMed  Google Scholar 

  39. Gelman R, Watson A, Bronson R, Yunis E. Murine chromosomal regions correlated with longevity. Genetics. 1988;118:693–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol. 2010;104:183–90.

    Article  CAS  PubMed  Google Scholar 

  41. Gavazzi G, Krause K-H. Ageing and infection. Lancet Infect Dis. 2002;2:659–66.

    Article  PubMed  Google Scholar 

  42. Sunderkotter C, Kalden H, Luger TA. Aging and the skin immune system. Arch Dermatol. 1997;133:1256–62.

    Article  CAS  PubMed  Google Scholar 

  43. Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol. 1997;158:3037–45.

    CAS  PubMed  Google Scholar 

  44. Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP. Analysis of the human thymic perivascular space during aging. J Clin Investig. 1999;104:1031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Naylor K, Li G, Vallelo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.

    Article  CAS  PubMed  Google Scholar 

  46. Andrew D, Aspinall R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol. 2002;37:455–63.

    Article  CAS  PubMed  Google Scholar 

  47. Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol. 1998;160:1627–37.

    CAS  PubMed  Google Scholar 

  48. Kaszubowska L. Telomere shortening and ageing of the immune system. J Physiol Pharmacol. 2008;59:169–86.

    PubMed  Google Scholar 

  49. Yang Y, An J, Weng NP. Telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. J Immunol. 2008;180:3775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169:1984–92.

    Article  CAS  PubMed  Google Scholar 

  51. McElhaney JE, Effros RB. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haynes L, Linton PJ, Eaton SM, Tonkonogy SL, Swain SL. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med. 1999;190:1013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A. 2003;100:15053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. Newly generated CD4 T cells in aged animals do not exhibit age-related defects in response to antigen. J Exp Med. 2005;201:845–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med. 2004;200:1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kovaiou RD, Grubeck-Loebenstein B. Age-associated changes within CD4+ T cells. Immunol Lett. 2006;107:8–14.

    Article  CAS  PubMed  Google Scholar 

  57. Engwerda CR, Fox BS, Handwerger BS. Cytokine production by T lymphocytes from young and aged mice. J Immunol. 1996;156:3621–30.

    CAS  PubMed  Google Scholar 

  58. Fulop T, Larbi A, Wikby A, Mocchegiani E, Hirokawa K, Pawelec G. Dysregulation of T cell function in the elderly: scientific basis and clinical implications. Drugs Aging. 2005;22:589–603.

    Google Scholar 

  59. Larbi A, Douziech N, Dupuis G, Khalil A, Pelletier H, Guerard KP, et al. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol. 2004;75:373–81.

    Article  CAS  PubMed  Google Scholar 

  60. Powers DC. Influenza A virus-specific cytotoxic T lymphocyte activity declines with advancing age. J Am Geriatr Soc. 1993;41:1–5.

    Article  CAS  PubMed  Google Scholar 

  61. Effros RB, Walford RL. The immune response of aged mice to influenza: diminished T cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol. 1983;81:298–305.

    Google Scholar 

  62. Po JL, Gardner EM, Anaraki F, Katsikis PD, Murasko DM. Age-associated decrease in virus-specific CD8+ T lymphocytes during primary influenza infection. Mech Ageing Dev. 2002;123:1167–81.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao L, Sun L, Wang H, Haixia M, Liu G, Zhao Y. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol. 2007;81:1386–94.

    Article  CAS  PubMed  Google Scholar 

  64. Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol. 2005;140:540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castle SC, Norman DC, Perls TT, Chang MP, Yoshikawa TT, Makinodan T. Analysis of cutaneous delayed-type hypersensitivity reaction and T cell proliferative response in elderly nursing home patients: an approach to identifying immunodeficient patients. Gerontology. 1990;36:217–29.

    Article  CAS  PubMed  Google Scholar 

  66. Frasca D, Nguyen D, Riley RL, Blomberg BB. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol. 2003;170:719–26.

    Article  CAS  PubMed  Google Scholar 

  67. Labrie Iii JE, Sah AP, Allman DM, Cancro MP, Gerstein RM. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med. 2004;200:411–23.

    Article  Google Scholar 

  68. Siegrist CA, Aspinall R. B cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9:185–94.

    Google Scholar 

  69. Sato H. The distribution, immune complex trapping ability and morphology of follicular dendritic cells in popliteal lymph nodes of aged rats. Histol Histopathol. 1998;13:99–108.

    CAS  PubMed  Google Scholar 

  70. Weksler ME, Szabo P. The effect of age on the B cell repertoire. J Clin Immunol. 2000;20:240–9.

    Google Scholar 

  71. Yang X, Stedra J, Cerny J. Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice. J Exp Med. 1996;183:959–70.

    Article  CAS  PubMed  Google Scholar 

  72. Miller RA. The aging immune system: primer and prospectus. Science. 1996;273:70–4.

    Article  CAS  PubMed  Google Scholar 

  73. Whisler RL, Williams Jr JW, Newhouse YG. Human B cell proliferative responses during aging. Reduced RNA synthesis and DNA replication after signal transduction by surface immunoglobulins compared to B cell antigenic determinants CD20 and CD40. Mech Ageing Dev. 1991;61:209–22.

    Article  CAS  PubMed  Google Scholar 

  74. Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev. 2004;199:9–26.

    Article  CAS  PubMed  Google Scholar 

  75. Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol. 2007;7:543–55.

    Article  CAS  PubMed  Google Scholar 

  76. Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL. Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 2008;68:6341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Agrawal A, Agrawal S, Tay J, Gupta S. Biology of dendritic cells in aging. J Clin Immunol. 2008;28:14–20.

    Article  PubMed  Google Scholar 

  78. Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16:908–14.

    Article  CAS  PubMed  Google Scholar 

  79. Steuhl KP, Sitz U, Knorr M, Thanos S, Thiel HJ. Age-related distribution of Langerhans cells within the human conjunctival epithelium. Ophthalmologe. 1995;92:21–5.

    CAS  PubMed  Google Scholar 

  80. Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol. 2006;51:1150–5.

    Article  CAS  PubMed  Google Scholar 

  81. Indrasingh I, Chandi G, Jeyaseelan L, Vettivel S, Chandi SM. Quantitative analysis of CD1a (T6) positive Langerhans cells in human tonsil epithelium. Ann Anat. 1999;181:567–72.

    Article  CAS  PubMed  Google Scholar 

  82. Thiers BH, Maize JC, Spicer SS, Cantor AB. The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol. 1984;82:223–6.

    Article  CAS  PubMed  Google Scholar 

  83. Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet-irradiation on Langerhans cells in human-epidermis. J Investig Dermatol. 1982;79:85–8.

    Article  CAS  PubMed  Google Scholar 

  84. Shurin MR, Shurin GV, Chatta GS. Aging and the dendritic cell system: implications for cancer. Crit Rev Oncol Hematol. 2007;64:90–105.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol. 2004;76:291–9.

    Article  CAS  PubMed  Google Scholar 

  86. Born J, Uthgenannt D, Dodt C, Nunninghoff D, Ringvolt E, Wagner T, et al. Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech Ageing Dev. 1995;84:113–26.

    Article  CAS  PubMed  Google Scholar 

  87. Ogawa T, Kitagawa M, Hirokawa K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev. 2000;117:57–68.

    Article  CAS  PubMed  Google Scholar 

  88. McLachlan JA, Serkin CD, Morrey KM, Bakouche O. Antitumoral properties of aged human monocytes. J Immunol. 1995;154:832–43.

    CAS  PubMed  Google Scholar 

  89. Alvarez E, Santa Maria C. Influence of the age and sex on respiratory burst of human monocytes. Mech Ageing Dev. 1996;90:157–61.

    Article  CAS  PubMed  Google Scholar 

  90. Meyer KC, Ershler W, Rosenthal NS, Lu XG, Peterson K. Immune dysregulation in the aging human lung. Am J Respir Crit Care Med. 1996;153:1072–9.

    Article  CAS  PubMed  Google Scholar 

  91. Bartneck M, Skazik C, Paul NE, Salber J, Klee D, Zwadlo-Klarwasser G. The RGD coupling strategy determines the inflammatory response of human primary macrophages in vitro and angiogenesis in vivo. Macromol Biosci. 2014;14:411–8.

    Article  CAS  PubMed  Google Scholar 

  92. Chen LC, Pace JL, Russell SW, Morrison DC. Altered regulation of inducible nitric oxide synthase expression in macrophages from senescent mice. Infect Immun. 1996;64:4288–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA. Increased number of circulating Leu 11+ (CD 16) large granular lymphocytes and decreased NK activity during human ageing. Clin Exp Immunol. 1987;68:340–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang Y, Wallace DL, de Lara CM, Ghattas H, Asquith B, Worth A, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121:258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dorfman JR, Raulet DH. Acquisition of Ly49 receptor expression by developing natural killer cells. J Exp Med. 1998;187:609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol. 1999;34:253–65.

    Article  CAS  PubMed  Google Scholar 

  98. Kutza J, Murasko DM. Effects of aging on natural killer cell activity and activation by interleukin-2 and IFN-α. Cell Immunol. 1994;155:195–204.

    Article  CAS  PubMed  Google Scholar 

  99. Luger TA, Beissert S, Schwarz T. The epidermal cytokine network. In: Skin immune system (SIS). Boca Raton: CRC Press; 1997. p. 271–310.

    Google Scholar 

  100. Sauder DN, Stanulis-Praeger BM, Gilchrest BA. Autocrine growth stimulation of human keratinocytes by epidermal cell-derived thymocyte-activating factor: implications for skin aging. Arch Dermatol Res. 1988;280:71–6.

    Article  CAS  PubMed  Google Scholar 

  101. Gilchrest BA, Garmyn M, Yaar M. Aging and photoaging affect gene expression in cultured human keratinocytes. Arch Dermatol. 1994;130:82–6.

    Article  CAS  PubMed  Google Scholar 

  102. Compton C, Tongxaa Y, Trookman N, Zhao H, Roy D. TGF-β1 gene expression in cultured human keratinocytes does not decrease with biologic age. J Investig Dermatol. 1994;103:127–33.

    Article  CAS  PubMed  Google Scholar 

  103. Compton CC, Tong Y, Trookman N, Zhao H, Roy D, Press W. Transforming growth factor alpha gene expression in cultured human keratinocytes is unaffected by cellular aging. Arch Dermatol. 1995;131:683–90.

    Article  CAS  PubMed  Google Scholar 

  104. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  105. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNγ, and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    Article  CAS  PubMed  Google Scholar 

  106. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  107. Klein G. Immunological surveillance against neoplasia. Harvey Lect. 1973;(69):71–102.

    Google Scholar 

  108. Stutman O. Immunodepression and malignancy. Adv Cancer Res. 1975;22:261–422.

    Article  CAS  PubMed  Google Scholar 

  109. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  CAS  PubMed  Google Scholar 

  110. Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohme I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60:183–9.

    Article  CAS  PubMed  Google Scholar 

  111. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biol Med Sci. 2014;69:S4–9.

    Article  Google Scholar 

  112. Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–20.

    Article  CAS  PubMed  Google Scholar 

  113. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22:507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.

    Article  CAS  PubMed  Google Scholar 

  116. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22:33–40.

    Article  CAS  PubMed  Google Scholar 

  118. Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.

    Article  CAS  PubMed  Google Scholar 

  119. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci U S A. 2011;108:17111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bowdish DM. Myeloid-derived suppressor cells, age and cancer. Oncoimmunology. 2013;2:e24754.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93:633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Song L, Kim YH, Chopra RK, Proust JJ, Nagel JE, Nordin AA, et al. Age-related effects in T cell activation and proliferation. Exp Gerontol. 1993;28:313–21.

    Article  CAS  PubMed  Google Scholar 

  123. Ryan SO, Johnson JL, Cobb BA. Neutrophils confer T cell resistance to myeloid-derived suppressor cell-mediated suppression to promote chronic inflammation. J Immunol. 2013;190:5037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Thomas L. Cellular and humoral aspects of the hypersensitive states 1959.

    Google Scholar 

  125. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Old LJ. Cancer immunology: the search for specificity—G.H.A. Clowes Memorial Lecture. Cancer Res. 1981;41:361–75.

    CAS  PubMed  Google Scholar 

  127. Knuth A, Danowski B, Oettgen HF, Old LJ. T cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T cell cultures. Proc Natl Acad Sci U S A. 1984;81:3511–5.

    Google Scholar 

  128. Van Der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van Den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  129. Sahin U, Türeci Ö, Schmitt H, Cochlovius B, Johannes T, Schmits R, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:11810–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1:447–56.

    Article  CAS  PubMed  Google Scholar 

  131. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, et al. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494:361–5.

    Article  PubMed  CAS  Google Scholar 

  135. Teng MWL, Vesely MD, Duret H, McLaughlin N, Towne JE, Schreiber RD, et al. Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state. Cancer Res. 2012;72:3987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2011;23:286–92.

    Article  CAS  PubMed  Google Scholar 

  139. Sportès C, Hakim F. Aging, immunity and cancer. In: Fulop T, Franceschi C, Hirokawa K, Pawelec G, editors. Handbook on immunosenescence. Dordrecht: Springer; 2009. p. 1119–38.

    Chapter  Google Scholar 

  140. Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8:743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wei Q. Effect of aging on DNA repair and skin carcinogenesis: a minireview of population-based studies. J Investig Dermatol Symp Proc. 1998;3:19–22.

    CAS  PubMed  Google Scholar 

  142. Rass K, Reichrath J. UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. In: Reichrath J, editor. Sunlight, vitamin D and skin cancer. New York: Springer; 2008. p. 162–78.

    Chapter  Google Scholar 

  143. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van Duin D, Shaw AC. Toll-like receptors in older adults. J Am Geriatr Soc. 2007;55:1438–44.

    Article  PubMed  Google Scholar 

  145. Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157(Suppl 2):8–13.

    Article  PubMed  CAS  Google Scholar 

  146. Rosso S, Zanetti R, Martinez C, Tormo MJ, Schraub S, Sancho-Garnier H, et al. The multicentre south European study ‘Helios’. II: different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br J Cancer. 1996;73:1447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014;70:621–9.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lasithiotakis KG, Petrakis IE, Garbe C. Cutaneous melanoma in the elderly: epidemiology, prognosis and treatment. Melanoma Res. 2010;20:163–70.

    PubMed  Google Scholar 

  149. Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.

    Article  CAS  PubMed  Google Scholar 

  150. Chao C, Martin RC II, Ross MI, Reintgen DS, Edwards MJ, Noyes RD, et al. Correlation between prognostic factors and increasing age in melanoma. Ann Surg Oncol. 2004;11:259–64.

    Article  PubMed  Google Scholar 

  151. Chang CK, Jacobs IA, Vizgirda VM, Salti GI. Melanoma in the elderly patient. Arch Surg. 2003;138:1135–8.

    Article  CAS  PubMed  Google Scholar 

  152. Lynch SA, Houghton AN. Cancer immunology. Curr Opin Oncol. 1993;5:145–50.

    Article  CAS  PubMed  Google Scholar 

  153. Russo AE, Ferrau F, Antonelli G, Priolo D, McCubrey JA, Libra M. Malignant melanoma in elderly patients: biological, surgical and medical issues. Expert Rev Anticancer Ther. 2015;15:101–8.

    Article  CAS  PubMed  Google Scholar 

  154. Ott PA. Combined BRAF and MEK inhibition in BRAF(V600E) mutant melanoma: a synergistic and potentially safe combination partner with immunotherapy. Ann Transl Med. 2015;3:313.

    PubMed  PubMed Central  Google Scholar 

  155. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Robey RC, Bower M. Facing up to the ongoing challenge of Kaposi’s sarcoma. [Miscellaneous article]. Curr Opin Infect Dis. 2015;28(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  157. Unemori P, Leslie KS, Hunt PW, Sinclair E, Epling L, Mitsuyasu R, et al. Immunosenescence is associated with presence of Kaposi’s sarcoma in antiretroviral treated HIV infection. AIDS. 2013;27:1735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bhatia S, Afanasiev O, Nghiem P. Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated cancer. Curr Oncol Rep. 2011;13:488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Becker JC, Houben R, Ugurel S, Trefzer U, Pfohler C, Schrama DMC, Polyomavirus I. Frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol. 2008;129:248–50.

    Article  PubMed  CAS  Google Scholar 

  160. Tolstov YL, Pastrana DV, Feng H, Becker JC, Jenkins FJ, Moschos S, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer. 2009;125(6): 1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Garrett GL, Zargham H, Schulman JM, Jafarian F, SS Y, Arron ST. Merkel cell carcinoma in organ transplant recipients: case reports and review of the literature. JAAD Case Rep. 2015;1:S29–32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar R. Colegio M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, J.Y., Colegio, O.R. (2018). Immunosenescence and Cutaneous Malignancies. In: Colegio, O. (eds) Skin Diseases in the Immunosuppressed. Springer, Cham. https://doi.org/10.1007/978-3-319-68790-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68790-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68788-9

  • Online ISBN: 978-3-319-68790-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics