Skip to main content

Respiration and CO2 Fluxes in Trees

  • Chapter
  • First Online:
Plant Respiration: Metabolic Fluxes and Carbon Balance

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 43))

Summary

Currently, the most pressing problem regarding respiration in trees is determining the rate of respiration in woody tissues . Respiration is relatively easily measured in isolated cells by measuring the evolution of CO2, but this measurement becomes much more complicated in intact tree roots, stems and branches because CO2 moves readily into xylem sap where it can remain, or be refixed by photosynthetic cells in woody tissues , or moved from the site of production through the xylem. Carbon dioxide is continuously diffusing from the xylem sap into the atmosphere as xylem sap moves through the tree. Fortunately, many research groups have been addressing these issues using a variety of experimental protocols. In this review we will examine the progress that has been made since 2008, the last time this topic was reviewed. One of the most important findings in that period of time has been that a large quantity of the CO2 found in tree stems can come from the root system. This means that root respiration can be substantially underestimated by “soil-centric” measurements. We discuss new methods to measure and model stem respiration and the use of recently produced carbohydrates for woody tissue respiration. We also discuss woody tissue photosynthesis and the quantity of CO2 that can be internally recycled within trees, a process that may be particularly important for tree survival during periods of drought but has received little attention. Finally, the research summarized in this chapter illustrates that, at the whole plant level, physiological activity involves both cellular and higher order transport processes that add a level of complexity to how we measure and interpret apparent respiration rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi M, Ishida A, Bunyavejchewin S, Okuda T, Koizumi H (2009) Spatial and temporal variation in soil respiration in a seasonally dry tropical forest, Thailand. J Trop Ecol 25:531–539

    Article  Google Scholar 

  • Adams MS, Strain BR, Ting IP (1967) Photosynthesis in chlorophyllous stem tissue and leaves of Cercidium floridum: accumulation and distribution of 14C from 14CO2. Plant Physiol 42:1797–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen CP, Nikolov I, Nikolova P, Matyssek R, Häberle KH (2005) Estimating “autotrophic” belowground respiration in spruce and beech forests: decreases following girdling. Eur J For Res 124:155–163

    Article  Google Scholar 

  • Angert A, Muhr J, Juarez RN, Muñoz WA, Kraemer G, Santillan JR et al (2012) Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux. Biogeosciences 9:4979–4991

    Article  CAS  Google Scholar 

  • Aschan G, Pfanz H (2003) Non-foliar photosynthesis: a strategy of additional carbon acquisition. Flora 198:81–97

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    Article  CAS  PubMed  Google Scholar 

  • Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184:35–40

    Article  CAS  PubMed  Google Scholar 

  • Aubrey DP, Mortazavi B, O’Brien JJ, McGee JD, Hendricks JJ, Kuehn KA, Teskey RO, Mitchell RJ (2012) Influence of repeated canopy scorching on soil CO2 efflux. For Ecol Manage 282:142–148

    Article  Google Scholar 

  • Ávila E, Herrera A, Tezara W (2014) Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica 52:3–15

    Article  Google Scholar 

  • Balogh J, Fóti S, Pintér K, Burri S, Eugster W, Papp M, Nagy Z (2014) Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil 388:157–173

    Article  Google Scholar 

  • Bekku YS, Sakata T, Nakano T, Koizumi H (2008) Midday depression in root respiration of Quercus crispula and Chamaecyparis obtusa: its implication for estimating carbon cycling in forest ecosystems. Ecol Res 24:865–871

    Article  Google Scholar 

  • Berveiller D, Damesin C (2008) Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase. Trees 22:149–157

    Article  CAS  Google Scholar 

  • Binkley D, Stape J, Takahashi E, Ryan M (2006) Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia 148:447–454

    Article  PubMed  Google Scholar 

  • Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013a) Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation. J Exp Bot 64:2129–2138

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013b) Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytol 197:555–565

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, Agneessens L, Van Meulebroek L, Aubrey DP, McGuire MA, Teskey RO, Steppe K (2014) Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. New Phytol 201:897–907

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, Bauweraerts I, De Vos F, Vanhove C, Vandenberghe S, Boeckx P, Steppe K (2015) Fate of xylem-transported 11C- and 13C-labeled CO2 in leaves of poplar. Physiol Plant 153:555–564

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, Vergeynst LL, Overlaet-Michiels L, Steppe K (2016) How important is woody tissue photosynthesis in poplar during drought stress? Trees 30:63–72

    Article  CAS  Google Scholar 

  • Bužková R, Acosta M, Dařenová E, Pokorný R, Pavelka M (2015) Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees 29:333–343

    Article  Google Scholar 

  • Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu XM, Richardson AD (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Cernusak LA, Cheesman AW (2015) The benefits of recycling: how photosynthetic bark can increase drought tolerance. New Phytol 208:995–997

    Article  PubMed  Google Scholar 

  • Cernusak LA, Hutley LB (2011) Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata. Plant Physiol 155:515–523

    Article  CAS  PubMed  Google Scholar 

  • Cernusak LA, Hutley LB, Beringer J, Tapper NJ (2006) Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Environ 29:632–646

    Article  PubMed  Google Scholar 

  • Cramer MD (2002) Inorganic carbon utilization by root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: The Hidden Half. Marcel Dekker, New York, pp 699–414

    Chapter  Google Scholar 

  • Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D, Gerant D et al (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labeling: variations among tree species and seasons. New Phytol 190:181–192

    Article  CAS  PubMed  Google Scholar 

  • Daudet FA, Améglio T, Cochard H, Archilla O, Lacointe A (2005) Experimental analysis of the role of water and carbon in tree stem diameter variations. J Exp Bot 56:135–144

    CAS  PubMed  Google Scholar 

  • Enoch HZ, Olesen JM (1993) Plant response to irrigation with water enriched with carbon dioxide. New Phytol 125:249–258

    Article  CAS  Google Scholar 

  • Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A et al (2012) Pulse-labeling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol 32:776–798

    Article  CAS  PubMed  Google Scholar 

  • Etzold S, Zweifel R, Ruehr NK, Eugster W, Buchmann N (2013) Long-term stem CO2 concentration measurements in Norway spruce in relation to biotic and abiotic factors. New Phytol 197:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Foote KC, Schaedle M (1978) The contribution of aspen bark photosynthesis to the energy balance of the stem. For Sci 24:569–573

    Google Scholar 

  • Ford CR, Wurzburger N, Hendrick RL, Teskey RO (2007) Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiol 27:375–383

    Article  CAS  PubMed  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng SH (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69

    Article  Google Scholar 

  • Giardina CP, Binkley D, Ryan MG, Fownes JH, Senock RS (2004) Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139:545–550

    Article  PubMed  Google Scholar 

  • Grossiord C, Mareschal L, Epron D (2012) Transpiration alters the contribution of autotrophic and heterotrophic components of soil CO2 efflux. New Phytol 194:647–653

    Article  CAS  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Henriksson N, Tarvainen L, Lim H, Tor-Ngern P, Palmroth S, Oren R, Marshall J, Näsholm T (2015) Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. Tree Physiol 35:1075–1085

    Article  PubMed  Google Scholar 

  • Heskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A et al (2016) Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc Natl Acad Sci USA 113:3832–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–791

    Article  PubMed  Google Scholar 

  • Högberg P, Bhupinderpal-Singh LMO, Nordgren A (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. For Ecol Manage 257:1764–1767

    Article  Google Scholar 

  • Hölttä T, Kolari P (2009) Interpretation of stem CO2 efflux measurements. Tree Physiol 29:1447–1456

    Article  PubMed  Google Scholar 

  • Johnsen K, Maier C, Sanchez F, Anderson P, Butnor J, Waring R, Linder S (2007) Physiological girdling of pine trees via phloem chilling: proof of concept. Plant Cell Environ 30:128–134

    Article  CAS  PubMed  Google Scholar 

  • Kuptz D, Fleischmann F, Matyssek R, Grams T (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol 191:160–172

    Google Scholar 

  • Kunert N, Edinger J (2015) Xylem sap flux affects conventional stem CO2 efflux measurements in tropical trees. Biotropica 47:650–653

    Article  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Change Biol 16:3386–3406

    Article  Google Scholar 

  • Kuzyakov Y, Larionova AA (2005) Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J Plant Nutr Soil Sci 168:503–520

    Article  CAS  Google Scholar 

  • Liu L, Wang X, Lajeunesse MJ, Miao G, Piao S, Wan S et al (2016) A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob Change Biol 22:1394–1405

    Article  Google Scholar 

  • Lynch DJ, Matamala R, Iversen CM, Norby RJ, Gonzalez-Meler MA (2013) Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots. New Phytol 199:420–430

    Article  CAS  PubMed  Google Scholar 

  • Maunoury-Danger F, Fresneau C, Eglin T, Berveiller D, François C, Lelarge-Trouverie C, Damesin C (2010) Impact of carbohydrate supply on stem growth, wood and respired CO2 δ13C: assessment by experimental girdling. Tree Physiol 30:818–830

    Article  CAS  PubMed  Google Scholar 

  • McGuire MA, Teskey RO (2004) Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiol 24:571–578

    Article  CAS  PubMed  Google Scholar 

  • McGuire MA, Marshall JD, Teskey RO (2009) Assimilation of xylem-transported 13C-labeled CO2 in leaves and branches of sycamore (Platanus occidentalis L.) J Exp Bot 60:3809–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe CR, Chalk L (1983) Wood structure. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 2, Chapter 1. Wood structure and conclusion of the general introduction. 2nd edn. Clarendon Press, Oxford, pp 1–51.

    Google Scholar 

  • Mildner M, Bader MK-F, Baumann C, Körner C (2015) Respiratory fluxes and fine root responses in mature Picea abies trees exposed to elevated atmospheric CO2 concentrations. Biogeochemistry 124:95–111

    Article  CAS  Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    Article  CAS  PubMed  Google Scholar 

  • Muhr J, Angert A, Negron-Juarez RI, Munoz WA, Kraemer G, Chambers JQ, Trumbore SE (2013) Carbon dioxide emitted from live stems of tropical trees is several years old. Tree Physiol 33:743–752

    Article  CAS  PubMed  Google Scholar 

  • Nilsen ET (1995) Stem photosynthesis: extent, patterns, and role in plant carbon economy. In: Gartner BL (ed) Plant stems: Physiology and functional morphology, physiological ecology. Academic, San Diego, pp 223–240

    Chapter  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Change Biol 11:1745–1753

    Article  Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Calcerrada J, López R, Salomón R, Gordaliza GG, Valbuena-Carabaña M, Oleksyn J, Gil L (2015) Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications. Plant Cell Environ 38:1104–1115

    Article  PubMed  Google Scholar 

  • Salomón RL, Valbuena-Carabaña M, Gil L, McGuire MA, Teskey RO, Aubrey DP, González-Doncel I, Rodríguez-Calcerrada J (2016) Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. Tree Physiol. https://doi.org/10.1093/treephys/tpw029

  • Saveyn A, Steppe K, Lemeur R (2007) Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure? Ann Bot 99:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO (2008) Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia 154:637–649

    Article  PubMed  Google Scholar 

  • Saveyn A, Steppe K, Ubierna N, Dawson TE (2010) Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant Cell Environ 33:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Sorz J, Hietz P (2006) Gas diffusion through wood: implications for oxygen supply. Trees 20:34–41

    Article  Google Scholar 

  • Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO (2007) Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. Funct Plant Biol 34:785–792

    Article  CAS  Google Scholar 

  • Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci 20:335–343

    Article  CAS  PubMed  Google Scholar 

  • Stringer JW, Kimmerer TW (1993) Refixation of xylem sap CO2 in Populus deltoides. Physiol Plant 89:243–251

    Article  CAS  Google Scholar 

  • Subke JA, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943

    Article  Google Scholar 

  • Subke JA, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labeling of a boreal pine forest. New Phytol 183:349–357

    Article  CAS  PubMed  Google Scholar 

  • Taneva L, Pippen JS, Schlesinger WH, Gonzalez-Meler MA (2006) The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration. Glob Change Biol 12:983–994

    Article  Google Scholar 

  • Teskey RO, McGuire MA (2005) CO2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena. Trees 19:357–362

    Article  Google Scholar 

  • Teskey RO, McGuire MA (2007) Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. Plant Cell Environ 30:570–579

    Article  CAS  PubMed  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. New Phytol 177:17–32

    CAS  PubMed  Google Scholar 

  • Trumbore S, Czimczik CI, Sierra CA, Muhr J, Xu X (2015) Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiol 35:1206–1222

    CAS  PubMed  Google Scholar 

  • Ubierna N, Kumar AS, Cernusak LA, Pangle RE, Gag PJ, Marshall JD (2009) Storage and transpiration have negligible effects on d13C of stem CO2 efflux in large conifer trees. Tree Physiol 29:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Vandegehuchte MW, Bloemen J, Vergeynst LL, Steppe K (2015) Woody tissue photosynthesis in trees: salve on the wounds of drought? New Phytol 208:998–1002

    Article  PubMed  Google Scholar 

  • VanderWel MC, Slot M, Lichstein JW, Reich PB, Kattge J, Atkin OK et al (2015) Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytol 207:1026–1037

    Article  PubMed  Google Scholar 

  • Wang WJ, Zu YG, Wang HM, Li XY, Hirano T, Koike T (2006) Newly-formed photosynthates and the respiration rate of girdled stems of Korean pine (Pinus koraiensis Sieb. et Zucc.) Photosynthetica 44:147–150

    Article  CAS  Google Scholar 

  • Warren JM, Iversen CM, Garten CT Jr, Norby RJ, Childs J, Brice D et al (2012) Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Tree Physiol 32:799–813

    Article  CAS  PubMed  Google Scholar 

  • Wertin TM, Teskey RO (2008) Close coupling of whole-plant respiration to net photosynthesis and carbohydrates. Tree Physiol 28:1831–1840

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Pfanz H (2016) The optical, absorptive and chlorophyll fluorescence properties of young stems of five woody species. Environ Exp Bot 121:83–93

    Article  CAS  Google Scholar 

  • Yang QP, Liu LL, Zhang WG, Xu M, Wang SL (2015) Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees 29:1207–1218

    Article  CAS  Google Scholar 

  • Zelawski W, Riech FP, Stanley RG (1970) Assimilation and release of internal carbon dioxide by woody plant shoots. Can J Bot 48:1351–1354

    Article  CAS  Google Scholar 

  • Zhou L, Zhou X, Zhang B, Lu M, Luo Y, Liu L, Li B (2014) Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob Change Biol 20:2332–2343

    Article  Google Scholar 

Download references

Acknowledgements

ROT and MAM were supported by the Pine Integrated Network: Education, Mitigation, and Adaptation Project (PINEMAP), a Coordinated Agricultural Project funded by the United States Department of Agriculture, National Institute of Food and Agriculture, Award #2011-68002-30185. KS was supported by funding from the Belgian Fonds Wetenschappelijk Onderzoek, Research Project G.0941.15 N. The Austrian Science Fund (FWF): M1757-B22 provided postdoctoral funding to JB. DPA was supported by the United States Department of Agriculture, National Institute of Food and Agriculture Award #2013-67009-25148 and by the Department of Energy, Award #DE-EM0004391. We also thank Teemu Hölttä for providing the data for Fig. 9.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Teskey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teskey, R.O., McGuire, M.A., Bloemen, J., Aubrey, D.P., Steppe, K. (2017). Respiration and CO2 Fluxes in Trees. In: Tcherkez, G., Ghashghaie, J. (eds) Plant Respiration: Metabolic Fluxes and Carbon Balance. Advances in Photosynthesis and Respiration, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-68703-2_9

Download citation

Publish with us

Policies and ethics